You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
async-tungstenite/src/lib.rs

220 lines
7.2 KiB

//! Async WebSocket usage.
//!
//! This library is an implementation of WebSocket handshakes and streams. It
//! is based on the crate which implements all required WebSocket protocol
//! logic. So this crate basically just brings tokio support / tokio integration
//! to it.
//!
//! Each WebSocket stream implements the required `Stream` and `Sink` traits,
//! so the socket is just a stream of messages coming in and going out.
#![deny(
missing_docs,
unused_must_use,
unused_mut,
unused_imports,
unused_import_braces)]
extern crate futures;
extern crate tokio_io;
extern crate tungstenite;
#[cfg(feature="connect")]
mod connect;
#[cfg(feature="stream")]
pub mod stream;
use std::io::ErrorKind;
use futures::{Poll, Future, Async, AsyncSink, Stream, Sink, StartSend};
use tokio_io::{AsyncRead, AsyncWrite};
use tungstenite::handshake::client::{ClientHandshake, Response, Request};
use tungstenite::handshake::server::{ServerHandshake, Callback, NoCallback};
use tungstenite::handshake::{HandshakeRole, HandshakeError};
use tungstenite::protocol::{WebSocket, Message};
use tungstenite::error::Error as WsError;
use tungstenite::server;
#[cfg(feature="connect")]
pub use connect::connect_async;
/// Creates a WebSocket handshake from a request and a stream.
/// For convenience, the user may call this with a url string, a URL,
/// or a `Request`. Calling with `Request` allows the user to add
/// a WebSocket protocol or other custom headers.
///
/// Internally, this custom creates a handshake representation and returns
/// a future representing the resolution of the WebSocket handshake. The
/// returned future will resolve to either `WebSocketStream<S>` or `Error`
/// depending on whether the handshake is successful.
///
/// This is typically used for clients who have already established, for
/// example, a TCP connection to the remote server.
pub fn client_async<'a, R, S>(request: R, stream: S) -> ConnectAsync<S>
where
R: Into<Request<'a>>,
S: AsyncRead + AsyncWrite
{
ConnectAsync {
inner: MidHandshake {
inner: Some(ClientHandshake::start(stream, request.into()).handshake())
}
}
}
/// Accepts a new WebSocket connection with the provided stream.
///
/// This function will internally call `server::accept` to create a
/// handshake representation and returns a future representing the
/// resolution of the WebSocket handshake. The returned future will resolve
/// to either `WebSocketStream<S>` or `Error` depending if it's successful
/// or not.
///
/// This is typically used after a socket has been accepted from a
/// `TcpListener`. That socket is then passed to this function to perform
/// the server half of the accepting a client's websocket connection.
pub fn accept_async<S>(stream: S) -> AcceptAsync<S, NoCallback>
where
S: AsyncRead + AsyncWrite,
{
accept_hdr_async(stream, NoCallback)
}
/// Accepts a new WebSocket connection with the provided stream.
///
/// This function does the same as `accept_async()` but accepts an extra callback
/// for header processing. The callback receives headers of the incoming
/// requests and is able to add extra headers to the reply.
pub fn accept_hdr_async<S, C>(stream: S, callback: C) -> AcceptAsync<S, C>
where
S: AsyncRead + AsyncWrite,
C: Callback,
{
AcceptAsync {
inner: MidHandshake {
inner: Some(server::accept_hdr(stream, callback))
}
}
}
/// A wrapper around an underlying raw stream which implements the WebSocket
/// protocol.
///
/// A `WebSocketStream<S>` represents a handshake that has been completed
/// successfully and both the server and the client are ready for receiving
/// and sending data. Message from a `WebSocketStream<S>` are accessible
/// through the respective `Stream` and `Sink`. Check more information about
/// them in `futures-rs` crate documentation or have a look on the examples
/// and unit tests for this crate.
pub struct WebSocketStream<S> {
inner: WebSocket<S>,
}
impl<T> Stream for WebSocketStream<T> where T: AsyncRead + AsyncWrite {
type Item = Message;
type Error = WsError;
fn poll(&mut self) -> Poll<Option<Message>, WsError> {
self.inner.read_message().map(|m| Some(m)).to_async()
}
}
impl<T> Sink for WebSocketStream<T> where T: AsyncRead + AsyncWrite {
type SinkItem = Message;
type SinkError = WsError;
fn start_send(&mut self, item: Message) -> StartSend<Message, WsError> {
try!(self.inner.write_message(item).to_async());
Ok(AsyncSink::Ready)
}
fn poll_complete(&mut self) -> Poll<(), WsError> {
self.inner.write_pending().to_async()
}
}
/// Future returned from client_async() which will resolve
/// once the connection handshake has finished.
pub struct ConnectAsync<S: AsyncRead + AsyncWrite> {
inner: MidHandshake<ClientHandshake<S>>,
}
impl<S: AsyncRead + AsyncWrite> Future for ConnectAsync<S> {
type Item = (WebSocketStream<S>, Response);
type Error = WsError;
fn poll(&mut self) -> Poll<Self::Item, WsError> {
match self.inner.poll()? {
Async::NotReady => Ok(Async::NotReady),
Async::Ready((ws, resp)) => Ok(Async::Ready((WebSocketStream { inner: ws }, resp))),
}
}
}
/// Future returned from accept_async() which will resolve
/// once the connection handshake has finished.
pub struct AcceptAsync<S: AsyncRead + AsyncWrite, C: Callback> {
inner: MidHandshake<ServerHandshake<S, C>>,
}
impl<S: AsyncRead + AsyncWrite, C: Callback> Future for AcceptAsync<S, C> {
type Item = WebSocketStream<S>;
type Error = WsError;
fn poll(&mut self) -> Poll<Self::Item, WsError> {
match self.inner.poll()? {
Async::NotReady => Ok(Async::NotReady),
Async::Ready(ws) => Ok(Async::Ready(WebSocketStream { inner: ws })),
}
}
}
struct MidHandshake<H: HandshakeRole> {
inner: Option<Result<<H as HandshakeRole>::FinalResult, HandshakeError<H>>>,
}
impl<H: HandshakeRole> Future for MidHandshake<H> {
type Item = <H as HandshakeRole>::FinalResult;
type Error = WsError;
fn poll(&mut self) -> Poll<Self::Item, WsError> {
match self.inner.take().expect("cannot poll MidHandshake twice") {
Ok(result) => Ok(Async::Ready(result)),
Err(HandshakeError::Failure(e)) => Err(e),
Err(HandshakeError::Interrupted(s)) => {
match s.handshake() {
Ok(result) => Ok(Async::Ready(result)),
Err(HandshakeError::Failure(e)) => Err(e),
Err(HandshakeError::Interrupted(s)) => {
self.inner = Some(Err(HandshakeError::Interrupted(s)));
Ok(Async::NotReady)
}
}
}
}
}
}
trait ToAsync {
type T;
type E;
fn to_async(self) -> Result<Async<Self::T>, Self::E>;
}
impl<T> ToAsync for Result<T, WsError> {
type T = T;
type E = WsError;
fn to_async(self) -> Result<Async<Self::T>, Self::E> {
match self {
Ok(x) => Ok(Async::Ready(x)),
Err(error) => match error {
WsError::Io(ref err) if err.kind() == ErrorKind::WouldBlock => Ok(Async::NotReady),
err => Err(err),
},
}
}
}