use libc::{c_uint, c_void, size_t}; use std::{mem, ptr, raw}; use std::kinds::marker; use std::io::BufWriter; use cursor::{RoCursor, RwCursor, Items}; use environment::Environment; use database::Database; use error::{LmdbResult, lmdb_result}; use ffi; use ffi::MDB_txn; use ffi::{DatabaseFlags, EnvironmentFlags, WriteFlags, MDB_RDONLY, MDB_RESERVE}; /// An LMDB transaction. /// /// All database operations require a transaction. pub trait Transaction<'env> { /// Returns a raw pointer to the underlying LMDB transaction. /// /// The caller **must** ensure that the pointer is not used after the lifetime of the /// transaction. fn txn(&self) -> *mut MDB_txn; } /// Transaction extension methods. pub trait TransactionExt<'env> : Transaction<'env> { /// Commits the transaction. /// /// Any pending operations will be saved. fn commit(self) -> LmdbResult<()> { unsafe { let result = lmdb_result(::ffi::mdb_txn_commit(self.txn())); mem::forget(self); result } } /// Aborts the transaction. /// /// Any pending operations will not be saved. fn abort(self) { // Abort should be performed in transaction destructors. } } impl<'env, T> TransactionExt<'env> for T where T: Transaction<'env> {} /// A read-only LMDB transaction. /// /// All database read operations require a transaction. pub trait ReadTransaction<'env> : Transaction<'env> { /// Gets an item from a database. /// /// This function retrieves the data associated with the given key in the database. If the /// database supports duplicate keys (`MDB_DUPSORT`) then the first data item for the key will /// be returned. Retrieval of other items requires the use of `Transaction::cursor_get`. fn get<'txn>(&'txn self, database: Database, key: &[u8]) -> LmdbResult<&'txn [u8]> { let mut key_val: ::ffi::MDB_val = ::ffi::MDB_val { mv_size: key.len() as size_t, mv_data: key.as_ptr() as *mut c_void }; let mut data_val: ::ffi::MDB_val = ::ffi::MDB_val { mv_size: 0, mv_data: ptr::null_mut() }; unsafe { try!(lmdb_result(::ffi::mdb_get(self.txn(), database.dbi(), &mut key_val, &mut data_val))); let slice: &'txn [u8] = mem::transmute(raw::Slice { data: data_val.mv_data as *const u8, len: data_val.mv_size as uint }); Ok(slice) } } /// Open a new read-only cursor on the given database. fn open_read_cursor<'txn>(&'txn self, db: Database) -> LmdbResult> { RoCursor::new(self, db) } /// Open a new read-only cursor on the given database. fn iter<'txn>(&'txn self, db: Database) -> LmdbResult> { Items::new(self, db) } /// Gets the option flags for the given database in the transaction. fn db_flags(&self, db: Database) -> LmdbResult { let mut flags: c_uint = 0; unsafe { try!(lmdb_result(ffi::mdb_dbi_flags(self.txn(), db.dbi(), &mut flags))); } Ok(DatabaseFlags::from_bits_truncate(flags)) } } /// A read-write LMDB transaction. /// /// All database operations require a transaction. pub trait WriteTransaction<'env> : ReadTransaction<'env> { /// Open a new read-write cursor on the given database. fn open_write_cursor<'txn>(&'txn mut self, db: Database) -> LmdbResult> { RwCursor::new(self, db) } /// Stores an item into a database. /// /// This function stores key/data pairs in the database. The default behavior is to enter the /// new key/data pair, replacing any previously existing key if duplicates are disallowed, or /// adding a duplicate data item if duplicates are allowed (`MDB_DUPSORT`). fn put(&mut self, database: Database, key: &[u8], data: &[u8], flags: WriteFlags) -> LmdbResult<()> { let mut key_val: ffi::MDB_val = ffi::MDB_val { mv_size: key.len() as size_t, mv_data: key.as_ptr() as *mut c_void }; let mut data_val: ffi::MDB_val = ffi::MDB_val { mv_size: data.len() as size_t, mv_data: data.as_ptr() as *mut c_void }; unsafe { lmdb_result(ffi::mdb_put(self.txn(), database.dbi(), &mut key_val, &mut data_val, flags.bits())) } } /// Returns a `BufWriter` which can be used to write a value into the item at the given key /// and with the given length. The buffer must be completely filled by the caller. fn reserve<'txn>(&'txn mut self, database: Database, key: &[u8], len: size_t, flags: WriteFlags) -> LmdbResult> { let mut key_val: ffi::MDB_val = ffi::MDB_val { mv_size: key.len() as size_t, mv_data: key.as_ptr() as *mut c_void }; let mut data_val: ffi::MDB_val = ffi::MDB_val { mv_size: len, mv_data: ptr::null_mut::() }; unsafe { try!