Read-only mirror of official repo on openldap.org. Issues and pull requests here are ignored. Use OpenLDAP ITS for issues.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
lmdb/libraries/liblmdb/mdb.c

8109 lines
220 KiB

/** @file mdb.c
* @brief memory-mapped database library
*
* A Btree-based database management library modeled loosely on the
* BerkeleyDB API, but much simplified.
*/
/*
* Copyright 2011-2013 Howard Chu, Symas Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*
* This code is derived from btree.c written by Martin Hedenfalk.
*
* Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/uio.h>
#include <sys/mman.h>
#ifdef HAVE_SYS_FILE_H
#include <sys/file.h>
#endif
#include <fcntl.h>
#endif
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stddef.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER))
#include <netinet/in.h>
#include <resolv.h> /* defines BYTE_ORDER on HPUX and Solaris */
#endif
#if defined(__APPLE__) || defined (BSD)
# define MDB_USE_POSIX_SEM 1
# define MDB_FDATASYNC fsync
#elif defined(ANDROID)
# define MDB_FDATASYNC fsync
#endif
#ifndef _WIN32
#include <pthread.h>
#ifdef MDB_USE_POSIX_SEM
#include <semaphore.h>
#endif
#endif
#ifdef USE_VALGRIND
#include <valgrind/memcheck.h>
#define VGMEMP_CREATE(h,r,z) VALGRIND_CREATE_MEMPOOL(h,r,z)
#define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s)
#define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a)
#define VGMEMP_DESTROY(h) VALGRIND_DESTROY_MEMPOOL(h)
#define VGMEMP_DEFINED(a,s) VALGRIND_MAKE_MEM_DEFINED(a,s)
#else
#define VGMEMP_CREATE(h,r,z)
#define VGMEMP_ALLOC(h,a,s)
#define VGMEMP_FREE(h,a)
#define VGMEMP_DESTROY(h)
#define VGMEMP_DEFINED(a,s)
#endif
#ifndef BYTE_ORDER
# if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN))
/* Solaris just defines one or the other */
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# ifdef _LITTLE_ENDIAN
# define BYTE_ORDER LITTLE_ENDIAN
# else
# define BYTE_ORDER BIG_ENDIAN
# endif
# else
# define BYTE_ORDER __BYTE_ORDER
# endif
#endif
#ifndef LITTLE_ENDIAN
#define LITTLE_ENDIAN __LITTLE_ENDIAN
#endif
#ifndef BIG_ENDIAN
#define BIG_ENDIAN __BIG_ENDIAN
#endif
#if defined(__i386) || defined(__x86_64) || defined(_M_IX86)
#define MISALIGNED_OK 1
#endif
#include "lmdb.h"
#include "midl.h"
#if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN)
# error "Unknown or unsupported endianness (BYTE_ORDER)"
#elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF
# error "Two's complement, reasonably sized integer types, please"
#endif
/** @defgroup internal MDB Internals
* @{
*/
/** @defgroup compat Windows Compatibility Macros
* A bunch of macros to minimize the amount of platform-specific ifdefs
* needed throughout the rest of the code. When the features this library
* needs are similar enough to POSIX to be hidden in a one-or-two line
* replacement, this macro approach is used.
* @{
*/
#ifdef _WIN32
#define pthread_t DWORD
#define pthread_mutex_t HANDLE
#define pthread_key_t DWORD
#define pthread_self() GetCurrentThreadId()
#define pthread_key_create(x,y) \
((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0)
#define pthread_key_delete(x) TlsFree(x)
#define pthread_getspecific(x) TlsGetValue(x)
#define pthread_setspecific(x,y) (TlsSetValue(x,y) ? 0 : ErrCode())
#define pthread_mutex_unlock(x) ReleaseMutex(x)
#define pthread_mutex_lock(x) WaitForSingleObject(x, INFINITE)
#define LOCK_MUTEX_R(env) pthread_mutex_lock((env)->me_rmutex)
#define UNLOCK_MUTEX_R(env) pthread_mutex_unlock((env)->me_rmutex)
#define LOCK_MUTEX_W(env) pthread_mutex_lock((env)->me_wmutex)
#define UNLOCK_MUTEX_W(env) pthread_mutex_unlock((env)->me_wmutex)
#define getpid() GetCurrentProcessId()
#define MDB_FDATASYNC(fd) (!FlushFileBuffers(fd))
#define MDB_MSYNC(addr,len,flags) (!FlushViewOfFile(addr,len))
#define ErrCode() GetLastError()
#define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;}
#define close(fd) (CloseHandle(fd) ? 0 : -1)
#define munmap(ptr,len) UnmapViewOfFile(ptr)
#else
#ifdef MDB_USE_POSIX_SEM
#define LOCK_MUTEX_R(env) mdb_sem_wait((env)->me_rmutex)
#define UNLOCK_MUTEX_R(env) sem_post((env)->me_rmutex)
#define LOCK_MUTEX_W(env) mdb_sem_wait((env)->me_wmutex)
#define UNLOCK_MUTEX_W(env) sem_post((env)->me_wmutex)
static int
mdb_sem_wait(sem_t *sem)
{
int rc;
while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ;
return rc;
}
#else
/** Lock the reader mutex.
*/
#define LOCK_MUTEX_R(env) pthread_mutex_lock(&(env)->me_txns->mti_mutex)
/** Unlock the reader mutex.
*/
#define UNLOCK_MUTEX_R(env) pthread_mutex_unlock(&(env)->me_txns->mti_mutex)
/** Lock the writer mutex.
* Only a single write transaction is allowed at a time. Other writers
* will block waiting for this mutex.
*/
#define LOCK_MUTEX_W(env) pthread_mutex_lock(&(env)->me_txns->mti_wmutex)
/** Unlock the writer mutex.
*/
#define UNLOCK_MUTEX_W(env) pthread_mutex_unlock(&(env)->me_txns->mti_wmutex)
#endif /* MDB_USE_POSIX_SEM */
/** Get the error code for the last failed system function.
*/
#define ErrCode() errno
/** An abstraction for a file handle.
* On POSIX systems file handles are small integers. On Windows
* they're opaque pointers.
*/
#define HANDLE int
/** A value for an invalid file handle.
* Mainly used to initialize file variables and signify that they are
* unused.
*/
#define INVALID_HANDLE_VALUE (-1)
/** Get the size of a memory page for the system.
* This is the basic size that the platform's memory manager uses, and is
* fundamental to the use of memory-mapped files.
*/
#define GET_PAGESIZE(x) ((x) = sysconf(_SC_PAGE_SIZE))
#endif
#if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
#define MNAME_LEN 32
#else
#define MNAME_LEN (sizeof(pthread_mutex_t))
#endif
/** @} */
#ifndef _WIN32
/** A flag for opening a file and requesting synchronous data writes.
* This is only used when writing a meta page. It's not strictly needed;
* we could just do a normal write and then immediately perform a flush.
* But if this flag is available it saves us an extra system call.
*
* @note If O_DSYNC is undefined but exists in /usr/include,
* preferably set some compiler flag to get the definition.
* Otherwise compile with the less efficient -DMDB_DSYNC=O_SYNC.
*/
#ifndef MDB_DSYNC
# define MDB_DSYNC O_DSYNC
#endif
#endif
/** Function for flushing the data of a file. Define this to fsync
* if fdatasync() is not supported.
*/
#ifndef MDB_FDATASYNC
# define MDB_FDATASYNC fdatasync
#endif
#ifndef MDB_MSYNC
# define MDB_MSYNC(addr,len,flags) msync(addr,len,flags)
#endif
#ifndef MS_SYNC
#define MS_SYNC 1
#endif
#ifndef MS_ASYNC
#define MS_ASYNC 0
#endif
/** A page number in the database.
* Note that 64 bit page numbers are overkill, since pages themselves
* already represent 12-13 bits of addressable memory, and the OS will
* always limit applications to a maximum of 63 bits of address space.
*
* @note In the #MDB_node structure, we only store 48 bits of this value,
* which thus limits us to only 60 bits of addressable data.
*/
typedef MDB_ID pgno_t;
/** A transaction ID.
* See struct MDB_txn.mt_txnid for details.
*/
typedef MDB_ID txnid_t;
/** @defgroup debug Debug Macros
* @{
*/
#ifndef MDB_DEBUG
/** Enable debug output.
* Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs
* read from and written to the database (used for free space management).
*/
#define MDB_DEBUG 0
#endif
#if !(__STDC_VERSION__ >= 199901L || defined(__GNUC__))
# undef MDB_DEBUG
# define MDB_DEBUG 0
# define DPRINTF (void) /* Vararg macros may be unsupported */
#elif MDB_DEBUG
static int mdb_debug;
static txnid_t mdb_debug_start;
/** Print a debug message with printf formatting. */
# define DPRINTF(fmt, ...) /**< Requires 2 or more args */ \
((void) ((mdb_debug) && \
fprintf(stderr, "%s:%d " fmt "\n", __func__, __LINE__, __VA_ARGS__)))
#else
# define DPRINTF(fmt, ...) ((void) 0)
# define MDB_DEBUG_SKIP
#endif
/** Print a debug string.
* The string is printed literally, with no format processing.
*/
#define DPUTS(arg) DPRINTF("%s", arg)
/** @} */
/** A default memory page size.
* The actual size is platform-dependent, but we use this for
* boot-strapping. We probably should not be using this any more.
* The #GET_PAGESIZE() macro is used to get the actual size.
*
* Note that we don't currently support Huge pages. On Linux,
* regular data files cannot use Huge pages, and in general
* Huge pages aren't actually pageable. We rely on the OS
* demand-pager to read our data and page it out when memory
* pressure from other processes is high. So until OSs have
* actual paging support for Huge pages, they're not viable.
*/
#define MDB_PAGESIZE 4096
/** The minimum number of keys required in a database page.
* Setting this to a larger value will place a smaller bound on the
* maximum size of a data item. Data items larger than this size will
* be pushed into overflow pages instead of being stored directly in
* the B-tree node. This value used to default to 4. With a page size
* of 4096 bytes that meant that any item larger than 1024 bytes would
* go into an overflow page. That also meant that on average 2-3KB of
* each overflow page was wasted space. The value cannot be lower than
* 2 because then there would no longer be a tree structure. With this
* value, items larger than 2KB will go into overflow pages, and on
* average only 1KB will be wasted.
*/
#define MDB_MINKEYS 2
/** A stamp that identifies a file as an MDB file.
* There's nothing special about this value other than that it is easily
* recognizable, and it will reflect any byte order mismatches.
*/
#define MDB_MAGIC 0xBEEFC0DE
/** The version number for a database's datafile format. */
#define MDB_DATA_VERSION 1
/** The version number for a database's lockfile format. */
#define MDB_LOCK_VERSION 1
/** @brief The maximum size of a key in the database.
*
* The library rejects bigger keys, and cannot deal with records
* with bigger keys stored by a library with bigger max keysize.
*
* We require that keys all fit onto a regular page. This limit
* could be raised a bit further if needed; to something just
* under #MDB_PAGESIZE / #MDB_MINKEYS.
*
* Note that data items in an #MDB_DUPSORT database are actually keys
* of a subDB, so they're also limited to this size.
*/
#ifndef MDB_MAXKEYSIZE
#define MDB_MAXKEYSIZE 511
#endif
/** @brief The maximum size of a data item.
*
* We only store a 32 bit value for node sizes.
*/
#define MAXDATASIZE 0xffffffffUL
#if MDB_DEBUG
/** A key buffer.
* @ingroup debug
* This is used for printing a hex dump of a key's contents.
*/
#define DKBUF char kbuf[(MDB_MAXKEYSIZE*2+1)]
/** Display a key in hex.
* @ingroup debug
* Invoke a function to display a key in hex.
*/
#define DKEY(x) mdb_dkey(x, kbuf)
#else
#define DKBUF typedef int dummy_kbuf /* so we can put ';' after */
#define DKEY(x) 0
#endif
/** An invalid page number.
* Mainly used to denote an empty tree.
*/
#define P_INVALID (~(pgno_t)0)
/** Test if the flags \b f are set in a flag word \b w. */
#define F_ISSET(w, f) (((w) & (f)) == (f))
/** Used for offsets within a single page.
* Since memory pages are typically 4 or 8KB in size, 12-13 bits,
* this is plenty.
*/
typedef uint16_t indx_t;
/** Default size of memory map.
* This is certainly too small for any actual applications. Apps should always set
* the size explicitly using #mdb_env_set_mapsize().
*/
#define DEFAULT_MAPSIZE 1048576
/** @defgroup readers Reader Lock Table
* Readers don't acquire any locks for their data access. Instead, they
* simply record their transaction ID in the reader table. The reader
* mutex is needed just to find an empty slot in the reader table. The
* slot's address is saved in thread-specific data so that subsequent read
* transactions started by the same thread need no further locking to proceed.
*
* If #MDB_NOTLS is set, the slot address is not saved in thread-specific data.
*
* No reader table is used if the database is on a read-only filesystem.
*
* Since the database uses multi-version concurrency control, readers don't
* actually need any locking. This table is used to keep track of which
* readers are using data from which old transactions, so that we'll know
* when a particular old transaction is no longer in use. Old transactions
* that have discarded any data pages can then have those pages reclaimed
* for use by a later write transaction.
*
* The lock table is constructed such that reader slots are aligned with the
* processor's cache line size. Any slot is only ever used by one thread.
* This alignment guarantees that there will be no contention or cache
* thrashing as threads update their own slot info, and also eliminates
* any need for locking when accessing a slot.
*
* A writer thread will scan every slot in the table to determine the oldest
* outstanding reader transaction. Any freed pages older than this will be
* reclaimed by the writer. The writer doesn't use any locks when scanning
* this table. This means that there's no guarantee that the writer will
* see the most up-to-date reader info, but that's not required for correct
* operation - all we need is to know the upper bound on the oldest reader,
* we don't care at all about the newest reader. So the only consequence of
* reading stale information here is that old pages might hang around a
* while longer before being reclaimed. That's actually good anyway, because
* the longer we delay reclaiming old pages, the more likely it is that a
* string of contiguous pages can be found after coalescing old pages from
* many old transactions together.
* @{
*/
/** Number of slots in the reader table.
* This value was chosen somewhat arbitrarily. 126 readers plus a
* couple mutexes fit exactly into 8KB on my development machine.
* Applications should set the table size using #mdb_env_set_maxreaders().
*/
#define DEFAULT_READERS 126
/** The size of a CPU cache line in bytes. We want our lock structures
* aligned to this size to avoid false cache line sharing in the
* lock table.
* This value works for most CPUs. For Itanium this should be 128.
*/
#ifndef CACHELINE
#define CACHELINE 64
#endif
/** The information we store in a single slot of the reader table.
* In addition to a transaction ID, we also record the process and
* thread ID that owns a slot, so that we can detect stale information,
* e.g. threads or processes that went away without cleaning up.
* @note We currently don't check for stale records. We simply re-init
* the table when we know that we're the only process opening the
* lock file.
*/
typedef struct MDB_rxbody {
/** Current Transaction ID when this transaction began, or (txnid_t)-1.
* Multiple readers that start at the same time will probably have the
* same ID here. Again, it's not important to exclude them from
* anything; all we need to know is which version of the DB they
* started from so we can avoid overwriting any data used in that
* particular version.
*/
txnid_t mrb_txnid;
/** The process ID of the process owning this reader txn. */
pid_t mrb_pid;
/** The thread ID of the thread owning this txn. */
pthread_t mrb_tid;
} MDB_rxbody;
/** The actual reader record, with cacheline padding. */
typedef struct MDB_reader {
union {
MDB_rxbody mrx;
/** shorthand for mrb_txnid */
#define mr_txnid mru.mrx.mrb_txnid
#define mr_pid mru.mrx.mrb_pid
#define mr_tid mru.mrx.mrb_tid
/** cache line alignment */
char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)];
} mru;
} MDB_reader;
/** The header for the reader table.
* The table resides in a memory-mapped file. (This is a different file
* than is used for the main database.)
*
* For POSIX the actual mutexes reside in the shared memory of this
* mapped file. On Windows, mutexes are named objects allocated by the
* kernel; we store the mutex names in this mapped file so that other
* processes can grab them. This same approach is also used on
* MacOSX/Darwin (using named semaphores) since MacOSX doesn't support
* process-shared POSIX mutexes. For these cases where a named object
* is used, the object name is derived from a 64 bit FNV hash of the
* environment pathname. As such, naming collisions are extremely
* unlikely. If a collision occurs, the results are unpredictable.
*/
typedef struct MDB_txbody {
/** Stamp identifying this as an MDB file. It must be set
* to #MDB_MAGIC. */
uint32_t mtb_magic;
/** Version number of this lock file. Must be set to #MDB_LOCK_VERSION. */
uint32_t mtb_version;
#if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
char mtb_rmname[MNAME_LEN];
#else
/** Mutex protecting access to this table.
* This is the reader lock that #LOCK_MUTEX_R acquires.
*/
pthread_mutex_t mtb_mutex;
#endif
/** The ID of the last transaction committed to the database.
* This is recorded here only for convenience; the value can always
* be determined by reading the main database meta pages.
*/
txnid_t mtb_txnid;
/** The number of slots that have been used in the reader table.
* This always records the maximum count, it is not decremented
* when readers release their slots.
*/
unsigned mtb_numreaders;
} MDB_txbody;
/** The actual reader table definition. */
typedef struct MDB_txninfo {
union {
MDB_txbody mtb;
#define mti_magic mt1.mtb.mtb_magic
#define mti_version mt1.mtb.mtb_version
#define mti_mutex mt1.mtb.mtb_mutex
#define mti_rmname mt1.mtb.mtb_rmname
#define mti_txnid mt1.mtb.mtb_txnid
#define mti_numreaders mt1.mtb.mtb_numreaders
char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)];
} mt1;
union {
#if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
char mt2_wmname[MNAME_LEN];
#define mti_wmname mt2.mt2_wmname
#else
pthread_mutex_t mt2_wmutex;
#define mti_wmutex mt2.mt2_wmutex
#endif
char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)];
} mt2;
MDB_reader mti_readers[1];
} MDB_txninfo;
/** @} */
/** Common header for all page types.
* Overflow records occupy a number of contiguous pages with no
* headers on any page after the first.
*/
typedef struct MDB_page {
#define mp_pgno mp_p.p_pgno
#define mp_next mp_p.p_next
union {
pgno_t p_pgno; /**< page number */
void * p_next; /**< for in-memory list of freed structs */
} mp_p;
uint16_t mp_pad;
/** @defgroup mdb_page Page Flags
* @ingroup internal
* Flags for the page headers.
* @{
*/
#define P_BRANCH 0x01 /**< branch page */
#define P_LEAF 0x02 /**< leaf page */
#define P_OVERFLOW 0x04 /**< overflow page */
#define P_META 0x08 /**< meta page */
#define P_DIRTY 0x10 /**< dirty page */
#define P_LEAF2 0x20 /**< for #MDB_DUPFIXED records */
#define P_SUBP 0x40 /**< for #MDB_DUPSORT sub-pages */
#define P_KEEP 0x8000 /**< leave this page alone during spill */
/** @} */
uint16_t mp_flags; /**< @ref mdb_page */
#define mp_lower mp_pb.pb.pb_lower
#define mp_upper mp_pb.pb.pb_upper
#define mp_pages mp_pb.pb_pages
union {
struct {
indx_t pb_lower; /**< lower bound of free space */
indx_t pb_upper; /**< upper bound of free space */
} pb;
uint32_t pb_pages; /**< number of overflow pages */
} mp_pb;
indx_t mp_ptrs[1]; /**< dynamic size */
} MDB_page;
/** Size of the page header, excluding dynamic data at the end */
#define PAGEHDRSZ ((unsigned) offsetof(MDB_page, mp_ptrs))
/** Address of first usable data byte in a page, after the header */
#define METADATA(p) ((void *)((char *)(p) + PAGEHDRSZ))
/** Number of nodes on a page */
#define NUMKEYS(p) (((p)->mp_lower - PAGEHDRSZ) >> 1)
/** The amount of space remaining in the page */
#define SIZELEFT(p) (indx_t)((p)->mp_upper - (p)->mp_lower)
/** The percentage of space used in the page, in tenths of a percent. */
#define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \
((env)->me_psize - PAGEHDRSZ))
/** The minimum page fill factor, in tenths of a percent.
* Pages emptier than this are candidates for merging.
*/
#define FILL_THRESHOLD 250
/** Test if a page is a leaf page */
#define IS_LEAF(p) F_ISSET((p)->mp_flags, P_LEAF)
/** Test if a page is a LEAF2 page */
#define IS_LEAF2(p) F_ISSET((p)->mp_flags, P_LEAF2)
/** Test if a page is a branch page */
#define IS_BRANCH(p) F_ISSET((p)->mp_flags, P_BRANCH)
/** Test if a page is an overflow page */
#define IS_OVERFLOW(p) F_ISSET((p)->mp_flags, P_OVERFLOW)
/** Test if a page is a sub page */
#define IS_SUBP(p) F_ISSET((p)->mp_flags, P_SUBP)
/** The number of overflow pages needed to store the given size. */
#define OVPAGES(size, psize) ((PAGEHDRSZ-1 + (size)) / (psize) + 1)
/** Header for a single key/data pair within a page.
* We guarantee 2-byte alignment for nodes.
*/
typedef struct MDB_node {
/** lo and hi are used for data size on leaf nodes and for
* child pgno on branch nodes. On 64 bit platforms, flags
* is also used for pgno. (Branch nodes have no flags).
* They are in host byte order in case that lets some
* accesses be optimized into a 32-bit word access.
*/
#define mn_lo mn_offset[BYTE_ORDER!=LITTLE_ENDIAN]
#define mn_hi mn_offset[BYTE_ORDER==LITTLE_ENDIAN] /**< part of dsize or pgno */
unsigned short mn_offset[2]; /**< storage for #mn_lo and #mn_hi */
/** @defgroup mdb_node Node Flags
* @ingroup internal
* Flags for node headers.
* @{
*/
#define F_BIGDATA 0x01 /**< data put on overflow page */
#define F_SUBDATA 0x02 /**< data is a sub-database */
#define F_DUPDATA 0x04 /**< data has duplicates */
/** valid flags for #mdb_node_add() */
#define NODE_ADD_FLAGS (F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND)
/** @} */
unsigned short mn_flags; /**< @ref mdb_node */
unsigned short mn_ksize; /**< key size */
char mn_data[1]; /**< key and data are appended here */
} MDB_node;
/** Size of the node header, excluding dynamic data at the end */
#define NODESIZE offsetof(MDB_node, mn_data)
/** Bit position of top word in page number, for shifting mn_flags */
#define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0)
/** Size of a node in a branch page with a given key.
* This is just the node header plus the key, there is no data.
*/
#define INDXSIZE(k) (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size))
/** Size of a node in a leaf page with a given key and data.
* This is node header plus key plus data size.
*/
#define LEAFSIZE(k, d) (NODESIZE + (k)->mv_size + (d)->mv_size)
/** Address of node \b i in page \b p */
#define NODEPTR(p, i) ((MDB_node *)((char *)(p) + (p)->mp_ptrs[i]))
/** Address of the key for the node */
#define NODEKEY(node) (void *)((node)->mn_data)
/** Address of the data for a node */
#define NODEDATA(node) (void *)((char *)(node)->mn_data + (node)->mn_ksize)
/** Get the page number pointed to by a branch node */
#define NODEPGNO(node) \
((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \
(PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0))
/** Set the page number in a branch node */
#define SETPGNO(node,pgno) do { \
(node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \
if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0)
/** Get the size of the data in a leaf node */
#define NODEDSZ(node) ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16))
/** Set the size of the data for a leaf node */
#define SETDSZ(node,size) do { \
(node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0)
/** The size of a key in a node */
#define NODEKSZ(node) ((node)->mn_ksize)
/** Copy a page number from src to dst */
#ifdef MISALIGNED_OK
#define COPY_PGNO(dst,src) dst = src
#else
#if SIZE_MAX > 4294967295UL
#define COPY_PGNO(dst,src) do { \
unsigned short *s, *d; \
s = (unsigned short *)&(src); \
d = (unsigned short *)&(dst); \
*d++ = *s++; \
*d++ = *s++; \
*d++ = *s++; \
*d = *s; \
} while (0)
#else
#define COPY_PGNO(dst,src) do { \
unsigned short *s, *d; \
s = (unsigned short *)&(src); \
d = (unsigned short *)&(dst); \
*d++ = *s++; \
*d = *s; \
} while (0)
#endif
#endif
/** The address of a key in a LEAF2 page.
* LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs.
* There are no node headers, keys are stored contiguously.
*/
#define LEAF2KEY(p, i, ks) ((char *)(p) + PAGEHDRSZ + ((i)*(ks)))
/** Set the \b node's key into \b key, if requested. */
#define MDB_GET_KEY(node, key) { if ((key) != NULL) { \
(key)->mv_size = NODEKSZ(node); (key)->mv_data = NODEKEY(node); } }
/** Information about a single database in the environment. */
typedef struct MDB_db {
uint32_t md_pad; /**< also ksize for LEAF2 pages */
uint16_t md_flags; /**< @ref mdb_dbi_open */
uint16_t md_depth; /**< depth of this tree */
pgno_t md_branch_pages; /**< number of internal pages */
pgno_t md_leaf_pages; /**< number of leaf pages */
pgno_t md_overflow_pages; /**< number of overflow pages */
size_t md_entries; /**< number of data items */
pgno_t md_root; /**< the root page of this tree */
} MDB_db;
/** mdb_dbi_open flags */
#define MDB_VALID 0x8000 /**< DB handle is valid, for me_dbflags */
#define PERSISTENT_FLAGS (0xffff & ~(MDB_VALID))
#define VALID_FLAGS (MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\
MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE)
/** Handle for the DB used to track free pages. */
#define FREE_DBI 0
/** Handle for the default DB. */
#define MAIN_DBI 1
/** Meta page content. */
typedef struct MDB_meta {
/** Stamp identifying this as an MDB file. It must be set
* to #MDB_MAGIC. */
uint32_t mm_magic;
/** Version number of this lock file. Must be set to #MDB_DATA_VERSION. */
uint32_t mm_version;
void *mm_address; /**< address for fixed mapping */
size_t mm_mapsize; /**< size of mmap region */
MDB_db mm_dbs[2]; /**< first is free space, 2nd is main db */
/** The size of pages used in this DB */
#define mm_psize mm_dbs[0].md_pad
/** Any persistent environment flags. @ref mdb_env */
#define mm_flags mm_dbs[0].md_flags
pgno_t mm_last_pg; /**< last used page in file */
txnid_t mm_txnid; /**< txnid that committed this page */
} MDB_meta;
/** Buffer for a stack-allocated dirty page.
* The members define size and alignment, and silence type
* aliasing warnings. They are not used directly; that could
* mean incorrectly using several union members in parallel.
*/
typedef union MDB_pagebuf {
char mb_raw[MDB_PAGESIZE];
MDB_page mb_page;
struct {
char mm_pad[PAGEHDRSZ];
MDB_meta mm_meta;
} mb_metabuf;
} MDB_pagebuf;
/** Auxiliary DB info.
* The information here is mostly static/read-only. There is
* only a single copy of this record in the environment.
*/
typedef struct MDB_dbx {
MDB_val md_name; /**< name of the database */
MDB_cmp_func *md_cmp; /**< function for comparing keys */
MDB_cmp_func *md_dcmp; /**< function for comparing data items */
MDB_rel_func *md_rel; /**< user relocate function */
void *md_relctx; /**< user-provided context for md_rel */
} MDB_dbx;
/** A database transaction.
* Every operation requires a transaction handle.
*/
struct MDB_txn {
MDB_txn *mt_parent; /**< parent of a nested txn */
MDB_txn *mt_child; /**< nested txn under this txn */
pgno_t mt_next_pgno; /**< next unallocated page */
/** The ID of this transaction. IDs are integers incrementing from 1.
* Only committed write transactions increment the ID. If a transaction
* aborts, the ID may be re-used by the next writer.
*/
txnid_t mt_txnid;
MDB_env *mt_env; /**< the DB environment */
/** The list of pages that became unused during this transaction.
*/
MDB_IDL mt_free_pgs;
/** The list of dirty pages we temporarily wrote to disk
* because the dirty list was full.
*/
MDB_IDL mt_spill_pgs;
union {
MDB_ID2L dirty_list; /**< for write txns: modified pages */
MDB_reader *reader; /**< this thread's reader table slot or NULL */
} mt_u;
/** Array of records for each DB known in the environment. */
MDB_dbx *mt_dbxs;
/** Array of MDB_db records for each known DB */
MDB_db *mt_dbs;
/** @defgroup mt_dbflag Transaction DB Flags
* @ingroup internal
* @{
*/
#define DB_DIRTY 0x01 /**< DB was written in this txn */
#define DB_STALE 0x02 /**< DB record is older than txnID */
#define DB_NEW 0x04 /**< DB handle opened in this txn */
#define DB_VALID 0x08 /**< DB handle is valid, see also #MDB_VALID */
/** @} */
/** In write txns, array of cursors for each DB */
MDB_cursor **mt_cursors;
/** Array of flags for each DB */
unsigned char *mt_dbflags;
/** Number of DB records in use. This number only ever increments;
* we don't decrement it when individual DB handles are closed.
*/
MDB_dbi mt_numdbs;
/** @defgroup mdb_txn Transaction Flags
* @ingroup internal
* @{
*/
#define MDB_TXN_RDONLY 0x01 /**< read-only transaction */
#define MDB_TXN_ERROR 0x02 /**< an error has occurred */
#define MDB_TXN_DIRTY 0x04 /**< must write, even if dirty list is empty */
#define MDB_TXN_SPILLS 0x08 /**< txn or a parent has spilled pages */
/** @} */
unsigned int mt_flags; /**< @ref mdb_txn */
/** dirty_list maxsize - # of allocated pages allowed, including in parent txns */
unsigned int mt_dirty_room;
/** Tracks which of the two meta pages was used at the start
* of this transaction.
*/
unsigned int mt_toggle;
};
/** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty.
* At 4 keys per node, enough for 2^64 nodes, so there's probably no need to
* raise this on a 64 bit machine.
*/
#define CURSOR_STACK 32
struct MDB_xcursor;
/** Cursors are used for all DB operations */
struct MDB_cursor {
/** Next cursor on this DB in this txn */
MDB_cursor *mc_next;
/** Backup of the original cursor if this cursor is a shadow */
MDB_cursor *mc_backup;
/** Context used for databases with #MDB_DUPSORT, otherwise NULL */
struct MDB_xcursor *mc_xcursor;
/** The transaction that owns this cursor */
MDB_txn *mc_txn;
/** The database handle this cursor operates on */
MDB_dbi mc_dbi;
/** The database record for this cursor */
MDB_db *mc_db;
/** The database auxiliary record for this cursor */
MDB_dbx *mc_dbx;
/** The @ref mt_dbflag for this database */
unsigned char *mc_dbflag;
unsigned short mc_snum; /**< number of pushed pages */
unsigned short mc_top; /**< index of top page, normally mc_snum-1 */
/** @defgroup mdb_cursor Cursor Flags
* @ingroup internal
* Cursor state flags.
* @{
*/
#define C_INITIALIZED 0x01 /**< cursor has been initialized and is valid */
#define C_EOF 0x02 /**< No more data */
#define C_SUB 0x04 /**< Cursor is a sub-cursor */
#define C_SPLITTING 0x20 /**< Cursor is in page_split */
#define C_UNTRACK 0x40 /**< Un-track cursor when closing */
/** @} */
unsigned int mc_flags; /**< @ref mdb_cursor */
MDB_page *mc_pg[CURSOR_STACK]; /**< stack of pushed pages */
indx_t mc_ki[CURSOR_STACK]; /**< stack of page indices */
};
/** Context for sorted-dup records.
* We could have gone to a fully recursive design, with arbitrarily
* deep nesting of sub-databases. But for now we only handle these
* levels - main DB, optional sub-DB, sorted-duplicate DB.
*/
typedef struct MDB_xcursor {
/** A sub-cursor for traversing the Dup DB */
MDB_cursor mx_cursor;
/** The database record for this Dup DB */
MDB_db mx_db;
/** The auxiliary DB record for this Dup DB */
MDB_dbx mx_dbx;
/** The @ref mt_dbflag for this Dup DB */
unsigned char mx_dbflag;
} MDB_xcursor;
/** State of FreeDB old pages, stored in the MDB_env */
typedef struct MDB_pgstate {
pgno_t *mf_pghead; /**< Reclaimed freeDB pages, or NULL before use */
txnid_t mf_pglast; /**< ID of last used record, or 0 if !mf_pghead */
} MDB_pgstate;
/** The database environment. */
struct MDB_env {
HANDLE me_fd; /**< The main data file */
HANDLE me_lfd; /**< The lock file */
HANDLE me_mfd; /**< just for writing the meta pages */
/** Failed to update the meta page. Probably an I/O error. */
#define MDB_FATAL_ERROR 0x80000000U
/** Some fields are initialized. */
#define MDB_ENV_ACTIVE 0x20000000U
/** me_txkey is set */
#define MDB_ENV_TXKEY 0x10000000U
/** Have liveness lock in reader table */
#define MDB_LIVE_READER 0x08000000U
uint32_t me_flags; /**< @ref mdb_env */
unsigned int me_psize; /**< size of a page, from #GET_PAGESIZE */
unsigned int me_maxreaders; /**< size of the reader table */
unsigned int me_numreaders; /**< max numreaders set by this env */
MDB_dbi me_numdbs; /**< number of DBs opened */
MDB_dbi me_maxdbs; /**< size of the DB table */
pid_t me_pid; /**< process ID of this env */
char *me_path; /**< path to the DB files */
char *me_map; /**< the memory map of the data file */
MDB_txninfo *me_txns; /**< the memory map of the lock file or NULL */
MDB_meta *me_metas[2]; /**< pointers to the two meta pages */
MDB_txn *me_txn; /**< current write transaction */
size_t me_mapsize; /**< size of the data memory map */
off_t me_size; /**< current file size */
pgno_t me_maxpg; /**< me_mapsize / me_psize */
MDB_dbx *me_dbxs; /**< array of static DB info */
uint16_t *me_dbflags; /**< array of flags from MDB_db.md_flags */
pthread_key_t me_txkey; /**< thread-key for readers */
MDB_pgstate me_pgstate; /**< state of old pages from freeDB */
# define me_pglast me_pgstate.mf_pglast
# define me_pghead me_pgstate.mf_pghead
MDB_page *me_dpages; /**< list of malloc'd blocks for re-use */
/** IDL of pages that became unused in a write txn */
MDB_IDL me_free_pgs;
/** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */
MDB_ID2L me_dirty_list;
/** Max number of freelist items that can fit in a single overflow page */
int me_maxfree_1pg;
/** Max size of a node on a page */
unsigned int me_nodemax;
#ifdef _WIN32
int me_pidquery; /**< Used in OpenProcess */
HANDLE me_rmutex; /* Windows mutexes don't reside in shared mem */
HANDLE me_wmutex;
#elif defined(MDB_USE_POSIX_SEM)
sem_t *me_rmutex; /* Shared mutexes are not supported */
sem_t *me_wmutex;
#endif
};
/** Nested transaction */
typedef struct MDB_ntxn {
MDB_txn mnt_txn; /* the transaction */
MDB_pgstate mnt_pgstate; /* parent transaction's saved freestate */
} MDB_ntxn;
/** max number of pages to commit in one writev() call */
#define MDB_COMMIT_PAGES 64
#if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES
#undef MDB_COMMIT_PAGES
#define MDB_COMMIT_PAGES IOV_MAX
#endif
/* max bytes to write in one call */
#define MAX_WRITE (0x80000000U >> (sizeof(ssize_t) == 4))
static int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp);
static int mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp);
static int mdb_page_touch(MDB_cursor *mc);
static int mdb_page_get(MDB_txn *txn, pgno_t pgno, MDB_page **mp, int *lvl);
static int mdb_page_search_root(MDB_cursor *mc,
MDB_val *key, int modify);
#define MDB_PS_MODIFY 1
#define MDB_PS_ROOTONLY 2
static int mdb_page_search(MDB_cursor *mc,
MDB_val *key, int flags);
static int mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst);
#define MDB_SPLIT_REPLACE MDB_APPENDDUP /**< newkey is not new */
static int mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata,
pgno_t newpgno, unsigned int nflags);
static int mdb_env_read_header(MDB_env *env, MDB_meta *meta);
static int mdb_env_pick_meta(const MDB_env *env);
static int mdb_env_write_meta(MDB_txn *txn);
#if !(defined(_WIN32) || defined(MDB_USE_POSIX_SEM)) /* Drop unused excl arg */
# define mdb_env_close0(env, excl) mdb_env_close1(env)
#endif
static void mdb_env_close0(MDB_env *env, int excl);
static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp);
static int mdb_node_add(MDB_cursor *mc, indx_t indx,
MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags);
static void mdb_node_del(MDB_page *mp, indx_t indx, int ksize);
static void mdb_node_shrink(MDB_page *mp, indx_t indx);
static int mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst);
static int mdb_node_read(MDB_txn *txn, MDB_node *leaf, MDB_val *data);
static size_t mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data);
static size_t mdb_branch_size(MDB_env *env, MDB_val *key);
static int mdb_rebalance(MDB_cursor *mc);
static int mdb_update_key(MDB_cursor *mc, MDB_val *key);
static void mdb_cursor_pop(MDB_cursor *mc);
static int mdb_cursor_push(MDB_cursor *mc, MDB_page *mp);
static int mdb_cursor_del0(MDB_cursor *mc, MDB_node *leaf);
static int mdb_cursor_sibling(MDB_cursor *mc, int move_right);
static int mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
static int mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
static int mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op,
int *exactp);
static int mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data);
static int mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data);
static void mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx);
static void mdb_xcursor_init0(MDB_cursor *mc);
static void mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node);
static int mdb_drop0(MDB_cursor *mc, int subs);
static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi);
/** @cond */
static MDB_cmp_func mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long;
/** @endcond */
#ifdef _WIN32
static SECURITY_DESCRIPTOR mdb_null_sd;
static SECURITY_ATTRIBUTES mdb_all_sa;
static int mdb_sec_inited;
#endif
/** Return the library version info. */
char *
mdb_version(int *major, int *minor, int *patch)
{
if (major) *major = MDB_VERSION_MAJOR;
if (minor) *minor = MDB_VERSION_MINOR;
if (patch) *patch = MDB_VERSION_PATCH;
return MDB_VERSION_STRING;
}
/** Table of descriptions for MDB @ref errors */
static char *const mdb_errstr[] = {
"MDB_KEYEXIST: Key/data pair already exists",
"MDB_NOTFOUND: No matching key/data pair found",
"MDB_PAGE_NOTFOUND: Requested page not found",
"MDB_CORRUPTED: Located page was wrong type",
"MDB_PANIC: Update of meta page failed",
"MDB_VERSION_MISMATCH: Database environment version mismatch",
"MDB_INVALID: File is not an MDB file",
"MDB_MAP_FULL: Environment mapsize limit reached",
"MDB_DBS_FULL: Environment maxdbs limit reached",
"MDB_READERS_FULL: Environment maxreaders limit reached",
"MDB_TLS_FULL: Thread-local storage keys full - too many environments open",
"MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big",
"MDB_CURSOR_FULL: Internal error - cursor stack limit reached",
"MDB_PAGE_FULL: Internal error - page has no more space",
"MDB_MAP_RESIZED: Database contents grew beyond environment mapsize",
"MDB_INCOMPATIBLE: Database flags changed or would change",
"MDB_BAD_RSLOT: Invalid reuse of reader locktable slot",
};
char *
mdb_strerror(int err)
{
int i;
if (!err)
return ("Successful return: 0");
if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) {
i = err - MDB_KEYEXIST;
return mdb_errstr[i];
}
return strerror(err);
}
#if MDB_DEBUG
/** Display a key in hexadecimal and return the address of the result.