(lmdb_result(ffi::mdb_put(self.txn(), database.dbi(), &mut key_val, &mut data_val, flags.bits() | MDB_RESERVE))); let slice: &'txn mut [u8] = mem::transmute(raw::Slice { data: data_val.mv_data as *const u8, len: data_val.mv_size as uint }); Ok(BufWriter::new(slice)) } } /// Deletes an item from a database. /// /// This function removes key/data pairs from the database. If the database does not support /// sorted duplicate data items (`MDB_DUPSORT`) the data parameter is ignored. If the database /// supports sorted duplicates and the data parameter is `None`, all of the duplicate data items /// for the key will be deleted. Otherwise, if the data parameter is `Some` only the matching /// data item will be deleted. This function will return `MDB_NOTFOUND` if the specified key/data /// pair is not in the database. fn del(&mut self, database: Database, key: &[u8], data: Option<&[u8]>) -> LmdbResult<()> { let mut key_val: ffi::MDB_val = ffi::MDB_val { mv_size: key.len() as size_t, mv_data: key.as_ptr() as *mut c_void }; let data_val: Option = data.map(|data| ffi::MDB_val { mv_size: data.len() as size_t, mv_data: data.as_ptr() as *mut c_void }); unsafe { lmdb_result(ffi::mdb_del(self.txn(), database.dbi(), &mut key_val, data_val.map(|mut data_val| &mut data_val as *mut _) .unwrap_or(ptr::null_mut()))) } } } /// An LMDB read-only transaction. pub struct RoTransaction<'env> { txn: *mut MDB_txn, _no_sync: marker::NoSync, _no_send: marker::NoSend, _contravariant: marker::ContravariantLifetime<'env>, } #[unsafe_destructor] impl <'env> Drop for RoTransaction<'env> { fn drop(&mut self) { unsafe { ffi::mdb_txn_abort(self.txn) } } } impl <'env> RoTransaction<'env> { /// Creates a new read-only transaction in the given environment. Prefer using /// `Environment::begin_ro_txn`. #[doc(hidden)] pub fn new(env: &'env Environment) -> LmdbResult> { let mut txn: *mut MDB_txn = ptr::null_mut(); unsafe { try!(lmdb_result(ffi::mdb_txn_begin(env.env(), ptr::null_mut(), MDB_RDONLY.bits(), &mut txn))); Ok(RoTransaction { txn: txn, _no_sync: marker::NoSync, _no_send: marker::NoSend, _contravariant: marker::ContravariantLifetime::<'env>, }) } } } impl <'env> Transaction<'env> for RoTransaction<'env> { fn txn(&self) -> *mut MDB_txn { self.txn } } //impl <'env> TransactionExt<'env> for RoTransaction<'env> { } impl <'env> ReadTransaction<'env> for RoTransaction<'env> { } /// An LMDB read-write transaction. pub struct RwTransaction<'env> { txn: *mut MDB_txn, _no_sync: marker::NoSync, _no_send: marker::NoSend, _contravariant: marker::ContravariantLifetime<'env>, } #[unsafe_destructor] impl <'env> Drop for RwTransaction<'env> { fn drop(&mut self) { unsafe { ffi::mdb_txn_abort(self.txn) } } } impl <'env> RwTransaction<'env> { /// Creates a new read-write transaction in the given environment. Prefer using /// `Environment::begin_ro_txn`. #[doc(hidden)] pub fn new(env: &'env Environment) -> LmdbResult> { let mut txn: *mut MDB_txn = ptr::null_mut(); unsafe { try!(lmdb_result(ffi::mdb_txn_begin(env.env(), ptr::null_mut(), EnvironmentFlags::empty().bits(), &mut txn))); Ok(RwTransaction { txn: txn, _no_sync: marker::NoSync, _no_send: marker::NoSend, _contravariant: marker::ContravariantLifetime::<'env>, }) } } } impl <'env> Transaction<'env> for RwTransaction<'env> { fn txn(&self) -> *mut MDB_txn { self.txn } } //impl <'env> TransactionExt<'env> for RwTransaction<'env> { } impl <'env> ReadTransaction<'env> for RwTransaction<'env> { } impl <'env> WriteTransaction<'env> for RwTransaction<'env> { } #[cfg(test)] mod test { use std::io; use std::sync::{Arc, Barrier, Future}; use environment::*; use super::*; use ffi::*; #[test] fn test_put_get_del() { let dir = io::TempDir::new("test").unwrap(); let env = Environment::new().open(dir.path(), io::USER_RWX).unwrap(); let db = env.open_db(None).unwrap(); let mut txn = env.begin_write_txn().unwrap(); txn.put(db, b"key1", b"val1", WriteFlags::empty()).unwrap(); txn.put(db, b"key2", b"val2", WriteFlags::empty()).unwrap(); txn.put(db, b"key3", b"val3", WriteFlags::empty()).unwrap(); txn.commit().unwrap(); let mut txn = env.begin_write_txn().unwrap(); assert_eq!