* @param[in] key the key to display
* @param[in] buf the buffer to write into. Should always be #DKBUF.
* @return The key in hexadecimal form.
*/
char *
mdb_dkey(MDB_val *key, char *buf)
{
char *ptr = buf;
unsigned char *c = key->mv_data;
unsigned int i;
if (!key)
return "";
if (key->mv_size > MDB_MAXKEYSIZE)
return "MDB_MAXKEYSIZE";
/* may want to make this a dynamic check: if the key is mostly
* printable characters, print it as-is instead of converting to hex.
*/
#if 1
buf[0] = '\0';
for (i=0; i<key->mv_size; i++)
ptr += sprintf(ptr, "%02x", *c++);
#else
sprintf(buf, "%.*s", key->mv_size, key->mv_data);
#endif
return buf;
}
/** Display all the keys in the page. */
void
mdb_page_list(MDB_page *mp)
{
MDB_node *node;
unsigned int i, nkeys, nsize;
MDB_val key;
DKBUF;
nkeys = NUMKEYS(mp);
fprintf(stderr, "Page %zu numkeys %d\n", mp->mp_pgno, nkeys);
for (i=0; i<nkeys; i++) {
node = NODEPTR(mp, i);
key.mv_size = node->mn_ksize;
key.mv_data = node->mn_data;
nsize = NODESIZE + NODEKSZ(node) + sizeof(indx_t);
if (IS_BRANCH(mp)) {
fprintf(stderr, "key %d: page %zu, %s\n", i, NODEPGNO(node),
DKEY(&key));
} else {
if (F_ISSET(node->mn_flags, F_BIGDATA))
nsize += sizeof(pgno_t);
else
nsize += NODEDSZ(node);
fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key));
}
}
}
void
mdb_cursor_chk(MDB_cursor *mc)
{
unsigned int i;
MDB_node *node;
MDB_page *mp;
if (!mc->mc_snum && !(mc->mc_flags & C_INITIALIZED)) return;
for (i=0; i<mc->mc_top; i++) {
mp = mc->mc_pg[i];
node = NODEPTR(mp, mc->mc_ki[i]);
if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno)
printf("oops!\n");
}
if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i]))
printf("ack!\n");
}
#endif
#if MDB_DEBUG > 2
/** Count all the pages in each DB and in the freelist
* and make sure it matches the actual number of pages
* being used.
*/
static void mdb_audit(MDB_txn *txn)
{
MDB_cursor mc;
MDB_val key, data;
MDB_ID freecount, count;
MDB_dbi i;
int rc;
freecount = 0;
mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
freecount += *(MDB_ID *)data.mv_data;
count = 0;
for (i = 0; i<txn->mt_numdbs; i++) {
MDB_xcursor mx;
mdb_cursor_init(&mc, txn, i, &mx);
if (txn->mt_dbs[i].md_root == P_INVALID)
continue;
count += txn->mt_dbs[i].md_branch_pages +
txn->mt_dbs[i].md_leaf_pages +
txn->mt_dbs[i].md_overflow_pages;
if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) {
mdb_page_search(&mc, NULL, 0);
do {
unsigned j;
MDB_page *mp;
mp = mc.mc_pg[mc.mc_top];
for (j=0; j<NUMKEYS(mp); j++) {
MDB_node *leaf = NODEPTR(mp, j);
if (leaf->mn_flags & F_SUBDATA) {
MDB_db db;
memcpy(&db, NODEDATA(leaf), sizeof(db));
count += db.md_branch_pages + db.md_leaf_pages +
db.md_overflow_pages;
}
}
}
while (mdb_cursor_sibling(&mc, 1) == 0);
}
}
if (freecount + count + 2 /* metapages */ != txn->mt_next_pgno) {
fprintf(stderr, "audit: %lu freecount: %lu count: %lu total: %lu next_pgno: %lu\n",
txn->mt_txnid, freecount, count+2, freecount+count+2, txn->mt_next_pgno);
}
}
#endif
int
mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
{
return txn->mt_dbxs[dbi].md_cmp(a, b);
}
int
mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
{
return txn->mt_dbxs[dbi].md_dcmp(a, b);
}
/** Allocate a page.
* Re-use old malloc'd pages first for singletons, otherwise just malloc.
*/
static MDB_page *
mdb_page_malloc(MDB_txn *txn, unsigned num)
{
MDB_env *env = txn->mt_env;
MDB_page *ret = env->me_dpages;
size_t sz = env->me_psize;
if (num == 1) {
if (ret) {
VGMEMP_ALLOC(env, ret, sz);
VGMEMP_DEFINED(ret, sizeof(ret->mp_next));
env->me_dpages = ret->mp_next;
return ret;
}
} else {
sz *= num;
}
if ((ret = malloc(sz)) != NULL) {
VGMEMP_ALLOC(env, ret, sz);
}
return ret;
}
/** Free a single page.
* Saves single pages to a list, for future reuse.
* (This is not used for multi-page overflow pages.)
*/
static void
mdb_page_free(MDB_env *env, MDB_page *mp)
{
mp->mp_next = env->me_dpages;
VGMEMP_FREE(env, mp);
env->me_dpages = mp;
}
/* Free a dirty page */
static void
mdb_dpage_free(MDB_env *env, MDB_page *dp)
{
if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) {
mdb_page_free(env, dp);
} else {
/* large pages just get freed directly */
VGMEMP_FREE(env, dp);
free(dp);
}
}
/** Return all dirty pages to dpage list */
static void
mdb_dlist_free(MDB_txn *txn)
{
MDB_env *env = txn->mt_env;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned i, n = dl[0].mid;
for (i = 1; i <= n; i++) {
mdb_dpage_free(env, dl[i].mptr);
}
dl[0].mid = 0;
}
/* Set or clear P_KEEP in non-overflow, non-sub pages in known cursors.
* When clearing, only consider backup cursors (from parent txns) since
* other P_KEEP flags have already been cleared.
* @param[in] mc A cursor handle for the current operation.
* @param[in] pflags Flags of the pages to update:
* P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it.
*/
static void
mdb_cursorpages_mark(MDB_cursor *mc, unsigned pflags)
{
MDB_txn *txn = mc->mc_txn;
MDB_cursor *m2, *m3;
MDB_xcursor *mx;
unsigned i, j;
if (mc->mc_flags & C_UNTRACK)
mc = NULL; /* will find mc in mt_cursors */
for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) {
for (; mc; mc=mc->mc_next) {
m2 = pflags == P_DIRTY ? mc : mc->mc_backup;
for (; m2; m2 = m2->mc_backup) {
for (m3=m2; m3->mc_flags & C_INITIALIZED; m3=&mx->mx_cursor) {
for (j=0; j<m3->mc_snum; j++)
if ((m3->mc_pg[j]->mp_flags & (P_SUBP|P_DIRTY|P_KEEP))
== pflags)
m3->mc_pg[j]->mp_flags ^= P_KEEP;
if (!(m3->mc_db->md_flags & MDB_DUPSORT))
break;
/* Cursor backups have mx malloced at the end of m2 */
mx = (m3 == mc ? m3->mc_xcursor : (MDB_xcursor *)(m3+1));
}
}
}
if (i == 0)
break;
}
}
static int mdb_page_flush(MDB_txn *txn);
/** Spill pages from the dirty list back to disk.
* This is intended to prevent running into #MDB_TXN_FULL situations,
* but note that they may still occur in a few cases:
* 1) pages in #MDB_DUPSORT sub-DBs are never spilled, so if there
* are too many of these dirtied in one txn, the txn may still get
* too full.
* 2) child txns may run out of space if their parents dirtied a
* lot of pages and never spilled them. TODO: we probably should do
* a preemptive spill during #mdb_txn_begin() of a child txn, if
* the parent's dirty_room is below a given threshold.
* 3) our estimate of the txn size could be too small. At the
* moment this seems unlikely.
*
* Otherwise, if not using nested txns, it is expected that apps will
* not run into #MDB_TXN_FULL any more. The pages are flushed to disk
* the same way as for a txn commit, e.g. their P_DIRTY flag is cleared.
* If the txn never references them again, they can be left alone.
* If the txn only reads them, they can be used without any fuss.
* If the txn writes them again, they can be dirtied immediately without
* going thru all of the work of #mdb_page_touch(). Such references are
* handled by #mdb_page_unspill().
*
* Also note, we never spill DB root pages, nor pages of active cursors,
* because we'll need these back again soon anyway. And in nested txns,
* we can't spill a page in a child txn if it was already spilled in a
* parent txn. That would alter the parent txns' data even though
* the child hasn't committed yet, and we'd have no way to undo it if
* the child aborted.
*
* @param[in] m0 cursor A cursor handle identifying the transaction and
* database for which we are checking space.
* @param[in] key For a put operation, the key being stored.
* @param[in] data For a put operation, the data being stored.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data)
{
MDB_txn *txn = m0->mc_txn;
MDB_page *dp;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned int i, j;
int rc;
if (m0->mc_flags & C_SUB)
return MDB_SUCCESS;
/* Estimate how much space this op will take */
i = m0->mc_db->md_depth;
/* Named DBs also dirty the main DB */
if (m0->mc_dbi > MAIN_DBI)
i += txn->mt_dbs[MAIN_DBI].md_depth;
/* For puts, roughly factor in the key+data size */
if (key)
i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize;
i += i; /* double it for good measure */
if (txn->mt_dirty_room > i)
return MDB_SUCCESS;
if (!txn->mt_spill_pgs) {
txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX);
if (!txn->mt_spill_pgs)
return ENOMEM;
}
/* Mark all the dirty root pages we want to preserve */
for (i=0; i<txn->mt_numdbs; i++) {
if (txn->mt_dbflags[i] & DB_DIRTY) {
j = mdb_mid2l_search(dl, txn->mt_dbs[i].md_root);
if (j <= dl[0].mid) {
dp = dl[j].mptr;
dp->mp_flags |= P_KEEP;
}
}
}
/* Preserve pages used by cursors */
mdb_cursorpages_mark(m0, P_DIRTY);
/* Save the page IDs of all the pages we're flushing */
for (i=1; i<=dl[0].mid; i++) {
dp = dl[i].mptr;
if (dp->mp_flags & P_KEEP)
continue;
/* Can't spill twice, make sure it's not already in a parent's
* spill list.
*/
if (txn->mt_parent) {
MDB_txn *tx2;
for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
if (tx2->mt_spill_pgs) {
j = mdb_midl_search(tx2->mt_spill_pgs, dl[i].mid);
if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == dl[i].mid) {
dp->mp_flags |= P_KEEP;
break;
}
}
}
if (tx2)
continue;
}
if ((rc = mdb_midl_append(&txn->mt_spill_pgs, dl[i].mid)))
return rc;
}
mdb_midl_sort(txn->mt_spill_pgs);
rc = mdb_page_flush(txn);
mdb_cursorpages_mark(m0, P_DIRTY|P_KEEP);
if (rc == 0) {
if (txn->mt_parent) {
MDB_txn *tx2;
pgno_t pgno = dl[i].mid;
txn->mt_dirty_room = txn->mt_parent->mt_dirty_room - dl[0].mid;
/* dirty pages that are dirty in an ancestor don't
* count against this txn's dirty_room.
*/
for (i=1; i<=dl[0].mid; i++) {
for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
j = mdb_mid2l_search(tx2->mt_u.dirty_list, pgno);
if (j <= tx2->mt_u.dirty_list[0].mid &&
tx2->mt_u.dirty_list[j].mid == pgno) {
txn->mt_dirty_room++;
break;
}
}
}
} else {
txn->mt_dirty_room = MDB_IDL_UM_MAX - dl[0].mid;
}
txn->mt_flags |= MDB_TXN_SPILLS;
}
return rc;
}
/** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */
static txnid_t
mdb_find_oldest(MDB_txn *txn)
{
int i;
txnid_t mr, oldest = txn->mt_txnid - 1;
MDB_reader *r = txn->mt_env->me_txns->mti_readers;
for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) {
if (r[i].mr_pid) {
mr = r[i].mr_txnid;
if (oldest > mr)
oldest = mr;
}
}
return oldest;
}
/** Add a page to the txn's dirty list */
static void
mdb_page_dirty(MDB_txn *txn, MDB_page *mp)
{
MDB_ID2 mid;
int (*insert)(MDB_ID2L, MDB_ID2 *);
if (txn->mt_env->me_flags & MDB_WRITEMAP) {
insert = mdb_mid2l_append;
} else {
insert = mdb_mid2l_insert;
}
mid.mid = mp->mp_pgno;
mid.mptr = mp;
insert(txn->mt_u.dirty_list, &mid);
txn->mt_dirty_room--;
}
/** Allocate pages for writing.
* If there are free pages available from older transactions, they
* will be re-used first. Otherwise a new page will be allocated.
* @param[in] mc cursor A cursor handle identifying the transaction and
* database for which we are allocating.
* @param[in] num the number of pages to allocate.
* @param[out] mp Address of the allocated page(s). Requests for multiple pages
* will always be satisfied by a single contiguous chunk of memory.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp)
{
#ifdef MDB_PARANOID /* Seems like we can ignore this now */
/* Get at most <Max_retries> more freeDB records once me_pghead
* has enough pages. If not enough, use new pages from the map.
* If <Paranoid> and mc is updating the freeDB, only get new
* records if me_pghead is empty. Then the freelist cannot play
* catch-up with itself by growing while trying to save it.
*/
enum { Paranoid = 1, Max_retries = 500 };
#else
enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ };
#endif
int rc, n2 = num-1, retry = Max_retries;
MDB_txn *txn = mc->mc_txn;
MDB_env *env = txn->mt_env;
pgno_t pgno, *mop = env->me_pghead;
unsigned i, j, k, mop_len = mop ? mop[0] : 0;
MDB_page *np;
txnid_t oldest = 0, last;
MDB_cursor_op op;
MDB_cursor m2;
*mp = NULL;
/* If our dirty list is already full, we can't do anything */
if (txn->mt_dirty_room == 0)
return MDB_TXN_FULL;
for (op = MDB_FIRST;; op = MDB_NEXT) {
MDB_val key, data;
MDB_node *leaf;
pgno_t *idl, old_id, new_id;
/* Seek a big enough contiguous page range. Prefer
* pages at the tail, just truncating the list.
*/
if (mop_len >= (unsigned)num) {
i = mop_len;
do {
pgno = mop[i];
if (mop[i-n2] == pgno+n2)
goto search_done;
} while (--i >= (unsigned)num);
if (Max_retries < INT_MAX && --retry < 0)
break;
}
if (op == MDB_FIRST) { /* 1st iteration */
/* Prepare to fetch more and coalesce */
oldest = mdb_find_oldest(txn);
last = env->me_pglast;
mdb_cursor_init(&m2, txn, FREE_DBI, NULL);
if (last) {
op = MDB_SET_RANGE;
key.mv_data = &last; /* will loop up last+1 */
key.mv_size = sizeof(last);
}
if (Paranoid && mc->mc_dbi == FREE_DBI)
retry = -1;
}
if (Paranoid && retry < 0 && mop_len)
break;
last++;
/* Do not fetch more if the record will be too recent */
if (oldest <= last)
break;
rc = mdb_cursor_get(&m2, &key, NULL, op);
if (rc) {
if (rc == MDB_NOTFOUND)
break;
return rc;
}
last = *(txnid_t*)key.mv_data;
if (oldest <= last)
break;
np = m2.mc_pg[m2.mc_top];
leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]);
if ((rc = mdb_node_read(txn, leaf, &data)) != MDB_SUCCESS)
return rc;
idl = (MDB_ID *) data.mv_data;
i = idl[0];
if (!mop) {
if (!(env->me_pghead = mop = mdb_midl_alloc(i)))
return ENOMEM;
} else {
if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0)
return rc;
mop = env->me_pghead;
}
env->me_pglast = last;
#if MDB_DEBUG > 1
DPRINTF("IDL read txn %zu root %zu num %u",
last, txn->mt_dbs[FREE_DBI].md_root, i);
for (k = i; k; k--)
DPRINTF("IDL %zu", idl[k]);
#endif
/* Merge in descending sorted order */
j = mop_len;
k = mop_len += i;
mop[0] = (pgno_t)-1;
old_id = mop[j];
while (i) {
new_id = idl[i--];
for (; old_id < new_id; old_id = mop[--j])
mop[k--] = old_id;
mop[k--] = new_id;
}
mop[0] = mop_len;
}
/* Use new pages from the map when nothing suitable in the freeDB */
i = 0;
pgno = txn->mt_next_pgno;
if (pgno + num >= env->me_maxpg) {
DPUTS("DB size maxed out");
return MDB_MAP_FULL;
}
search_done:
if (env->me_flags & MDB_WRITEMAP) {
np = (MDB_page *)(env->me_map + env->me_psize * pgno);
} else {
if (!(np = mdb_page_malloc(txn, num)))
return ENOMEM;
}
if (i) {
mop[0] = mop_len -= num;
/* Move any stragglers down */
for (j = i-num; j < mop_len; )
mop[++j] = mop[++i];
} else {
txn->mt_next_pgno = pgno + num;
}
np->mp_pgno = pgno;
mdb_page_dirty(txn, np);
*mp = np;
return MDB_SUCCESS;
}
/** Copy the used portions of a non-overflow page.
* @param[in] dst page to copy into
* @param[in] src page to copy from
* @param[in] psize size of a page
*/
static void
mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize)
{
enum { Align = sizeof(pgno_t) };
indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower;
/* If page isn't full, just copy the used portion. Adjust
* alignment so memcpy may copy words instead of bytes.
*/
if ((unused &= -Align) && !IS_LEAF2(src)) {
upper &= -Align;
memcpy(dst, src, (lower + (Align-1)) & -Align);
memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper),
psize - upper);
} else {
memcpy(dst, src, psize - unused);
}
}
/** Pull a page off the txn's spill list, if present.
* If a page being referenced was spilled to disk in this txn, bring
* it back and make it dirty/writable again.
* @param[in] tx0 the transaction handle.
* @param[in] mp the page being referenced.
* @param[out] ret the writable page, if any. ret is unchanged if
* mp wasn't spilled.
*/
static int
mdb_page_unspill(MDB_txn *tx0, MDB_page *mp, MDB_page **ret)
{
MDB_env *env = tx0->mt_env;
MDB_txn *txn;
unsigned x;
pgno_t pgno = mp->mp_pgno;
for (txn = tx0; txn; txn=txn->mt_parent) {
if (!txn->mt_spill_pgs)
continue;
x = mdb_midl_search(txn->mt_spill_pgs, pgno);
if (x <= txn->mt_spill_pgs[0] && txn->mt_spill_pgs[x] == pgno) {
MDB_page *np;
int num;
if (IS_OVERFLOW(mp))
num = mp->mp_pages;
else
num = 1;
if (env->me_flags & MDB_WRITEMAP) {
np = mp;
} else {
np = mdb_page_malloc(txn, num);
if (!np)
return ENOMEM;
if (num > 1)
memcpy(np, mp, num * env->me_psize);
else
mdb_page_copy(np, mp, env->me_psize);
}
if (txn == tx0) {
/* If in current txn, this page is no longer spilled */
for (; x < txn->mt_spill_pgs[0]; x++)
txn->mt_spill_pgs[x] = txn->mt_spill_pgs[x+1];
txn->mt_spill_pgs[0]--;
} /* otherwise, if belonging to a parent txn, the
* page remains spilled until child commits
*/
if (txn->mt_parent) {
MDB_txn *tx2;
/* If this page is also in a parent's dirty list, then
* it's already accounted in dirty_room, and we need to
* cancel out the decrement that mdb_page_dirty does.
*/
for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
x = mdb_mid2l_search(tx2->mt_u.dirty_list, pgno);
if (x <= tx2->mt_u.dirty_list[0].mid &&
tx2->mt_u.dirty_list[x].mid == pgno) {
txn->mt_dirty_room++;
break;
}
}
}
mdb_page_dirty(tx0, np);
np->mp_flags |= P_DIRTY;
*ret = np;
break;
}
}
return MDB_SUCCESS;
}
/** Touch a page: make it dirty and re-insert into tree with updated pgno.
* @param[in] mc cursor pointing to the page to be touched
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_touch(MDB_cursor *mc)
{
MDB_page *mp = mc->mc_pg[mc->mc_top], *np;
MDB_txn *txn = mc->mc_txn;
MDB_cursor *m2, *m3;
MDB_dbi dbi;
pgno_t pgno;
int rc;
if (!F_ISSET(mp->mp_flags, P_DIRTY)) {
if (txn->mt_flags & MDB_TXN_SPILLS) {
np = NULL;
rc = mdb_page_unspill(txn, mp, &np);
if (rc)
return rc;
if (np)
goto done;
}
if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) ||
(rc = mdb_page_alloc(mc, 1, &np)))
return rc;
pgno = np->mp_pgno;
DPRINTF("touched db %u page %zu -> %zu", mc->mc_dbi,mp->mp_pgno,pgno);
assert(mp->mp_pgno != pgno);
mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
/* Update the parent page, if any, to point to the new page */
if (mc->mc_top) {
MDB_page *parent = mc->mc_pg[mc->mc_top-1];
MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]);
SETPGNO(node, pgno);
} else {
mc->mc_db->md_root = pgno;
}
} else if (txn->mt_parent && !IS_SUBP(mp)) {
MDB_ID2 mid, *dl = txn->mt_u.dirty_list;
pgno = mp->mp_pgno;
/* If txn has a parent, make sure the page is in our
* dirty list.
*/
if (dl[0].mid) {
unsigned x = mdb_mid2l_search(dl, pgno);
if (x <= dl[0].mid && dl[x].mid == pgno) {
if (mp != dl[x].mptr) { /* bad cursor? */
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
return MDB_CORRUPTED;
}
return 0;
}
}
assert(dl[0].mid < MDB_IDL_UM_MAX);
/* No - copy it */
np = mdb_page_malloc(txn, 1);
if (!np)
return ENOMEM;
mid.mid = pgno;
mid.mptr = np;
mdb_mid2l_insert(dl, &mid);
} else {
return 0;
}
mdb_page_copy(np, mp, txn->mt_env->me_psize);
np->mp_pgno = pgno;
np->mp_flags |= P_DIRTY;
done:
/* Adjust cursors pointing to mp */
mc->mc_pg[mc->mc_top] = np;
dbi = mc->mc_dbi;
if (mc->mc_flags & C_SUB) {
dbi--;
for (m2 = txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
m3 = &m2->mc_xcursor->mx_cursor;
if (m3->mc_snum < mc->mc_snum) continue;
if (m3->mc_pg[mc->mc_top] == mp)
m3->mc_pg[mc->mc_top] = np;
}
} else {
for (m2 = txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (m2->mc_snum < mc->mc_snum) continue;
if (m2->mc_pg[mc->mc_top] == mp) {
m2->mc_pg[mc->mc_top] = np;
if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
m2->mc_ki[mc->mc_top] == mc->mc_ki[mc->mc_top])
{
MDB_node *leaf = NODEPTR(np, mc->mc_ki[mc->mc_top]);
if (!(leaf->mn_flags & F_SUBDATA))
m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
}
}
}
}
return 0;
}
int
mdb_env_sync(MDB_env *env, int force)
{
int rc = 0;
if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) {
if (env->me_flags & MDB_WRITEMAP) {
int flags = ((env->me_flags & MDB_MAPASYNC) && !force)
? MS_ASYNC : MS_SYNC;
if (MDB_MSYNC(env->me_map, env->me_mapsize, flags))
rc = ErrCode();
#ifdef _WIN32
else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd))
rc = ErrCode();
#endif
} else {
if (MDB_FDATASYNC(env->me_fd))
rc = ErrCode();
}
}
return rc;
}
/** Back up parent txn's cursors, then grab the originals for tracking */
static int
mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst)
{
MDB_cursor *mc, *bk;
MDB_xcursor *mx;
size_t size;
int i;
for (i = src->mt_numdbs; --i >= 0; ) {
if ((mc = src->mt_cursors[i]) != NULL) {
size = sizeof(MDB_cursor);
if (mc->mc_xcursor)
size += sizeof(MDB_xcursor);
for (; mc; mc = bk->mc_next) {
bk = malloc(size);
if (!bk)
return ENOMEM;
*bk = *mc;
mc->mc_backup = bk;
mc->mc_db = &dst->mt_dbs[i];
/* Kill pointers into src - and dst to reduce abuse: The
* user may not use mc until dst ends. Otherwise we'd...
*/
mc->mc_txn = NULL; /* ...set this to dst */
mc->mc_dbflag = NULL; /* ...and &dst->mt_dbflags[i] */
if ((mx = mc->mc_xcursor) != NULL) {
*(MDB_xcursor *)(bk+1) = *mx;
mx->mx_cursor.mc_txn = NULL; /* ...and dst. */
}
mc->mc_next = dst->mt_cursors[i];
dst->mt_cursors[i] = mc;
}
}
}
return MDB_SUCCESS;
}
/** Close this write txn's cursors, give parent txn's cursors back to parent.
* @param[in] txn the transaction handle.
* @param[in] merge true to keep changes to parent cursors, false to revert.
* @return 0 on success, non-zero on failure.
*/
static void
mdb_cursors_close(MDB_txn *txn, unsigned merge)
{
MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk;
MDB_xcursor *mx;
int i;
for (i = txn->mt_numdbs; --i >= 0; ) {
for (mc = cursors[i]; mc; mc = next) {
next = mc->mc_next;
if ((bk = mc->mc_backup) != NULL) {
if (merge) {
/* Commit changes to parent txn */
mc->mc_next = bk->mc_next;
mc->mc_backup = bk->mc_backup;
mc->mc_txn = bk->mc_txn;
mc->mc_db = bk->mc_db;
mc->mc_dbflag = bk->mc_dbflag;
if ((mx = mc->mc_xcursor) != NULL)
mx->mx_cursor.mc_txn = bk->mc_txn;
} else {
/* Abort nested txn */
*mc = *bk;
if ((mx = mc->mc_xcursor) != NULL)
*mx = *(MDB_xcursor *)(bk+1);
}
mc = bk;
}
free(mc);
}
cursors[i] = NULL;
}
}
#ifdef MDB_DEBUG_SKIP
#define mdb_txn_reset0(txn, act) mdb_txn_reset0(txn)
#endif
static void
mdb_txn_reset0(MDB_txn *txn, const char *act);
#ifdef _WIN32
enum Pidlock_op {
Pidset, Pidcheck
};
#else
enum Pidlock_op {
Pidset = F_SETLK, Pidcheck = F_GETLK
};
#endif
/** Set or check a pid lock. Set returns 0 on success.
* Check returns 0 if lock exists (meaning the process is alive).
*
* On Windows Pidset is a no-op, we merely check for the existence
* of the process with the given pid. On POSIX we use a single byte
* lock on the lockfile, set at an offset equal to the pid.
*/
static int
mdb_reader_pid(MDB_env *env, enum Pidlock_op op, pid_t pid)
{
#ifdef _WIN32
HANDLE h;
int ver, query;
switch(op) {
case Pidset:
break;
case Pidcheck:
h = OpenProcess(env->me_pidquery, FALSE, pid);
if (!h)
return GetLastError();
CloseHandle(h);
break;
}
return 0;
#else
int rc;
struct flock lock_info;
memset((void *)&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_WRLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = pid;
lock_info.l_len = 1;
while ((rc = fcntl(env->me_lfd, op, &lock_info)) &&
(rc = ErrCode()) == EINTR) ;
if (op == F_GETLK && rc == 0 && lock_info.l_type == F_UNLCK)
rc = -1;
return rc;
#endif
}
/** Common code for #mdb_txn_begin() and #mdb_txn_renew().
* @param[in] txn the transaction handle to initialize
* @return 0 on success, non-zero on failure.
*/
static int
mdb_txn_renew0(MDB_txn *txn)
{
MDB_env *env = txn->mt_env;
unsigned int i;
uint16_t x;
int rc, new_notls = 0;
/* Setup db info */
txn->mt_numdbs = env->me_numdbs;
txn->mt_dbxs = env->me_dbxs; /* mostly static anyway */
if (txn->mt_flags & MDB_TXN_RDONLY) {
if (!env->me_txns) {
i = mdb_env_pick_meta(env);
txn->mt_txnid = env->me_metas[i]->mm_txnid;
txn->mt_u.reader = NULL;
} else {
MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader :
pthread_getspecific(env->me_txkey);
if (r) {
if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1)
return MDB_BAD_RSLOT;
} else {
pid_t pid = env->me_pid;
pthread_t tid = pthread_self();
LOCK_MUTEX_R(env);
for (i=0; i<env->me_txns->mti_numreaders; i++)
if (env->me_txns->mti_readers[i].mr_pid == 0)
break;
if (i == env->me_maxreaders) {
UNLOCK_MUTEX_R(env);
return MDB_READERS_FULL;
}
if (!(env->me_flags & MDB_LIVE_READER)) {
rc = mdb_reader_pid(env, Pidset, pid);
if (rc) {
UNLOCK_MUTEX_R(env);
return rc;
}
env->me_flags |= MDB_LIVE_READER;
}
env->me_txns->mti_readers[i].mr_pid = pid;
env->me_txns->mti_readers[i].mr_tid = tid;
if (i >= env->me_txns->mti_numreaders)
env->me_txns->mti_numreaders = i+1;
/* Save numreaders for un-mutexed mdb_env_close() */
env->me_numreaders = env->me_txns->mti_numreaders;
UNLOCK_MUTEX_R(env);
r = &env->me_txns->mti_readers[i];
new_notls = (env->me_flags & MDB_NOTLS);
if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) {
r->mr_pid = 0;
return rc;
}
}
txn->mt_txnid = r->mr_txnid = env->me_txns->mti_txnid;
txn->mt_u.reader = r;
}
txn->mt_toggle = txn->mt_txnid & 1;
} else {
LOCK_MUTEX_W(env);
txn->mt_txnid = env->me_txns->mti_txnid;
txn->mt_toggle = txn->mt_txnid & 1;
txn->mt_txnid++;
#if MDB_DEBUG
if (txn->mt_txnid == mdb_debug_start)
mdb_debug = 1;
#endif
txn->mt_dirty_room = MDB_IDL_UM_MAX;
txn->mt_u.dirty_list = env->me_dirty_list;
txn->mt_u.dirty_list[0].mid = 0;
txn->mt_free_pgs = env->me_free_pgs;
txn->mt_free_pgs[0] = 0;
txn->mt_spill_pgs = NULL;
env->me_txn = txn;
}
/* Copy the DB info and flags */
memcpy(txn->mt_dbs, env->me_metas[txn->mt_toggle]->mm_dbs, 2 * sizeof(MDB_db));
/* Moved to here to avoid a data race in read TXNs */
txn->mt_next_pgno = env->me_metas[txn->mt_toggle]->mm_last_pg+1;
for (i=2; i<txn->mt_numdbs; i++) {
x = env->me_dbflags[i];
txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS;
txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_STALE : 0;
}
txn->mt_dbflags[0] = txn->mt_dbflags[1] = DB_VALID;
if (env->me_maxpg < txn->mt_next_pgno) {
mdb_txn_reset0(txn, "renew0-mapfail");
if (new_notls) {
txn->mt_u.reader->mr_pid = 0;
txn->mt_u.reader = NULL;
}
return MDB_MAP_RESIZED;
}
return MDB_SUCCESS;
}
int
mdb_txn_renew(MDB_txn *txn)
{
int rc;
if (!txn || txn->mt_dbxs) /* A reset txn has mt_dbxs==NULL */
return EINVAL;
if (txn->mt_env->me_flags & MDB_FATAL_ERROR) {
DPUTS("environment had fatal error, must shutdown!");
return MDB_PANIC;
}
rc = mdb_txn_renew0(txn);
if (rc == MDB_SUCCESS) {
DPRINTF("renew txn %zu%c %p on mdbenv %p, root page %zu",
txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
(void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root);
}
return rc;
}
int
mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret)
{
MDB_txn *txn;
MDB_ntxn *ntxn;
int rc, size, tsize = sizeof(MDB_txn);
if (env->me_flags & MDB_FATAL_ERROR) {
DPUTS("environment had fatal error, must shutdown!");
return MDB_PANIC;
}
if ((env->me_flags & MDB_RDONLY) && !(flags & MDB_RDONLY))
return EACCES;
if (parent) {
/* Nested transactions: Max 1 child, write txns only, no writemap */
if (parent->mt_child ||
(flags & MDB_RDONLY) || (parent->mt_flags & MDB_TXN_RDONLY) ||
(env->me_flags & MDB_WRITEMAP))
{
return EINVAL;
}
tsize = sizeof(MDB_ntxn);
}
size = tsize + env->me_maxdbs * (sizeof(MDB_db)+1);
if (!(flags & MDB_RDONLY))
size += env->me_maxdbs * sizeof(MDB_cursor *);
if ((txn = calloc(1, size)) == NULL) {
DPRINTF("calloc: %s", strerror(ErrCode()));
return ENOMEM;
}
txn->mt_dbs = (MDB_db *) ((char *)txn + tsize);
if (flags & MDB_RDONLY) {
txn->mt_flags |= MDB_TXN_RDONLY;
txn->mt_dbflags = (unsigned char *)(txn->mt_dbs + env->me_maxdbs);
} else {
txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
txn->mt_dbflags = (unsigned char *)(txn->mt_cursors + env->me_maxdbs);
}
txn->mt_env = env;
if (parent) {
unsigned int i;
txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE);
if (!txn->mt_u.dirty_list ||
!(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)))
{
free(txn->mt_u.dirty_list);
free(txn);
return ENOMEM;
}
txn->mt_txnid = parent->mt_txnid;
txn->mt_toggle = parent->mt_toggle;
txn->mt_dirty_room = parent->mt_dirty_room;
txn->mt_u.dirty_list[0].mid = 0;
txn->mt_spill_pgs = NULL;
txn->mt_next_pgno = parent->mt_next_pgno;
parent->mt_child = txn;
txn->mt_parent = parent;
txn->mt_numdbs = parent->mt_numdbs;
txn->mt_flags = parent->mt_flags;
txn->mt_dbxs = parent->mt_dbxs;
memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
/* Copy parent's mt_dbflags, but clear DB_NEW */
for (i=0; i<txn->mt_numdbs; i++)
txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW;
rc = 0;
ntxn = (MDB_ntxn *)txn;
ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */
if (env->me_pghead) {
size = MDB_IDL_SIZEOF(env->me_pghead);
env->me_pghead = mdb_midl_alloc(env->me_pghead[0]);
if (env->me_pghead)
memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size);
else
rc = ENOMEM;
}
if (!rc)
rc = mdb_cursor_shadow(parent, txn);
if (rc)
mdb_txn_reset0(txn, "beginchild-fail");
} else {
rc = mdb_txn_renew0(txn);
}
if (rc)
free(txn);
else {
*ret = txn;
DPRINTF("begin txn %zu%c %p on mdbenv %p, root page %zu",
txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
(void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root);
}
return rc;
}
/** Export or close DBI handles opened in this txn. */
static void
mdb_dbis_update(MDB_txn *txn, int keep)
{
int i;
MDB_dbi n = txn->mt_numdbs;
MDB_env *env = txn->mt_env;
unsigned char *tdbflags = txn->mt_dbflags;
for (i = n; --i >= 2;) {
if (tdbflags[i] & DB_NEW) {
if (keep) {
env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID;
} else {
char *ptr = env->me_dbxs[i].md_name.mv_data;
env->me_dbxs[i].md_name.mv_data = NULL;
env->me_dbxs[i].md_name.mv_size = 0;
env->me_dbflags[i] = 0;
free(ptr);
}
}
}
if (keep && env->me_numdbs < n)
env->me_numdbs = n;
}
/** Common code for #mdb_txn_reset() and #mdb_txn_abort().
* May be called twice for readonly txns: First reset it, then abort.
* @param[in] txn the transaction handle to reset
*/
static void
mdb_txn_reset0(MDB_txn *txn, const char *act)
{
MDB_env *env = txn->mt_env;
/* Close any DBI handles opened in this txn */
mdb_dbis_update(txn, 0);
DPRINTF("%s txn %zu%c %p on mdbenv %p, root page %zu",
act, txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
(void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root);
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
if (txn->mt_u.reader) {
txn->mt_u.reader->mr_txnid = (txnid_t)-1;
if (!(env->me_flags & MDB_NOTLS))
txn->mt_u.reader = NULL; /* txn does not own reader */
}
txn->mt_numdbs = 0; /* close nothing if called again */
txn->mt_dbxs = NULL; /* mark txn as reset */
} else {
mdb_cursors_close(txn, 0);
if (!(env->me_flags & MDB_WRITEMAP)) {
mdb_dlist_free(txn);
}
mdb_midl_free(env->me_pghead);
if (txn->mt_parent) {
txn->mt_parent->mt_child = NULL;
env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate;
mdb_midl_free(txn->mt_free_pgs);
mdb_midl_free(txn->mt_spill_pgs);
free(txn->mt_u.dirty_list);
return;
}
if (mdb_midl_shrink(&txn->mt_free_pgs))
env->me_free_pgs = txn->mt_free_pgs;
env->me_pghead = NULL;
env->me_pglast = 0;
env->me_txn = NULL;
/* The writer mutex was locked in mdb_txn_begin. */
UNLOCK_MUTEX_W(env);
}
}
void
mdb_txn_reset(MDB_txn *txn)
{
if (txn == NULL)
return;
/* This call is only valid for read-only txns */
if (!(txn->mt_flags & MDB_TXN_RDONLY))
return;
mdb_txn_reset0(txn, "reset");
}
void
mdb_txn_abort(MDB_txn *txn)
{
if (txn == NULL)
return;
if (txn->mt_child)
mdb_txn_abort(txn->mt_child);
mdb_txn_reset0(txn, "abort");
/* Free reader slot tied to this txn (if MDB_NOTLS && writable FS) */
if ((txn->mt_flags & MDB_TXN_RDONLY) && txn->mt_u.reader)
txn->mt_u.reader->mr_pid = 0;
free(txn);
}
/** Save the freelist as of this transaction to the freeDB.
* This changes the freelist. Keep trying until it stabilizes.
*/
static int
mdb_freelist_save(MDB_txn *txn)
{
/* env->me_pghead[] can grow and shrink during this call.
* env->me_pglast and txn->mt_free_pgs[] can only grow.
* Page numbers cannot disappear from txn->mt_free_pgs[].
*/
MDB_cursor mc;
MDB_env *env = txn->mt_env;
int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1;
txnid_t pglast = 0, head_id = 0;
pgno_t freecnt = 0, *free_pgs, *mop;
ssize_t head_room = 0, total_room = 0, mop_len;
mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
if (env->me_pghead) {
/* Make sure first page of freeDB is touched and on freelist */
rc = mdb_page_search(&mc, NULL, MDB_PS_MODIFY);
if (rc && rc != MDB_NOTFOUND)
return rc;
}
for (;;) {
/* Come back here after each Put() in case freelist changed */
MDB_val key, data;
/* If using records from freeDB which we have not yet
* deleted, delete them and any we reserved for me_pghead.