(b"val1", txn.get(db, b"key1").unwrap()); assert_eq!(b"val2", txn.get(db, b"key2").unwrap()); assert_eq!(b"val3", txn.get(db, b"key3").unwrap()); assert!(txn.get(db, b"key").is_err()); txn.del(db, b"key1", None).unwrap(); assert!(txn.get(db, b"key1").is_err()); } #[test] fn test_reserve() { let dir = io::TempDir::new("test").unwrap(); let env = Environment::new().open(dir.path(), io::USER_RWX).unwrap(); let db = env.open_db(None).unwrap(); let mut txn = env.begin_write_txn().unwrap(); { let mut writer = txn.reserve(db, b"key1", 4, WriteFlags::empty()).unwrap(); writer.write(b"val1").unwrap(); } txn.commit().unwrap(); let mut txn = env.begin_write_txn().unwrap(); assert_eq!(b"val1", txn.get(db, b"key1").unwrap()); assert!(txn.get(db, b"key").is_err()); txn.del(db, b"key1", None).unwrap(); assert!(txn.get(db, b"key1").is_err()); } #[test] fn test_close_database() { let dir = io::TempDir::new("test").unwrap(); let env = Arc::new(Environment::new() .set_max_dbs(10) .open(dir.path(), io::USER_RWX) .unwrap()); let db1 = { let db = env.create_db(Some("db"), DatabaseFlags::empty()).unwrap(); let txn = env.begin_write_txn().unwrap(); txn.commit().unwrap(); db }; let db2 = { let db = env.open_db(Some("db")).unwrap(); let txn = env.begin_read_txn().unwrap(); txn.commit().unwrap(); db }; // Check that database handles are reused properly assert!(db1.dbi() == db2.dbi()); { let mut txn = env.begin_write_txn().unwrap(); txn.put(db1, b"key1", b"val1", WriteFlags::empty()).unwrap(); assert!(txn.commit().is_ok()); } unsafe { env.close_db(db1) }; { let mut txn = env.begin_write_txn().unwrap(); assert!(txn.put(db1, b"key2", b"val2", WriteFlags::empty()).is_err()); } } #[test] fn test_concurrent_readers_single_writer() { let dir = io::TempDir::new("test").unwrap(); let env: Arc = Arc::new(Environment::new().open(dir.path(), io::USER_RWX).unwrap()); let n = 10u; // Number of concurrent readers let barrier = Arc::new(Barrier::new(n + 1)); let mut futures: Vec> = Vec::with_capacity(n); let key = b"key"; let val = b"val"; for _ in range(0, n) { let reader_env = env.clone(); let reader_barrier = barrier.clone(); futures.push(Future::spawn(move|| { let db = reader_env.open_db(None).unwrap(); { let txn = reader_env.begin_read_txn().unwrap(); assert!(txn.get(db, key).is_err()); txn.abort(); } reader_barrier.wait(); reader_barrier.wait(); { let txn = reader_env.begin_read_txn().unwrap(); txn.get(db, key).unwrap() == val } })); } let db = env.open_db(None).unwrap(); let mut txn = env.begin_write_txn().unwrap(); barrier.wait(); txn.put(db, key, val, WriteFlags::empty()).unwrap(); txn.commit().unwrap(); barrier.wait(); assert!(futures.iter_mut().all(|b| b.get())) } #[test] fn test_concurrent_writers() { let dir = io::TempDir::new("test").unwrap(); let env = Arc::new(Environment::new().open(dir.path(), io::USER_RWX).unwrap()); let n = 10u; // Number of concurrent writers let mut futures: Vec> = Vec::with_capacity(n); let key = "key"; let val = "val"; for i in range(0, n) { let writer_env = env.clone(); futures.push(Future::spawn(move|| { let db = writer_env.open_db(None).unwrap(); let mut txn = writer_env.begin_write_txn().unwrap(); txn.put(db, format!("{}{}", key, i).as_bytes(), format!("{}{}", val, i).as_bytes(), WriteFlags::empty()) .unwrap(); txn.commit().is_ok() })); } assert!(futures.iter_mut().all(|b| b.get())); let db = env.open_db(None).unwrap(); let txn = env.begin_read_txn().unwrap(); for i in range(0, n) { assert_eq!( format!("{}{}", val, i).as_bytes(), txn.get(db, format!("{}{}", key, i).as_bytes()).unwrap()); } } }