*/
while (pglast < env->me_pglast) {
rc = mdb_cursor_first(&mc, &key, NULL);
if (rc)
return rc;
pglast = head_id = *(txnid_t *)key.mv_data;
total_room = head_room = 0;
assert(pglast <= env->me_pglast);
rc = mdb_cursor_del(&mc, 0);
if (rc)
return rc;
}
/* Save the IDL of pages freed by this txn, to a single record */
if (freecnt < txn->mt_free_pgs[0]) {
if (!freecnt) {
/* Make sure last page of freeDB is touched and on freelist */
key.mv_size = MDB_MAXKEYSIZE+1;
key.mv_data = NULL;
rc = mdb_page_search(&mc, &key, MDB_PS_MODIFY);
if (rc && rc != MDB_NOTFOUND)
return rc;
}
free_pgs = txn->mt_free_pgs;
/* Write to last page of freeDB */
key.mv_size = sizeof(txn->mt_txnid);
key.mv_data = &txn->mt_txnid;
do {
freecnt = free_pgs[0];
data.mv_size = MDB_IDL_SIZEOF(free_pgs);
rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
if (rc)
return rc;
/* Retry if mt_free_pgs[] grew during the Put() */
free_pgs = txn->mt_free_pgs;
} while (freecnt < free_pgs[0]);
mdb_midl_sort(free_pgs);
memcpy(data.mv_data, free_pgs, data.mv_size);
#if MDB_DEBUG > 1
{
unsigned int i = free_pgs[0];
DPRINTF("IDL write txn %zu root %zu num %u",
txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i);
for (; i; i--)
DPRINTF("IDL %zu", free_pgs[i]);
}
#endif
continue;
}
mop = env->me_pghead;
mop_len = mop ? mop[0] : 0;
/* Reserve records for me_pghead[]. Split it if multi-page,
* to avoid searching freeDB for a page range. Use keys in
* range [1,me_pglast]: Smaller than txnid of oldest reader.
*/
if (total_room >= mop_len) {
if (total_room == mop_len || --more < 0)
break;
} else if (head_room >= maxfree_1pg && head_id > 1) {
/* Keep current record (overflow page), add a new one */
head_id--;
head_room = 0;
}
/* (Re)write {key = head_id, IDL length = head_room} */
total_room -= head_room;
head_room = mop_len - total_room;
if (head_room > maxfree_1pg && head_id > 1) {
/* Overflow multi-page for part of me_pghead */
head_room /= head_id; /* amortize page sizes */
head_room += maxfree_1pg - head_room % (maxfree_1pg + 1);
} else if (head_room < 0) {
/* Rare case, not bothering to delete this record */
head_room = 0;
}
key.mv_size = sizeof(head_id);
key.mv_data = &head_id;
data.mv_size = (head_room + 1) * sizeof(pgno_t);
rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
if (rc)
return rc;
*(MDB_ID *)data.mv_data = 0; /* IDL is initially empty */
total_room += head_room;
}
/* Fill in the reserved, touched me_pghead records */
rc = MDB_SUCCESS;
if (mop_len) {
MDB_val key, data;
mop += mop_len;
rc = mdb_cursor_first(&mc, &key, &data);
for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) {
unsigned flags = MDB_CURRENT;
txnid_t id = *(txnid_t *)key.mv_data;
ssize_t len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1;
MDB_ID save;
assert(len >= 0 && id <= env->me_pglast);
key.mv_data = &id;
if (len > mop_len) {
len = mop_len;
data.mv_size = (len + 1) * sizeof(MDB_ID);
flags = 0;
}
data.mv_data = mop -= len;
save = mop[0];
mop[0] = len;
rc = mdb_cursor_put(&mc, &key, &data, flags);
mop[0] = save;
if (rc || !(mop_len -= len))
break;
}
}
return rc;
}
/** Flush dirty pages to the map, after clearing their dirty flag.
*/
static int
mdb_page_flush(MDB_txn *txn)
{
MDB_env *env = txn->mt_env;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned psize = env->me_psize, j;
int i, pagecount = dl[0].mid, rc;
size_t size = 0, pos = 0;
pgno_t pgno = 0;
MDB_page *dp = NULL;
#ifdef _WIN32
OVERLAPPED ov;
#else
struct iovec iov[MDB_COMMIT_PAGES];
ssize_t wpos = 0, wsize = 0, wres;
size_t next_pos = 1; /* impossible pos, so pos != next_pos */
int n = 0;
#endif
j = 0;
if (env->me_flags & MDB_WRITEMAP) {
/* Clear dirty flags */
for (i = pagecount; i; i--) {
dp = dl[i].mptr;
/* Don't flush this page yet */
if (dp->mp_flags & P_KEEP) {
dp->mp_flags ^= P_KEEP;
dl[++j] = dl[i];
continue;
}
dp->mp_flags &= ~P_DIRTY;
}
dl[0].mid = j;
return MDB_SUCCESS;
}
/* Write the pages */
for (i = 1;; i++) {
if (i <= pagecount) {
dp = dl[i].mptr;
/* Don't flush this page yet */
if (dp->mp_flags & P_KEEP) {
dp->mp_flags ^= P_KEEP;
dl[i].mid = 0;
continue;
}
pgno = dl[i].mid;
/* clear dirty flag */
dp->mp_flags &= ~P_DIRTY;
pos = pgno * psize;
size = psize;
if (IS_OVERFLOW(dp)) size *= dp->mp_pages;
}
#ifdef _WIN32
else break;
/* Windows actually supports scatter/gather I/O, but only on
* unbuffered file handles. Since we're relying on the OS page
* cache for all our data, that's self-defeating. So we just
* write pages one at a time. We use the ov structure to set
* the write offset, to at least save the overhead of a Seek
* system call.
*/
DPRINTF("committing page %zu", pgno);
memset(&ov, 0, sizeof(ov));
ov.Offset = pos & 0xffffffff;
ov.OffsetHigh = pos >> 16 >> 16;
if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) {
rc = ErrCode();
DPRINTF("WriteFile: %d", rc);
return rc;
}
#else
/* Write up to MDB_COMMIT_PAGES dirty pages at a time. */
if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) {
if (n) {
/* Write previous page(s) */
#ifdef MDB_USE_PWRITEV
wres = pwritev(env->me_fd, iov, n, wpos);
#else
if (n == 1) {
wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos);
} else {
if (lseek(env->me_fd, wpos, SEEK_SET) == -1) {
rc = ErrCode();
DPRINTF("lseek: %s", strerror(rc));
return rc;
}
wres = writev(env->me_fd, iov, n);
}
#endif
if (wres != wsize) {
if (wres < 0) {
rc = ErrCode();
DPRINTF("Write error: %s", strerror(rc));
} else {
rc = EIO; /* TODO: Use which error code? */
DPUTS("short write, filesystem full?");
}
return rc;
}
n = 0;
}
if (i > pagecount)
break;
wpos = pos;
wsize = 0;
}
DPRINTF("committing page %zu", pgno);
next_pos = pos + size;
iov[n].iov_len = size;
iov[n].iov_base = (char *)dp;
wsize += size;
n++;
#endif /* _WIN32 */
}
j = 0;
for (i=1; i<=pagecount; i++) {
dp = dl[i].mptr;
/* This is a page we skipped above */
if (!dl[i].mid) {
dl[++j] = dl[i];
dl[j].mid = dp->mp_pgno;
continue;
}
mdb_dpage_free(env, dp);
}
dl[0].mid = j;
return MDB_SUCCESS;
}
int
mdb_txn_commit(MDB_txn *txn)
{
int rc;
unsigned int i;
MDB_env *env;
assert(txn != NULL);
assert(txn->mt_env != NULL);
if (txn->mt_child) {
rc = mdb_txn_commit(txn->mt_child);
txn->mt_child = NULL;
if (rc)
goto fail;
}
env = txn->mt_env;
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
mdb_dbis_update(txn, 1);
txn->mt_numdbs = 2; /* so txn_abort() doesn't close any new handles */
mdb_txn_abort(txn);
return MDB_SUCCESS;
}
if (F_ISSET(txn->mt_flags, MDB_TXN_ERROR)) {
DPUTS("error flag is set, can't commit");
if (txn->mt_parent)
txn->mt_parent->mt_flags |= MDB_TXN_ERROR;
rc = EINVAL;
goto fail;
}
if (txn->mt_parent) {
MDB_txn *parent = txn->mt_parent;
unsigned x, y, len;
MDB_ID2L dst, src;
/* Append our free list to parent's */
rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs);
if (rc)
goto fail;
mdb_midl_free(txn->mt_free_pgs);
parent->mt_next_pgno = txn->mt_next_pgno;
parent->mt_flags = txn->mt_flags;
/* Merge our cursors into parent's and close them */
mdb_cursors_close(txn, 1);
/* Update parent's DB table. */
memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
parent->mt_numdbs = txn->mt_numdbs;
parent->mt_dbflags[0] = txn->mt_dbflags[0];
parent->mt_dbflags[1] = txn->mt_dbflags[1];
for (i=2; i<txn->mt_numdbs; i++) {
/* preserve parent's DB_NEW status */
x = parent->mt_dbflags[i] & DB_NEW;
parent->mt_dbflags[i] = txn->mt_dbflags[i] | x;
}
dst = parent->mt_u.dirty_list;
src = txn->mt_u.dirty_list;
/* Remove anything in our dirty list from parent's spill list */
if (parent->mt_spill_pgs) {
x = parent->mt_spill_pgs[0];
len = x;
/* zero out our dirty pages in parent spill list */
for (i=1; i<=src[0].mid; i++) {
if (src[i].mid < parent->mt_spill_pgs[x])
continue;
if (src[i].mid > parent->mt_spill_pgs[x]) {
if (x <= 1)
break;
x--;
continue;
}
parent->mt_spill_pgs[x] = 0;
len--;
}
/* OK, we had a few hits, squash zeros from the spill list */
if (len < parent->mt_spill_pgs[0]) {
x=1;
for (y=1; y<=parent->mt_spill_pgs[0]; y++) {
if (parent->mt_spill_pgs[y]) {
if (y != x) {
parent->mt_spill_pgs[x] = parent->mt_spill_pgs[y];
}
x++;
}
}
parent->mt_spill_pgs[0] = len;
}
}
/* Find len = length of merging our dirty list with parent's */
x = dst[0].mid;
dst[0].mid = 0; /* simplify loops */
if (parent->mt_parent) {
len = x + src[0].mid;
y = mdb_mid2l_search(src, dst[x].mid + 1) - 1;
for (i = x; y && i; y--) {
pgno_t yp = src[y].mid;
while (yp < dst[i].mid)
i--;
if (yp == dst[i].mid) {
i--;
len--;
}
}
} else { /* Simplify the above for single-ancestor case */
len = MDB_IDL_UM_MAX - txn->mt_dirty_room;
}
/* Merge our dirty list with parent's */
y = src[0].mid;
for (i = len; y; dst[i--] = src[y--]) {
pgno_t yp = src[y].mid;
while (yp < dst[x].mid)
dst[i--] = dst[x--];
if (yp == dst[x].mid)
free(dst[x--].mptr);
}
assert(i == x);
dst[0].mid = len;
free(txn->mt_u.dirty_list);
parent->mt_dirty_room = txn->mt_dirty_room;
if (txn->mt_spill_pgs) {
if (parent->mt_spill_pgs) {
mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs);
mdb_midl_free(txn->mt_spill_pgs);
mdb_midl_sort(parent->mt_spill_pgs);
} else {
parent->mt_spill_pgs = txn->mt_spill_pgs;
}
}
parent->mt_child = NULL;
mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead);
free(txn);
return MDB_SUCCESS;
}
if (txn != env->me_txn) {
DPUTS("attempt to commit unknown transaction");
rc = EINVAL;
goto fail;
}
mdb_cursors_close(txn, 0);
if (!txn->mt_u.dirty_list[0].mid && !(txn->mt_flags & MDB_TXN_DIRTY))
goto done;
DPRINTF("committing txn %zu %p on mdbenv %p, root page %zu",
txn->mt_txnid, (void *)txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root);
/* Update DB root pointers */
if (txn->mt_numdbs > 2) {
MDB_cursor mc;
MDB_dbi i;
MDB_val data;
data.mv_size = sizeof(MDB_db);
mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
for (i = 2; i < txn->mt_numdbs; i++) {
if (txn->mt_dbflags[i] & DB_DIRTY) {
data.mv_data = &txn->mt_dbs[i];
rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data, 0);
if (rc)
goto fail;
}
}
}
rc = mdb_freelist_save(txn);
if (rc)
goto fail;
mdb_midl_free(env->me_pghead);
env->me_pghead = NULL;
if (mdb_midl_shrink(&txn->mt_free_pgs))
env->me_free_pgs = txn->mt_free_pgs;
#if MDB_DEBUG > 2
mdb_audit(txn);
#endif
if ((rc = mdb_page_flush(txn)) ||
(rc = mdb_env_sync(env, 0)) ||
(rc = mdb_env_write_meta(txn)))
goto fail;
done:
env->me_pglast = 0;
env->me_txn = NULL;
mdb_dbis_update(txn, 1);
UNLOCK_MUTEX_W(env);
free(txn);
return MDB_SUCCESS;
fail:
mdb_txn_abort(txn);
return rc;
}
/** Read the environment parameters of a DB environment before
* mapping it into memory.
* @param[in] env the environment handle
* @param[out] meta address of where to store the meta information
* @return 0 on success, non-zero on failure.
*/
static int
mdb_env_read_header(MDB_env *env, MDB_meta *meta)
{
MDB_pagebuf pbuf;
MDB_page *p;
MDB_meta *m;
int i, rc, off;
/* We don't know the page size yet, so use a minimum value.
* Read both meta pages so we can use the latest one.
*/
for (i=off=0; i<2; i++, off = meta->mm_psize) {
#ifdef _WIN32
DWORD len;
OVERLAPPED ov;
memset(&ov, 0, sizeof(ov));
ov.Offset = off;
rc = ReadFile(env->me_fd,&pbuf,MDB_PAGESIZE,&len,&ov) ? (int)len : -1;
if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF)
rc = 0;
#else
rc = pread(env->me_fd, &pbuf, MDB_PAGESIZE, off);
#endif
if (rc != MDB_PAGESIZE) {
if (rc == 0 && off == 0)
return ENOENT;
rc = rc < 0 ? (int) ErrCode() : MDB_INVALID;
DPRINTF("read: %s", mdb_strerror(rc));
return rc;
}
p = (MDB_page *)&pbuf;
if (!F_ISSET(p->mp_flags, P_META)) {
DPRINTF("page %zu not a meta page", p->mp_pgno);
return MDB_INVALID;
}
m = METADATA(p);
if (m->mm_magic != MDB_MAGIC) {
DPUTS("meta has invalid magic");
return MDB_INVALID;
}
if (m->mm_version != MDB_DATA_VERSION) {
DPRINTF("database is version %u, expected version %u",
m->mm_version, MDB_DATA_VERSION);
return MDB_VERSION_MISMATCH;
}
if (off == 0 || m->mm_txnid > meta->mm_txnid)
*meta = *m;
}
return 0;
}
/** Write the environment parameters of a freshly created DB environment.
* @param[in] env the environment handle
* @param[out] meta address of where to store the meta information
* @return 0 on success, non-zero on failure.
*/
static int
mdb_env_init_meta(MDB_env *env, MDB_meta *meta)
{
MDB_page *p, *q;
int rc;
unsigned int psize;
DPUTS("writing new meta page");
GET_PAGESIZE(psize);
meta->mm_magic = MDB_MAGIC;
meta->mm_version = MDB_DATA_VERSION;
meta->mm_mapsize = env->me_mapsize;
meta->mm_psize = psize;
meta->mm_last_pg = 1;
meta->mm_flags = env->me_flags & 0xffff;
meta->mm_flags |= MDB_INTEGERKEY;
meta->mm_dbs[0].md_root = P_INVALID;
meta->mm_dbs[1].md_root = P_INVALID;
p = calloc(2, psize);
p->mp_pgno = 0;
p->mp_flags = P_META;
*(MDB_meta *)METADATA(p) = *meta;
q = (MDB_page *)((char *)p + psize);
q->mp_pgno = 1;
q->mp_flags = P_META;
*(MDB_meta *)METADATA(q) = *meta;
#ifdef _WIN32
{
DWORD len;
OVERLAPPED ov;
memset(&ov, 0, sizeof(ov));
rc = WriteFile(env->me_fd, p, psize * 2, &len, &ov);
rc = rc ? (len == psize * 2 ? MDB_SUCCESS : EIO) : ErrCode();
}
#else
rc = pwrite(env->me_fd, p, psize * 2, 0);
rc = (rc == (int)psize * 2) ? MDB_SUCCESS : rc < 0 ? ErrCode() : EIO;
#endif
free(p);
return rc;
}
/** Update the environment info to commit a transaction.
* @param[in] txn the transaction that's being committed
* @return 0 on success, non-zero on failure.
*/
static int
mdb_env_write_meta(MDB_txn *txn)
{
MDB_env *env;
MDB_meta meta, metab, *mp;
off_t off;
int rc, len, toggle;
char *ptr;
HANDLE mfd;
#ifdef _WIN32
OVERLAPPED ov;
#else
int r2;
#endif
assert(txn != NULL);
assert(txn->mt_env != NULL);
toggle = !txn->mt_toggle;
DPRINTF("writing meta page %d for root page %zu",
toggle, txn->mt_dbs[MAIN_DBI].md_root);
env = txn->mt_env;
mp = env->me_metas[toggle];
if (env->me_flags & MDB_WRITEMAP) {
/* Persist any increases of mapsize config */
if (env->me_mapsize > mp->mm_mapsize)
mp->mm_mapsize = env->me_mapsize;
mp->mm_dbs[0] = txn->mt_dbs[0];
mp->mm_dbs[1] = txn->mt_dbs[1];
mp->mm_last_pg = txn->mt_next_pgno - 1;
mp->mm_txnid = txn->mt_txnid;
if (!(env->me_flags & (MDB_NOMETASYNC|MDB_NOSYNC))) {
rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
ptr = env->me_map;
if (toggle)
ptr += env->me_psize;
if (MDB_MSYNC(ptr, env->me_psize, rc)) {
rc = ErrCode();
goto fail;
}
}
goto done;
}
metab.mm_txnid = env->me_metas[toggle]->mm_txnid;
metab.mm_last_pg = env->me_metas[toggle]->mm_last_pg;
ptr = (char *)&meta;
if (env->me_mapsize > mp->mm_mapsize) {
/* Persist any increases of mapsize config */
meta.mm_mapsize = env->me_mapsize;
off = offsetof(MDB_meta, mm_mapsize);
} else {
off = offsetof(MDB_meta, mm_dbs[0].md_depth);
}
len = sizeof(MDB_meta) - off;
ptr += off;
meta.mm_dbs[0] = txn->mt_dbs[0];
meta.mm_dbs[1] = txn->mt_dbs[1];
meta.mm_last_pg = txn->mt_next_pgno - 1;
meta.mm_txnid = txn->mt_txnid;
if (toggle)
off += env->me_psize;
off += PAGEHDRSZ;
/* Write to the SYNC fd */
mfd = env->me_flags & (MDB_NOSYNC|MDB_NOMETASYNC) ?
env->me_fd : env->me_mfd;
#ifdef _WIN32
{
memset(&ov, 0, sizeof(ov));
ov.Offset = off;
if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov))
rc = -1;
}
#else
rc = pwrite(mfd, ptr, len, off);
#endif
if (rc != len) {
rc = rc < 0 ? ErrCode() : EIO;
DPUTS("write failed, disk error?");
/* On a failure, the pagecache still contains the new data.
* Write some old data back, to prevent it from being used.
* Use the non-SYNC fd; we know it will fail anyway.
*/
meta.mm_last_pg = metab.mm_last_pg;
meta.mm_txnid = metab.mm_txnid;
#ifdef _WIN32
memset(&ov, 0, sizeof(ov));
ov.Offset = off;
WriteFile(env->me_fd, ptr, len, NULL, &ov);
#else
r2 = pwrite(env->me_fd, ptr, len, off);
#endif
fail:
env->me_flags |= MDB_FATAL_ERROR;
return rc;
}
done:
/* Memory ordering issues are irrelevant; since the entire writer
* is wrapped by wmutex, all of these changes will become visible
* after the wmutex is unlocked. Since the DB is multi-version,
* readers will get consistent data regardless of how fresh or
* how stale their view of these values is.
*/
env->me_txns->mti_txnid = txn->mt_txnid;
return MDB_SUCCESS;
}
/** Check both meta pages to see which one is newer.
* @param[in] env the environment handle
* @return meta toggle (0 or 1).
*/
static int
mdb_env_pick_meta(const MDB_env *env)
{
return (env->me_metas[0]->mm_txnid < env->me_metas[1]->mm_txnid);
}
int
mdb_env_create(MDB_env **env)
{
MDB_env *e;
e = calloc(1, sizeof(MDB_env));
if (!e)
return ENOMEM;
e->me_maxreaders = DEFAULT_READERS;
e->me_maxdbs = e->me_numdbs = 2;
e->me_fd = INVALID_HANDLE_VALUE;
e->me_lfd = INVALID_HANDLE_VALUE;
e->me_mfd = INVALID_HANDLE_VALUE;
#ifdef MDB_USE_POSIX_SEM
e->me_rmutex = SEM_FAILED;
e->me_wmutex = SEM_FAILED;
#endif
e->me_pid = getpid();
VGMEMP_CREATE(e,0,0);
*env = e;
return MDB_SUCCESS;
}
int
mdb_env_set_mapsize(MDB_env *env, size_t size)
{
if (env->me_map)
return EINVAL;
env->me_mapsize = size;
if (env->me_psize)
env->me_maxpg = env->me_mapsize / env->me_psize;
return MDB_SUCCESS;
}
int
mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs)
{
if (env->me_map)
return EINVAL;
env->me_maxdbs = dbs + 2; /* Named databases + main and free DB */
return MDB_SUCCESS;
}
int
mdb_env_set_maxreaders(MDB_env *env, unsigned int readers)
{
if (env->me_map || readers < 1)
return EINVAL;
env->me_maxreaders = readers;
return MDB_SUCCESS;
}
int
mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers)
{
if (!env || !readers)
return EINVAL;
*readers = env->me_maxreaders;
return MDB_SUCCESS;
}
/** Further setup required for opening an MDB environment
*/
static int
mdb_env_open2(MDB_env *env)
{
unsigned int flags = env->me_flags;
int i, newenv = 0;
MDB_meta meta;
MDB_page *p;
#ifndef _WIN32
int prot;
#endif
memset(&meta, 0, sizeof(meta));
if ((i = mdb_env_read_header(env, &meta)) != 0) {
if (i != ENOENT)
return i;
DPUTS("new mdbenv");
newenv = 1;
}
/* Was a mapsize configured? */
if (!env->me_mapsize) {
/* If this is a new environment, take the default,
* else use the size recorded in the existing env.
*/
env->me_mapsize = newenv ? DEFAULT_MAPSIZE : meta.mm_mapsize;
} else if (env->me_mapsize < meta.mm_mapsize) {
/* If the configured size is smaller, make sure it's
* still big enough. Silently round up to minimum if not.
*/
size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize;
if (env->me_mapsize < minsize)
env->me_mapsize = minsize;
}
#ifdef _WIN32
{
int rc;
HANDLE mh;
LONG sizelo, sizehi;
sizelo = env->me_mapsize & 0xffffffff;
sizehi = env->me_mapsize >> 16 >> 16; /* only needed on Win64 */
/* See if we should use QueryLimited */
rc = GetVersion();
if ((rc & 0xff) > 5)
env->me_pidquery = PROCESS_QUERY_LIMITED_INFORMATION;
else
env->me_pidquery = PROCESS_QUERY_INFORMATION;
/* Windows won't create mappings for zero length files.
* Just allocate the maxsize right now.
*/
if (newenv) {
if (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo
|| !SetEndOfFile(env->me_fd)
|| SetFilePointer(env->me_fd, 0, NULL, 0) != 0)
return ErrCode();
}
mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ?
PAGE_READWRITE : PAGE_READONLY,
sizehi, sizelo, NULL);
if (!mh)
return ErrCode();
env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ?
FILE_MAP_WRITE : FILE_MAP_READ,
0, 0, env->me_mapsize, meta.mm_address);
rc = env->me_map ? 0 : ErrCode();
CloseHandle(mh);
if (rc)
return rc;
}
#else
i = MAP_SHARED;
prot = PROT_READ;
if (flags & MDB_WRITEMAP) {
prot |= PROT_WRITE;
if (ftruncate(env->me_fd, env->me_mapsize) < 0)
return ErrCode();
}
env->me_map = mmap(meta.mm_address, env->me_mapsize, prot, i,
env->me_fd, 0);
if (env->me_map == MAP_FAILED) {
env->me_map = NULL;
return ErrCode();
}
/* Turn off readahead. It's harmful when the DB is larger than RAM. */
#ifdef MADV_RANDOM
madvise(env->me_map, env->me_mapsize, MADV_RANDOM);
#else
#ifdef POSIX_MADV_RANDOM
posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM);
#endif /* POSIX_MADV_RANDOM */
#endif /* MADV_RANDOM */
#endif /* _WIN32 */
if (newenv) {
if (flags & MDB_FIXEDMAP)
meta.mm_address = env->me_map;
i = mdb_env_init_meta(env, &meta);
if (i != MDB_SUCCESS) {
return i;
}
} else if (meta.mm_address && env->me_map != meta.mm_address) {
/* Can happen because the address argument to mmap() is just a
* hint. mmap() can pick another, e.g. if the range is in use.
* The MAP_FIXED flag would prevent that, but then mmap could
* instead unmap existing pages to make room for the new map.
*/
return EBUSY; /* TODO: Make a new MDB_* error code? */
}
env->me_psize = meta.mm_psize;
env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1;
env->me_nodemax = (env->me_psize - PAGEHDRSZ) / MDB_MINKEYS;
env->me_maxpg = env->me_mapsize / env->me_psize;
p = (MDB_page *)env->me_map;
env->me_metas[0] = METADATA(p);
env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + meta.mm_psize);
#if MDB_DEBUG
{
int toggle = mdb_env_pick_meta(env);
MDB_db *db = &env->me_metas[toggle]->mm_dbs[MAIN_DBI];
DPRINTF("opened database version %u, pagesize %u",
env->me_metas[0]->mm_version, env->me_psize);
DPRINTF("using meta page %d", toggle);
DPRINTF("depth: %u", db->md_depth);
DPRINTF("entries: %zu", db->md_entries);
DPRINTF("branch pages: %zu", db->md_branch_pages);
DPRINTF("leaf pages: %zu", db->md_leaf_pages);
DPRINTF("overflow pages: %zu", db->md_overflow_pages);
DPRINTF("root: %zu", db->md_root);
}
#endif
return MDB_SUCCESS;
}
/** Release a reader thread's slot in the reader lock table.
* This function is called automatically when a thread exits.
* @param[in] ptr This points to the slot in the reader lock table.
*/
static void
mdb_env_reader_dest(void *ptr)
{
MDB_reader *reader = ptr;
reader->mr_pid = 0;
}
#ifdef _WIN32
/** Junk for arranging thread-specific callbacks on Windows. This is
* necessarily platform and compiler-specific. Windows supports up
* to 1088 keys. Let's assume nobody opens more than 64 environments
* in a single process, for now. They can override this if needed.
*/
#ifndef MAX_TLS_KEYS
#define MAX_TLS_KEYS 64
#endif
static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS];
static int mdb_tls_nkeys;
static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr)
{
int i;
switch(reason) {
case DLL_PROCESS_ATTACH: break;
case DLL_THREAD_ATTACH: break;
case DLL_THREAD_DETACH:
for (i=0; i<mdb_tls_nkeys; i++) {
MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]);
mdb_env_reader_dest(r);
}
break;
case DLL_PROCESS_DETACH: break;
}
}
#ifdef __GNUC__
#ifdef _WIN64
const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
#else
PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
#endif
#else
#ifdef _WIN64
/* Force some symbol references.
* _tls_used forces the linker to create the TLS directory if not already done
* mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol.
*/
#pragma comment(linker, "/INCLUDE:_tls_used")
#pragma comment(linker, "/INCLUDE:mdb_tls_cbp")
#pragma const_seg(".CRT$XLB")
extern const PIMAGE_TLS_CALLBACK mdb_tls_callback;
const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
#pragma const_seg()
#else /* WIN32 */
#pragma comment(linker, "/INCLUDE:__tls_used")
#pragma comment(linker, "/INCLUDE:_mdb_tls_cbp")
#pragma data_seg(".CRT$XLB")
PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
#pragma data_seg()
#endif /* WIN 32/64 */
#endif /* !__GNUC__ */
#endif
/** Downgrade the exclusive lock on the region back to shared */
static int
mdb_env_share_locks(MDB_env *env, int *excl)
{
int rc = 0, toggle = mdb_env_pick_meta(env);
env->me_txns->mti_txnid = env->me_metas[toggle]->mm_txnid;
#ifdef _WIN32
{
OVERLAPPED ov;
/* First acquire a shared lock. The Unlock will
* then release the existing exclusive lock.
*/
memset(&ov, 0, sizeof(ov));
if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
rc = ErrCode();
} else {
UnlockFile(env->me_lfd, 0, 0, 1, 0);
*excl = 0;
}
}
#else
{
struct flock lock_info;
/* The shared lock replaces the existing lock */
memset((void *)&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_RDLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = 0;
lock_info.l_len = 1;
while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
(rc = ErrCode()) == EINTR) ;
*excl = rc ? -1 : 0; /* error may mean we lost the lock */
}
#endif
return rc;
}
/** Try to get exlusive lock, otherwise shared.
* Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive.
*/
static int
mdb_env_excl_lock(MDB_env *env, int *excl)
{
int rc = 0;
#ifdef _WIN32
if (LockFile(env->me_lfd, 0, 0, 1, 0)) {
*excl = 1;
} else {
OVERLAPPED ov;
memset(&ov, 0, sizeof(ov));
if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
*excl = 0;
} else {
rc = ErrCode();
}
}
#else
struct flock lock_info;
memset((void *)&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_WRLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = 0;
lock_info.l_len = 1;
while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
(rc = ErrCode()) == EINTR) ;
if (!rc) {
*excl = 1;
} else
# ifdef MDB_USE_POSIX_SEM
if (*excl < 0) /* always true when !MDB_USE_POSIX_SEM */
# endif
{
lock_info.l_type = F_RDLCK;
while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) &&
(rc = ErrCode()) == EINTR) ;
if (rc == 0)
*excl = 0;
}
#endif
return rc;
}
#if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
/*
* hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code
*
* @(#) $Revision: 5.1 $
* @(#) $Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v $
*
* http://www.isthe.com/chongo/tech/comp/fnv/index.html
*
***
*
* Please do not copyright this code. This code is in the public domain.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* By:
* chongo <Landon Curt Noll> /\oo/\
* http://www.isthe.com/chongo/
*
* Share and Enjoy! :-)
*/
typedef unsigned long long mdb_hash_t;
#define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL)
/** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer
* @param[in] str string to hash
* @param[in] hval initial value for hash
* @return 64 bit hash
*
* NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the
* hval arg on the first call.
*/
static mdb_hash_t
mdb_hash_val(MDB_val *val, mdb_hash_t hval)
{
unsigned char *s = (unsigned char *)val->mv_data; /* unsigned string */
unsigned char *end = s + val->mv_size;
/*
* FNV-1a hash each octet of the string
*/
while (s < end) {
/* xor the bottom with the current octet */
hval ^= (mdb_hash_t)*s++;
/* multiply by the 64 bit FNV magic prime mod 2^64 */
hval += (hval << 1) + (hval << 4) + (hval << 5) +
(hval << 7) + (hval << 8) + (hval << 40);
}
/* return our new hash value */
return hval;
}
/** Hash the string and output the hash in hex.
* @param[in] str string to hash
* @param[out] hexbuf an array of 17 chars to hold the hash
*/
static void
mdb_hash_hex(MDB_val *val, char *hexbuf)
{
int i;
mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT);
for (i=0; i<8; i++) {
hexbuf += sprintf(hexbuf, "%02x", (unsigned int)h & 0xff);
h >>= 8;
}
}
#endif
/** Open and/or initialize the lock region for the environment.
* @param[in] env The MDB environment.
* @param[in] lpath The pathname of the file used for the lock region.
* @param[in] mode The Unix permissions for the file, if we create it.
* @param[out] excl Resulting file lock type: -1 none, 0 shared, 1 exclusive
* @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive
* @return 0 on success, non-zero on failure.
*/
static int
mdb_env_setup_locks(MDB_env *env, char *lpath, int mode, int *excl)
{
#ifdef _WIN32
# define MDB_ERRCODE_ROFS ERROR_WRITE_PROTECT
#else
# define MDB_ERRCODE_ROFS EROFS
#ifdef O_CLOEXEC /* Linux: Open file and set FD_CLOEXEC atomically */
# define MDB_CLOEXEC O_CLOEXEC
#else
int fdflags;
# define MDB_CLOEXEC 0
#endif
#endif
int rc;
off_t size, rsize;
#ifdef _WIN32
env->me_lfd = CreateFile(lpath, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
#else
env->me_lfd = open(lpath, O_RDWR|O_CREAT|MDB_CLOEXEC, mode);
#endif
if (env->me_lfd == INVALID_HANDLE_VALUE) {
rc = ErrCode();
if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) {
return MDB_SUCCESS;
}
goto fail_errno;
}
#if ! ((MDB_CLOEXEC) || defined(_WIN32))
/* Lose record locks when exec*() */
if ((fdflags = fcntl(env->me_lfd, F_GETFD) | FD_CLOEXEC) >= 0)
fcntl(env->me_lfd, F_SETFD, fdflags);
#endif
if (!(env->me_flags & MDB_NOTLS)) {
rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest);
if (rc)
goto fail;
env->me_flags |= MDB_ENV_TXKEY;
#ifdef _WIN32
/* Windows TLS callbacks need help finding their TLS info. */
if (mdb_tls_nkeys >= MAX_TLS_KEYS) {
rc = MDB_TLS_FULL;
goto fail;
}
mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey;
#endif
}
/* Try to get exclusive lock. If we succeed, then
* nobody is using the lock region and we should initialize it.
*/
if ((rc = mdb_env_excl_lock(env, excl))) goto fail;
#ifdef _WIN32
size = GetFileSize(env->me_lfd, NULL);
#else
size = lseek(env->me_lfd, 0, SEEK_END);
if (size == -1) goto fail_errno;
#endif
rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo);
if (size < rsize && *excl > 0) {
#ifdef _WIN32
if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != rsize
|| !SetEndOfFile(env->me_lfd))
goto fail_errno;
#else
if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno;
#endif
} else {
rsize = size;
size = rsize - sizeof(MDB_txninfo);
env->me_maxreaders = size/sizeof(MDB_reader) + 1;
}
{
#ifdef _WIN32
HANDLE mh;
mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE,
0, 0, NULL);
if (!mh) goto fail_errno;
env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL);
CloseHandle(mh);
if (!env->me_txns) goto fail_errno;
#else
void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED,
env->me_lfd, 0);
if (m == MAP_FAILED) goto fail_errno;
env->me_txns = m;
#endif
}
if (*excl > 0) {
#ifdef _WIN32
BY_HANDLE_FILE_INFORMATION stbuf;
struct {
DWORD volume;
DWORD nhigh;
DWORD nlow;
} idbuf;
MDB_val val;
char hexbuf[17];
if (!mdb_sec_inited) {
InitializeSecurityDescriptor(&mdb_null_sd,
SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE);
mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES);
mdb_all_sa.bInheritHandle = FALSE;
mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd;
mdb_sec_inited = 1;
}
if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno;
idbuf.volume = stbuf.dwVolumeSerialNumber;
idbuf.nhigh = stbuf.nFileIndexHigh;
idbuf.nlow = stbuf.nFileIndexLow;
val.mv_data = &idbuf;
val.mv_size = sizeof(idbuf);
mdb_hash_hex(&val, hexbuf);
sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", hexbuf);
sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", hexbuf);
env->me_rmutex = CreateMutex(&mdb_all_sa, FALSE, env->me_txns->mti_rmname);
if (!env->me_rmutex) goto fail_errno;
env->me_wmutex = CreateMutex(&mdb_all_sa, FALSE, env->me_txns->mti_wmname);
if (!env->me_wmutex) goto fail_errno;
#elif defined(MDB_USE_POSIX_SEM)
struct stat stbuf;
struct {
dev_t dev;
ino_t ino;
} idbuf;
MDB_val val;
char hexbuf[17];
if (fstat(env->me_lfd, &stbuf)) goto fail_errno;
idbuf.dev = stbuf.st_dev;
idbuf.ino = stbuf.st_ino;
val.mv_data = &idbuf;
val.mv_size = sizeof(idbuf);
mdb_hash_hex(&val, hexbuf);
sprintf(env->me_txns->mti_rmname, "/MDBr%s", hexbuf);
sprintf(env->me_txns->mti_wmname, "/MDBw%s", hexbuf);
/* Clean up after a previous run, if needed: Try to
* remove both semaphores before doing anything else.
*/
sem_unlink(env->me_txns->mti_rmname);
sem_unlink(env->me_txns->mti_wmname);
env->me_rmutex = sem_open(env->me_txns->mti_rmname,
O_CREAT|O_EXCL, mode, 1);
if (env->me_rmutex == SEM_FAILED) goto fail_errno;
env->me_wmutex = sem_open(env->me_txns->mti_wmname,
O_CREAT|O_EXCL, mode, 1);
if (env->me_wmutex == SEM_FAILED) goto fail_errno;
#else /* MDB_USE_POSIX_SEM */
pthread_mutexattr_t mattr;
if ((rc = pthread_mutexattr_init(&mattr))
|| (rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED))
|| (rc = pthread_mutex_init(&env->me_txns->mti_mutex, &mattr))
|| (rc = pthread_mutex_init(&env->me_txns->mti_wmutex, &mattr)))
goto fail;
pthread_mutexattr_destroy(&mattr);
#endif /* _WIN32 || MDB_USE_POSIX_SEM */
env->me_txns->mti_version = MDB_LOCK_VERSION;
env->me_txns->mti_magic = MDB_MAGIC;
env->me_txns->mti_txnid = 0;
env->me_txns->mti_numreaders = 0;
} else {
if (env->me_txns->mti_magic != MDB_MAGIC) {
DPUTS("lock region has invalid magic");
rc = MDB_INVALID;
goto fail;
}
if (env->me_txns->mti_version != MDB_LOCK_VERSION) {
DPRINTF("lock region is version %u, expected version %u",
env->me_txns->mti_version, MDB_LOCK_VERSION);
rc = MDB_VERSION_MISMATCH;
goto fail;
}
rc = ErrCode();
if (rc && rc != EACCES && rc != EAGAIN) {
goto fail;
}
#ifdef _WIN32
env->me_rmutex = OpenMutex(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname);
if (!env->me_rmutex) goto fail_errno;
env->me_wmutex = OpenMutex(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname);
if (!env->me_wmutex) goto fail_errno;
#elif defined(MDB_USE_POSIX_SEM)
env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0);
if (env->me_rmutex == SEM_FAILED) goto fail_errno;
env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0);
if (env->me_wmutex == SEM_FAILED) goto fail_errno;
#endif
}
return MDB_SUCCESS;
fail_errno:
rc = ErrCode();
fail:
return rc;
}
/** The name of the lock file in the DB environment */
#define LOCKNAME "/lock.mdb"
/** The name of the data file in the DB environment */
#define DATANAME "/data.mdb"
/** The suffix of the lock file when no subdir is used */
#define LOCKSUFF "-lock"
/** Only a subset of the @ref mdb_env flags can be changed
* at runtime. Changing other flags requires closing the
* environment and re-opening it with the new flags.
*/
#define CHANGEABLE (MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC)
#define CHANGELESS (MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY|MDB_WRITEMAP|MDB_NOTLS)
int
mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode)
{
int oflags, rc, len, excl = -1;
char *lpath, *dpath;
if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS)))
return EINVAL;
len = strlen(path);
if (flags & MDB_NOSUBDIR) {
rc = len + sizeof(LOCKSUFF) + len + 1;
} else {
rc = len + sizeof(LOCKNAME) + len + sizeof(DATANAME);
}
lpath = malloc(rc);
if (!lpath)
return ENOMEM;
if (flags & MDB_NOSUBDIR) {
dpath = lpath + len + sizeof(LOCKSUFF);
sprintf(lpath, "%s" LOCKSUFF, path);
strcpy(dpath, path);
} else {
dpath = lpath + len + sizeof(LOCKNAME);
sprintf(lpath, "%s" LOCKNAME, path);
sprintf(dpath, "%s" DATANAME, path);
}
rc = MDB_SUCCESS;
flags |= env->me_flags;
if (flags & MDB_RDONLY) {
/* silently ignore WRITEMAP when we're only getting read access */
flags &= ~MDB_WRITEMAP;
} else {
if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) &&
(env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2)))))
rc = ENOMEM;
}
env->me_flags = flags |= MDB_ENV_ACTIVE;
if (rc)
goto leave;
env->me_path = strdup(path);
env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx));
env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t));
if (!(env->me_dbxs && env->me_path && env->me_dbflags)) {
rc = ENOMEM;
goto leave;
}
rc = mdb_env_setup_locks(env, lpath, mode, &excl);
if (rc)
goto leave;
#ifdef _WIN32
if (F_ISSET(flags, MDB_RDONLY)) {
oflags = GENERIC_READ;
len = OPEN_EXISTING;
} else {
oflags = GENERIC_READ|GENERIC_WRITE;
len = OPEN_ALWAYS;
}
mode = FILE_ATTRIBUTE_NORMAL;
env->me_fd = CreateFile(dpath, oflags, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, len, mode, NULL);
#else
if (F_ISSET(flags, MDB_RDONLY))
oflags = O_RDONLY;
else
oflags = O_RDWR | O_CREAT;
env->me_fd = open(dpath, oflags, mode);
#endif
if (env->me_fd == INVALID_HANDLE_VALUE) {
rc = ErrCode();
goto leave;
}
if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) {
if (flags & (MDB_RDONLY|MDB_WRITEMAP)) {
env->me_mfd = env->me_fd;
} else {
/* Synchronous fd for meta writes. Needed even with
* MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset.
*/
#ifdef _WIN32
env->me_mfd = CreateFile(dpath, oflags,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, len,
mode | FILE_FLAG_WRITE_THROUGH, NULL);
#else
env->me_mfd = open(dpath, oflags | MDB_DSYNC, mode);
#endif
if (env->me_mfd == INVALID_HANDLE_VALUE) {
rc = ErrCode();
goto leave;
}
}
DPRINTF("opened dbenv %p", (void *) env);
if (excl > 0) {
rc = mdb_env_share_locks(env, &excl);
}
}
leave:
if (rc) {
mdb_env_close0(env, excl);
}
free(lpath);
return rc;
}
/** Destroy resources from mdb_env_open(), clear our readers & DBIs */
static void
mdb_env_close0(MDB_env *env, int excl)
{
int i;
if (!(env->me_flags & MDB_ENV_ACTIVE))
return;
/* Doing this here since me_dbxs may not exist during mdb_env_close */
for (i = env->me_maxdbs; --i > MAIN_DBI; )
free(env->me_dbxs[i].md_name.mv_data);
free(env->me_dbflags);
free(env->me_dbxs);
free(env->me_path);
free(env->me_dirty_list);
mdb_midl_free(env->me_free_pgs);
if (env->me_flags & MDB_ENV_TXKEY) {
pthread_key_delete(env->me_txkey);
#ifdef _WIN32
/* Delete our key from the global list */
for (i=0; i<mdb_tls_nkeys; i++)
if (mdb_tls_keys[i] == env->me_txkey) {
mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1];
mdb_tls_nkeys--;
break;
}
#endif
}
if (env->me_map) {
munmap(env->me_map, env->me_mapsize);
}
if (env->me_mfd != env->me_fd && env->me_mfd != INVALID_HANDLE_VALUE)
(void) close(env->me_mfd);
if (env->me_fd != INVALID_HANDLE_VALUE)
(void) close(env->me_fd);
if (env->me_txns) {
pid_t pid = env->me_pid;
/* Clearing readers is done in this function because
* me_txkey with its destructor must be disabled first.
*/
for (i = env->me_numreaders; --i >= 0; )
if (env->me_txns->mti_readers[i].mr_pid == pid)
env->me_txns->mti_readers[i].mr_pid = 0;
#ifdef _WIN32
if (env->me_rmutex) {
CloseHandle(env->me_rmutex);
if (env->me_wmutex) CloseHandle(env->me_wmutex);
}
/* Windows automatically destroys the mutexes when
* the last handle closes.
*/
#elif defined(MDB_USE_POSIX_SEM)
if (env->me_rmutex != SEM_FAILED) {
sem_close(env->me_rmutex);
if (env->me_wmutex != SEM_FAILED)
sem_close(env->me_wmutex);
/* If we have the filelock: If we are the
* only remaining user, clean up semaphores.
*/
if (excl == 0)
mdb_env_excl_lock(env, &excl);
if (excl > 0) {
sem_unlink(env->me_txns->mti_rmname);
sem_unlink(env->me_txns->mti_wmname);
}
}
#endif
munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo));
}
if (env->me_lfd != INVALID_HANDLE_VALUE) {
#ifdef _WIN32
if (excl >= 0) {
/* Unlock the lockfile. Windows would have unlocked it
* after closing anyway, but not necessarily at once.
*/
UnlockFile(env->me_lfd, 0, 0, 1, 0);
}
#endif
(void) close(env->me_lfd);
}
env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY);
}
int
mdb_env_copyfd(MDB_env *env, HANDLE fd)
{
MDB_txn *txn = NULL;
int rc;
size_t wsize;
char *ptr;
/* Do the lock/unlock of the reader mutex before starting the
* write txn. Otherwise other read txns could block writers.
*/
rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
if (rc)
return rc;
if (env->me_txns) {
/* We must start the actual read txn after blocking writers */
mdb_txn_reset0(txn, "reset-stage1");
/* Temporarily block writers until we snapshot the meta pages */
LOCK_MUTEX_W(env);
rc = mdb_txn_renew0(txn);
if (rc) {
UNLOCK_MUTEX_W(env);
goto leave;
}
}
wsize = env->me_psize * 2;
#ifdef _WIN32
{
DWORD len;
rc = WriteFile(fd, env->me_map, wsize, &len, NULL);
rc = rc ? (len == wsize ? MDB_SUCCESS : EIO) : ErrCode();
}
#else
rc = write(fd, env->me_map, wsize);
rc = rc == (int)wsize ? MDB_SUCCESS : rc < 0 ? ErrCode() : EIO;
#endif
if (env->me_txns)
UNLOCK_MUTEX_W(env);
if (rc)
goto leave;
ptr = env->me_map + wsize;
wsize = txn->mt_next_pgno * env->me_psize - wsize;
#ifdef _WIN32
while (wsize > 0) {
DWORD len, w2;
if (wsize > MAX_WRITE)
w2 = MAX_WRITE;
else
w2 = wsize;
rc = WriteFile(fd, ptr, w2, &len, NULL);
rc = rc ? (len == w2 ? MDB_SUCCESS : EIO) : ErrCode();
if (rc) break;
wsize -= w2;
ptr += w2;
}
#else
while (wsize > 0) {
size_t w2;
ssize_t wres;
if (wsize > MAX_WRITE)
w2 = MAX_WRITE;
else
w2 = wsize;
wres = write(fd, ptr, w2);
rc = wres == (ssize_t)w2 ? MDB_SUCCESS : wres < 0 ? ErrCode() : EIO;
if (rc) break;
wsize -= wres;
ptr += wres;
}
#endif
leave:
mdb_txn_abort(txn);
return rc;
}
int
mdb_env_copy(MDB_env *env, const char *path)
{
int rc, len;
char *lpath;
HANDLE newfd = INVALID_HANDLE_VALUE;
if (env->me_flags & MDB_NOSUBDIR) {
lpath = (char *)path;
} else {
len = strlen(path);
len += sizeof(DATANAME);
lpath = malloc(len);
if (!lpath)
return ENOMEM;
sprintf(lpath, "%s" DATANAME, path);
}
/* The destination path must exist, but the destination file must not.
* We don't want the OS to cache the writes, since the source data is
* already in the OS cache.
*/
#ifdef _WIN32
newfd = CreateFile(lpath, GENERIC_WRITE, 0, NULL, CREATE_NEW,
FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH, NULL);
#else
newfd = open(lpath, O_WRONLY|O_CREAT|O_EXCL
#ifdef O_DIRECT
|O_DIRECT
#endif
, 0666);
#endif
if (newfd == INVALID_HANDLE_VALUE) {
rc = ErrCode();
goto leave;
}
#ifdef F_NOCACHE /* __APPLE__ */
rc = fcntl(newfd, F_NOCACHE, 1);
if (rc) {
rc = ErrCode();
goto leave;
}
#endif
rc = mdb_env_copyfd(env, newfd);
leave:
if (!(env->me_flags & MDB_NOSUBDIR))
free(lpath);
if (newfd != INVALID_HANDLE_VALUE)
if (close(newfd) < 0 && rc == MDB_SUCCESS)
rc = ErrCode();
return rc;
}
void
mdb_env_close(MDB_env *env)
{
MDB_page *dp;
if (env == NULL)
return;
VGMEMP_DESTROY(env);
while ((dp = env->me_dpages) != NULL) {
VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next));
env->me_dpages = dp->mp_next;
free(dp);
}
mdb_env_close0(env, 0);
free(env);
}
/** Compare two items pointing at aligned size_t's */
static int
mdb_cmp_long(const MDB_val *a, const MDB_val *b)
{
return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 :
*(size_t *)a->mv_data > *(size_t *)b->mv_data;
}
/** Compare two items pointing at aligned int's */
static int
mdb_cmp_int(const MDB_val *a, const MDB_val *b)
{
return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 :
*(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data;
}
/** Compare two items pointing at ints of unknown alignment.
* Nodes and keys are guaranteed to be 2-byte aligned.
*/
static int
mdb_cmp_cint(const MDB_val *a, const MDB_val *b)
{
#if BYTE_ORDER == LITTLE_ENDIAN
unsigned short *u, *c;
int x;
u = (unsigned short *) ((char *) a->mv_data + a->mv_size);
c = (unsigned short *) ((char *) b->mv_data + a->mv_size);
do {
x = *--u - *--c;
} while(!x && u > (unsigned short *)a->mv_data);
return x;
#else
return memcmp(a->mv_data, b->mv_data, a->mv_size);
#endif
}
/** Compare two items lexically */
static int
mdb_cmp_memn(const MDB_val *a, const MDB_val *b)
{
int diff;
ssize_t len_diff;
unsigned int len;
len = a->mv_size;
len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
if (len_diff > 0) {
len = b->mv_size;
len_diff = 1;
}
diff = memcmp(a->mv_data, b->mv_data, len);
return diff ? diff : len_diff<0 ? -1 : len_diff;
}
/** Compare two items in reverse byte order */
static int
mdb_cmp_memnr(const MDB_val *a, const MDB_val *b)
{
const unsigned char *p1, *p2, *p1_lim;
ssize_t len_diff;
int diff;
p1_lim = (const unsigned char *)a->mv_data;
p1 = (const unsigned char *)a->mv_data + a->mv_size;
p2 = (const unsigned char *)b->mv_data + b->mv_size;
len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
if (len_diff > 0) {
p1_lim += len_diff;
len_diff = 1;
}
while (p1 > p1_lim) {
diff = *--p1 - *--p2;
if (diff)
return diff;
}
return len_diff<0 ? -1 : len_diff;
}
/** Search for key within a page, using binary search.
* Returns the smallest entry larger or equal to the key.
* If exactp is non-null, stores whether the found entry was an exact match
* in *exactp (1 or 0).
* Updates the cursor index with the index of the found entry.
* If no entry larger or equal to the key is found, returns NULL.
*/
static MDB_node *
mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp)
{
unsigned int i = 0, nkeys;
int low, high;
int rc = 0;
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_node *node = NULL;
MDB_val nodekey;
MDB_cmp_func *cmp;
DKBUF;
nkeys = NUMKEYS(mp);
#if MDB_DEBUG
{
pgno_t pgno;
COPY_PGNO(pgno, mp->mp_pgno);
DPRINTF("searching %u keys in %s %spage %zu",
nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "",
pgno);
}
#endif
assert(nkeys > 0);
low = IS_LEAF(mp) ? 0 : 1;
high = nkeys - 1;
cmp = mc->mc_dbx->md_cmp;
/* Branch pages have no data, so if using integer keys,
* alignment is guaranteed. Use faster mdb_cmp_int.
*/
if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) {
if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t))
cmp = mdb_cmp_long;
else
cmp = mdb_cmp_int;
}
if (IS_LEAF2(mp)) {
nodekey.mv_size = mc->mc_db->md_pad;
node = NODEPTR(mp, 0); /* fake */
while (low <= high) {
i = (low + high) >> 1;
nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size);
rc = cmp(key, &nodekey);
DPRINTF("found leaf index %u [%s], rc = %i",
i, DKEY(&nodekey), rc);
if (rc == 0)
break;
if (rc > 0)
low = i + 1;
else
high = i - 1;
}
} else {
while (low <= high) {
i = (low + high) >> 1;
node = NODEPTR(mp, i);
nodekey.mv_size = NODEKSZ(node);
nodekey.mv_data = NODEKEY(node);
rc = cmp(key, &nodekey);
#if MDB_DEBUG
if (IS_LEAF(mp))
DPRINTF("found leaf index %u [%s], rc = %i",
i, DKEY(&nodekey), rc);
else
DPRINTF("found branch index %u [%s -> %zu], rc = %i",
i, DKEY(&nodekey), NODEPGNO(node), rc);
#endif
if (rc == 0)
break;
if (rc > 0)
low = i + 1;
else
high = i - 1;
}
}
if (rc > 0) { /* Found entry is less than the key. */
i++; /* Skip to get the smallest entry larger than key. */
if (!IS_LEAF2(mp))
node = NODEPTR(mp, i);
}
if (exactp)
*exactp = (rc == 0);
/* store the key index */
mc->mc_ki[mc->mc_top] = i;
if (i >= nkeys)
/* There is no entry larger or equal to the key. */
return NULL;
/* nodeptr is fake for LEAF2 */
return node;
}
#if 0
static void
mdb_cursor_adjust(MDB_cursor *mc, func)
{
MDB_cursor *m2;
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) {
func(mc, m2);
}
}
}
#endif
/** Pop a page off the top of the cursor's stack. */
static void
mdb_cursor_pop(MDB_cursor *mc)
{
if (mc->mc_snum) {
#ifndef MDB_DEBUG_SKIP
MDB_page *top = mc->mc_pg[mc->mc_top];
#endif
mc->mc_snum--;
if (mc->mc_snum)
mc->mc_top--;
DPRINTF("popped page %zu off db %u cursor %p", top->mp_pgno,
mc->mc_dbi, (void *) mc);
}
}
/** Push a page onto the top of the cursor's stack. */
static int
mdb_cursor_push(MDB_cursor *mc, MDB_page *mp)
{
DPRINTF("pushing page %zu on db %u cursor %p", mp->mp_pgno,
mc->mc_dbi, (void *) mc);
if (mc->mc_snum >= CURSOR_STACK) {
assert(mc->mc_snum < CURSOR_STACK);
return MDB_CURSOR_FULL;
}
mc->mc_top = mc->mc_snum++;
mc->mc_pg[mc->mc_top] = mp;
mc->mc_ki[mc->mc_top] = 0;
return MDB_SUCCESS;
}
/** Find the address of the page corresponding to a given page number.
* @param[in] txn the transaction for this access.
* @param[in] pgno the page number for the page to retrieve.
* @param[out] ret address of a pointer where the page's address will be stored.
* @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_get(MDB_txn *txn, pgno_t pgno, MDB_page **ret, int *lvl)
{
MDB_page *p = NULL;
int level;
if (!((txn->mt_flags & MDB_TXN_RDONLY) |
(txn->mt_env->me_flags & MDB_WRITEMAP)))
{
MDB_txn *tx2 = txn;
level = 1;
do {
MDB_ID2L dl = tx2->mt_u.dirty_list;
unsigned x;
/* Spilled pages were dirtied in this txn and flushed
* because the dirty list got full. Bring this page
* back in from the map (but don't unspill it here,
* leave that unless page_touch happens again).
*/
if (tx2->mt_spill_pgs) {
x = mdb_midl_search(tx2->mt_spill_pgs, pgno);
if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pgno) {
p = (MDB_page *)(txn->mt_env->me_map + txn->mt_env->me_psize * pgno);
goto done;
}
}
if (dl[0].mid) {
unsigned x = mdb_mid2l_search(dl, pgno);
if (x <= dl[0].mid && dl[x].mid == pgno) {
p = dl[x].mptr;
goto done;
}
}
level++;
} while ((tx2 = tx2->mt_parent) != NULL);
}
if (pgno < txn->mt_next_pgno) {
level = 0;
p = (MDB_page *)(txn->mt_env->me_map + txn->mt_env->me_psize * pgno);
} else {
DPRINTF("page %zu not found", pgno);
assert(p != NULL);
return MDB_PAGE_NOTFOUND;
}
done:
*ret = p;
if (lvl)
*lvl = level;
return MDB_SUCCESS;
}
/** Search for the page a given key should be in.
* Pushes parent pages on the cursor stack. This function continues a
* search on a cursor that has already been initialized. (Usually by
* #mdb_page_search() but also by #mdb_node_move().)
* @param[in,out] mc the cursor for this operation.
* @param[in] key the key to search for. If NULL, search for the lowest
* page. (This is used by #mdb_cursor_first().)
* @param[in] modify If true, visited pages are updated with new page numbers.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int modify)
{
MDB_page *mp = mc->mc_pg[mc->mc_top];
DKBUF;
int rc;
while (IS_BRANCH(mp)) {
MDB_node *node;
indx_t i;
DPRINTF("branch page %zu has %u keys", mp->mp_pgno, NUMKEYS(mp));
assert(NUMKEYS(mp) > 1);
DPRINTF("found index 0 to page %zu", NODEPGNO(NODEPTR(mp, 0)));
if (key == NULL) /* Initialize cursor to first page. */
i = 0;
else if (key->mv_size > MDB_MAXKEYSIZE && key->mv_data == NULL) {
/* cursor to last page */
i = NUMKEYS(mp)-1;
} else {
int exact;
node = mdb_node_search(mc, key, &exact);
if (node == NULL)
i = NUMKEYS(mp) - 1;
else {
i = mc->mc_ki[mc->mc_top];
if (!exact) {
assert(i > 0);
i--;
}
}
}
if (key)
DPRINTF("following index %u for key [%s]",
i, DKEY(key));
assert(i < NUMKEYS(mp));
node = NODEPTR(mp, i);
if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(node), &mp, NULL)) != 0)
return rc;
mc->mc_ki[mc->mc_top] = i;
if ((rc = mdb_cursor_push(mc, mp)))
return rc;
if (modify) {
if ((rc = mdb_page_touch(mc)) != 0)
return rc;
mp = mc->mc_pg[mc->mc_top];
}
}
if (!IS_LEAF(mp)) {
DPRINTF("internal error, index points to a %02X page!?",
mp->mp_flags);
return MDB_CORRUPTED;
}
DPRINTF("found leaf page %zu for key [%s]", mp->mp_pgno,
key ? DKEY(key) : NULL);
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
return MDB_SUCCESS;
}
/** Search for the lowest key under the current branch page.
* This just bypasses a NUMKEYS check in the current page
* before calling mdb_page_search_root(), because the callers
* are all in situations where the current page is known to
* be underfilled.
*/
static int
mdb_page_search_lowest(MDB_cursor *mc)
{
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_node *node = NODEPTR(mp, 0);
int rc;
if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(node), &mp, NULL)) != 0)
return rc;
mc->mc_ki[mc->mc_top] = 0;
if ((rc = mdb_cursor_push(mc, mp)))
return rc;
return mdb_page_search_root(mc, NULL, 0);
}
/** Search for the page a given key should be in.
* Pushes parent pages on the cursor stack. This function just sets up
* the search; it finds the root page for \b mc's database and sets this
* as the root of the cursor's stack. Then #mdb_page_search_root() is
* called to complete the search.
* @param[in,out] mc the cursor for this operation.
* @param[in] key the key to search for. If NULL, search for the lowest
* page. (This is used by #mdb_cursor_first().)
* @param[in] flags If MDB_PS_MODIFY set, visited pages are updated with new page numbers.
* If MDB_PS_ROOTONLY set, just fetch root node, no further lookups.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags)
{
int rc;
pgno_t root;
/* Make sure the txn is still viable, then find the root from
* the txn's db table.
*/
if (F_ISSET(mc->mc_txn->mt_flags, MDB_TXN_ERROR)) {
DPUTS("transaction has failed, must abort");
return EINVAL;
} else {
/* Make sure we're using an up-to-date root */
if (mc->mc_dbi > MAIN_DBI) {
if ((*mc->mc_dbflag & DB_STALE) ||
((flags & MDB_PS_MODIFY) && !(*mc->mc_dbflag & DB_DIRTY))) {
MDB_cursor mc2;
unsigned char dbflag = 0;
mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL);
rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, flags & MDB_PS_MODIFY);
if (rc)
return rc;
if (*mc->mc_dbflag & DB_STALE) {
MDB_val data;
int exact = 0;
uint16_t flags;
MDB_node *leaf = mdb_node_search(&mc2,
&mc->mc_dbx->md_name, &exact);
if (!exact)
return MDB_NOTFOUND;
rc = mdb_node_read(mc->mc_txn, leaf, &data);
if (rc)
return rc;
memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)),
sizeof(uint16_t));
/* The txn may not know this DBI, or another process may
* have dropped and recreated the DB with other flags.
*/
if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags)
return MDB_INCOMPATIBLE;
memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db));
}
if (flags & MDB_PS_MODIFY)
dbflag = DB_DIRTY;
*mc->mc_dbflag &= ~DB_STALE;
*mc->mc_dbflag |= dbflag;
}
}
root = mc->mc_db->md_root;
if (root == P_INVALID) { /* Tree is empty. */
DPUTS("tree is empty");
return MDB_NOTFOUND;
}
}
assert(root > 1);
if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root)
if ((rc = mdb_page_get(mc->mc_txn, root, &mc->mc_pg[0], NULL)) != 0)
return rc;
mc->mc_snum = 1;
mc->mc_top = 0;
DPRINTF("db %u root page %zu has flags 0x%X",
mc->mc_dbi, root, mc->mc_pg[0]->mp_flags);
if (flags & MDB_PS_MODIFY) {
if ((rc = mdb_page_touch(mc)))
return rc;
}
if (flags & MDB_PS_ROOTONLY)
return MDB_SUCCESS;
return mdb_page_search_root(mc, key, flags);
}
static int
mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp)
{
MDB_txn *txn = mc->mc_txn;
pgno_t pg = mp->mp_pgno;
unsigned i, ovpages = mp->mp_pages;
MDB_env *env = txn->mt_env;
int rc;
DPRINTF("free ov page %zu (%d)", pg, ovpages);
/* If the page is dirty or on the spill list we just acquired it,
* so we should give it back to our current free list, if any.
* Not currently supported in nested txns.
* Otherwise put it onto the list of pages we freed in this txn.
*/
if (!(mp->mp_flags & P_DIRTY) && txn->mt_spill_pgs) {
unsigned x = mdb_midl_search(txn->mt_spill_pgs, pg);
if (x <= txn->mt_spill_pgs[0] && txn->mt_spill_pgs[x] == pg) {
/* This page is no longer spilled */
for (; x < txn->mt_spill_pgs[0]; x++)
txn->mt_spill_pgs[x] = txn->mt_spill_pgs[x+1];
txn->mt_spill_pgs[0]--;
goto release;
}
}
if ((mp->mp_flags & P_DIRTY) && !txn->mt_parent && env->me_pghead) {
unsigned j, x;
pgno_t *mop;
MDB_ID2 *dl, ix, iy;
rc = mdb_midl_need(&env->me_pghead, ovpages);
if (rc)
return rc;
/* Remove from dirty list */
dl = txn->mt_u.dirty_list;
x = dl[0].mid--;
for (ix = dl[x]; ix.mptr != mp; ix = iy) {
if (x > 1) {
x--;
iy = dl[x];
dl[x] = ix;
} else {
assert(x > 1);
j = ++(dl[0].mid);
dl[j] = ix; /* Unsorted. OK when MDB_TXN_ERROR. */
txn->mt_flags |= MDB_TXN_ERROR;
return MDB_CORRUPTED;
}
}
if (!(env->me_flags & MDB_WRITEMAP))
mdb_dpage_free(env, mp);
release:
/* Insert in me_pghead */
mop = env->me_pghead;
j = mop[0] + ovpages;
for (i = mop[0]; i && mop[i] < pg; i--)
mop[j--] = mop[i];
while (j>i)
mop[j--] = pg++;
mop[0] += ovpages;
} else {
rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages);
if (rc)
return rc;
}
mc->mc_db->md_overflow_pages -= ovpages;
return 0;
}
/** Return the data associated with a given node.
* @param[in] txn The transaction for this operation.
* @param[in] leaf The node being read.
* @param[out] data Updated to point to the node's data.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_node_read(MDB_txn *txn, MDB_node *leaf, MDB_val *data)
{
MDB_page *omp; /* overflow page */
pgno_t pgno;
int rc;
if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) {
data->mv_size = NODEDSZ(leaf);
data->mv_data = NODEDATA(leaf);
return MDB_SUCCESS;
}
/* Read overflow data.
*/
data->mv_size = NODEDSZ(leaf);
memcpy(&pgno, NODEDATA(leaf), sizeof(pgno));
if ((rc = mdb_page_get(txn, pgno, &omp, NULL)) != 0) {
DPRINTF("read overflow page %zu failed", pgno);
return rc;
}
data->mv_data = METADATA(omp);
return MDB_SUCCESS;
}
int
mdb_get(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data)
{
MDB_cursor mc;
MDB_xcursor mx;
int exact = 0;
DKBUF;
assert(key);
assert(data);
DPRINTF("===> get db %u key [%s]", dbi, DKEY(key));
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
if (key->mv_size == 0 || key->mv_size > MDB_MAXKEYSIZE) {
return EINVAL;
}
mdb_cursor_init(&mc, txn, dbi, &mx);
return mdb_cursor_set(&mc, key, data, MDB_SET, &exact);
}
/** Find a sibling for a page.
* Replaces the page at the top of the cursor's stack with the
* specified sibling, if one exists.
* @param[in] mc The cursor for this operation.
* @param[in] move_right Non-zero if the right sibling is requested,
* otherwise the left sibling.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_cursor_sibling(MDB_cursor *mc, int move_right)
{
int rc;
MDB_node *indx;
MDB_page *mp;
if (mc->mc_snum < 2) {
return MDB_NOTFOUND; /* root has no siblings */
}
mdb_cursor_pop(mc);
DPRINTF("parent page is page %zu, index %u",
mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top]);
if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top]))
: (mc->mc_ki[mc->mc_top] == 0)) {
DPRINTF("no more keys left, moving to %s sibling",
move_right ? "right" : "left");
if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) {
/* undo cursor_pop before returning */
mc->mc_top++;
mc->mc_snum++;
return rc;
}
} else {
if (move_right)
mc->mc_ki[mc->mc_top]++;
else
mc->mc_ki[mc->mc_top]--;
DPRINTF("just moving to %s index key %u",
move_right ? "right" : "left", mc->mc_ki[mc->mc_top]);
}
assert(IS_BRANCH(mc->mc_pg[mc->mc_top]));
indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(indx), &mp, NULL) != 0))
return rc;
mdb_cursor_push(mc, mp);
if (!move_right)
mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1;
return MDB_SUCCESS;
}
/** Move the cursor to the next data item. */
static int
mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
{
MDB_page *mp;
MDB_node *leaf;
int rc;
if (mc->mc_flags & C_EOF) {
return MDB_NOTFOUND;
}
assert(mc->mc_flags & C_INITIALIZED);
mp = mc->mc_pg[mc->mc_top];
if (mc->mc_db->md_flags & MDB_DUPSORT) {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (op == MDB_NEXT || op == MDB_NEXT_DUP) {
rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT);
if (op != MDB_NEXT || rc != MDB_NOTFOUND)
return rc;
}
} else {
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (op == MDB_NEXT_DUP)
return MDB_NOTFOUND;
}
}
DPRINTF("cursor_next: top page is %zu in cursor %p", mp->mp_pgno, (void *) mc);
if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) {
DPUTS("=====> move to next sibling page");
if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
mc->mc_flags |= C_EOF;
return rc;
}
mp = mc->mc_pg[mc->mc_top];
DPRINTF("next page is %zu, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]);
} else
mc->mc_ki[mc->mc_top]++;
DPRINTF("==> cursor points to page %zu with %u keys, key index %u",
mp->mp_pgno, NUMKEYS(mp), mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
assert(IS_LEAF(mp));
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (data) {
if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS)
return rc;
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
if (rc != MDB_SUCCESS)
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Move the cursor to the previous data item. */
static int
mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
{
MDB_page *mp;
MDB_node *leaf;
int rc;
assert(mc->mc_flags & C_INITIALIZED);
mp = mc->mc_pg[mc->mc_top];
if (mc->mc_db->md_flags & MDB_DUPSORT) {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (op == MDB_PREV || op == MDB_PREV_DUP) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV);
if (op != MDB_PREV || rc != MDB_NOTFOUND)
return rc;
} else {
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (op == MDB_PREV_DUP)
return MDB_NOTFOUND;
}
}
}
DPRINTF("cursor_prev: top page is %zu in cursor %p", mp->mp_pgno, (void *) mc);
if (mc->mc_ki[mc->mc_top] == 0) {
DPUTS("=====> move to prev sibling page");
if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) {
return rc;
}
mp = mc->mc_pg[mc->mc_top];
mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1;
DPRINTF("prev page is %zu, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]);
} else
mc->mc_ki[mc->mc_top]--;
mc->mc_flags &= ~C_EOF;
DPRINTF("==> cursor points to page %zu with %u keys, key index %u",
mp->mp_pgno, NUMKEYS(mp), mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
assert(IS_LEAF(mp));
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (data) {
if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS)
return rc;
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
if (rc != MDB_SUCCESS)
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Set the cursor on a specific data item. */
static int
mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data,
MDB_cursor_op op, int *exactp)
{
int rc;
MDB_page *mp;
MDB_node *leaf = NULL;
DKBUF;
assert(mc);
assert(key);
assert(key->mv_size > 0);
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
/* See if we're already on the right page */
if (mc->mc_flags & C_INITIALIZED) {
MDB_val nodekey;
mp = mc->mc_pg[mc->mc_top];
if (!NUMKEYS(mp)) {
mc->mc_ki[mc->mc_top] = 0;
return MDB_NOTFOUND;
}
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_size = mc->mc_db->md_pad;
nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size);
} else {
leaf = NODEPTR(mp, 0);
MDB_GET_KEY(leaf, &nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* Probably happens rarely, but first node on the page
* was the one we wanted.
*/
mc->mc_ki[mc->mc_top] = 0;
if (exactp)
*exactp = 1;
goto set1;
}
if (rc > 0) {
unsigned int i;
unsigned int nkeys = NUMKEYS(mp);
if (nkeys > 1) {
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_data = LEAF2KEY(mp,
nkeys-1, nodekey.mv_size);
} else {
leaf = NODEPTR(mp, nkeys-1);
MDB_GET_KEY(leaf, &nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* last node was the one we wanted */
mc->mc_ki[mc->mc_top] = nkeys-1;
if (exactp)
*exactp = 1;
goto set1;
}
if (rc < 0) {
if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
/* This is definitely the right page, skip search_page */
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_data = LEAF2KEY(mp,
mc->mc_ki[mc->mc_top], nodekey.mv_size);
} else {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
MDB_GET_KEY(leaf, &nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* current node was the one we wanted */
if (exactp)
*exactp = 1;
goto set1;
}
}
rc = 0;
goto set2;
}
}
/* If any parents have right-sibs, search.
* Otherwise, there's nothing further.
*/
for (i=0; i<mc->mc_top; i++)
if (mc->mc_ki[i] <
NUMKEYS(mc->mc_pg[i])-1)
break;
if (i == mc->mc_top) {
/* There are no other pages */
mc->mc_ki[mc->mc_top] = nkeys;
return MDB_NOTFOUND;
}
}
if (!mc->mc_top) {
/* There are no other pages */
mc->mc_ki[mc->mc_top] = 0;
return MDB_NOTFOUND;
}
}
rc = mdb_page_search(mc, key, 0);
if (rc != MDB_SUCCESS)
return rc;
mp = mc->mc_pg[mc->mc_top];
assert(IS_LEAF(mp));
set2:
leaf = mdb_node_search(mc, key, exactp);
if (exactp != NULL && !*exactp) {
/* MDB_SET specified and not an exact match. */
return MDB_NOTFOUND;
}
if (leaf == NULL) {
DPUTS("===> inexact leaf not found, goto sibling");
if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS)
return rc; /* no entries matched */
mp = mc->mc_pg[mc->mc_top];
assert(IS_LEAF(mp));
leaf = NODEPTR(mp, 0);
}
set1:
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (data) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) {
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
} else {
int ex2, *ex2p;
if (op == MDB_GET_BOTH) {
ex2p = &ex2;
ex2 = 0;
} else {
ex2p = NULL;
}
rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p);
if (rc != MDB_SUCCESS)
return rc;
}
} else if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) {
MDB_val d2;
if ((rc = mdb_node_read(mc->mc_txn, leaf, &d2)) != MDB_SUCCESS)
return rc;
rc = mc->mc_dbx->md_dcmp(data, &d2);
if (rc) {
if (op == MDB_GET_BOTH || rc > 0)
return MDB_NOTFOUND;
}
} else {
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS)
return rc;
}
}
/* The key already matches in all other cases */
if (op == MDB_SET_RANGE || op == MDB_SET_KEY)
MDB_GET_KEY(leaf, key);
DPRINTF("==> cursor placed on key [%s]", DKEY(key));
return rc;
}
/** Move the cursor to the first item in the database. */
static int
mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data)
{
int rc;
MDB_node *leaf;
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
rc = mdb_page_search(mc, NULL, 0);
if (rc != MDB_SUCCESS)
return rc;
}
assert(IS_LEAF(mc->mc_pg[mc->mc_top]));
leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0);
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
mc->mc_ki[mc->mc_top] = 0;
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size);
return MDB_SUCCESS;
}
if (data) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
if (rc)
return rc;
} else {
if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS)
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Move the cursor to the last item in the database. */
static int
mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data)
{
int rc;
MDB_node *leaf;
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (!(mc->mc_flags & C_EOF)) {
if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
MDB_val lkey;
lkey.mv_size = MDB_MAXKEYSIZE+1;
lkey.mv_data = NULL;
rc = mdb_page_search(mc, &lkey, 0);
if (rc != MDB_SUCCESS)
return rc;
}
assert(IS_LEAF(mc->mc_pg[mc->mc_top]));
}
mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1;
mc->mc_flags |= C_INITIALIZED|C_EOF;
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
if (data) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
if (rc)
return rc;
} else {
if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS)
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
int
mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data,
MDB_cursor_op op)
{
int rc;
int exact = 0;
assert(mc);
switch (op) {
case MDB_GET_CURRENT:
if (!(mc->mc_flags & C_INITIALIZED)) {
rc = EINVAL;
} else {
MDB_page *mp = mc->mc_pg[mc->mc_top];
if (!NUMKEYS(mp)) {
mc->mc_ki[mc->mc_top] = 0;
rc = MDB_NOTFOUND;
break;
}
rc = MDB_SUCCESS;
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_pad;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
} else {
MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
MDB_GET_KEY(leaf, key);
if (data) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT);
} else {
rc = mdb_node_read(mc->mc_txn, leaf, data);
}
}
}
}
break;
case MDB_GET_BOTH:
case MDB_GET_BOTH_RANGE:
if (data == NULL || mc->mc_xcursor == NULL) {
rc = EINVAL;
break;
}
/* FALLTHRU */
case MDB_SET:
case MDB_SET_KEY:
case MDB_SET_RANGE:
if (key == NULL || key->mv_size == 0 || key->mv_size > MDB_MAXKEYSIZE) {
rc = EINVAL;
} else if (op == MDB_SET_RANGE)
rc = mdb_cursor_set(mc, key, data, op, NULL);
else
rc = mdb_cursor_set(mc, key, data, op, &exact);
break;
case MDB_GET_MULTIPLE:
if (data == NULL ||
!(mc->mc_db->md_flags & MDB_DUPFIXED) ||
!(mc->mc_flags & C_INITIALIZED)) {
rc = EINVAL;
break;
}
rc = MDB_SUCCESS;
if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) ||
(mc->mc_xcursor->mx_cursor.mc_flags & C_EOF))
break;
goto fetchm;
case MDB_NEXT_MULTIPLE:
if (data == NULL ||
!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
rc = EINVAL;
break;
}
if (!(mc->mc_flags & C_INITIALIZED))
rc = mdb_cursor_first(mc, key, data);
else
rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP);
if (rc == MDB_SUCCESS) {
if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
MDB_cursor *mx;
fetchm:
mx = &mc->mc_xcursor->mx_cursor;
data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) *
mx->mc_db->md_pad;
data->mv_data = METADATA(mx->mc_pg[mx->mc_top]);
mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1;
} else {
rc = MDB_NOTFOUND;
}
}
break;
case MDB_NEXT:
case MDB_NEXT_DUP:
case MDB_NEXT_NODUP:
if (!(mc->mc_flags & C_INITIALIZED))
rc = mdb_cursor_first(mc, key, data);
else
rc = mdb_cursor_next(mc, key, data, op);
break;
case MDB_PREV:
case MDB_PREV_DUP:
case MDB_PREV_NODUP:
if (!(mc->mc_flags & C_INITIALIZED)) {
rc = mdb_cursor_last(mc, key, data);
if (rc)
break;
mc->mc_flags |= C_INITIALIZED;
mc->mc_ki[mc->mc_top]++;
}
rc = mdb_cursor_prev(mc, key, data, op);
break;
case MDB_FIRST:
rc = mdb_cursor_first(mc, key, data);
break;
case MDB_FIRST_DUP:
if (data == NULL ||
!(mc->mc_db->md_flags & MDB_DUPSORT) ||
!(mc->mc_flags & C_INITIALIZED) ||
!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) {
rc = EINVAL;
break;
}
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
break;
case MDB_LAST:
rc = mdb_cursor_last(mc, key, data);
break;
case MDB_LAST_DUP:
if (data == NULL ||
!(mc->mc_db->md_flags & MDB_DUPSORT) ||
!(mc->mc_flags & C_INITIALIZED) ||
!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) {
rc = EINVAL;
break;
}
rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
break;
default:
DPRINTF("unhandled/unimplemented cursor operation %u", op);
rc = EINVAL;
break;
}
return rc;
}
/** Touch all the pages in the cursor stack.
* Makes sure all the pages are writable, before attempting a write operation.
* @param[in] mc The cursor to operate on.
*/
static int
mdb_cursor_touch(MDB_cursor *mc)
{
int rc;
if (mc->mc_dbi > MAIN_DBI && !(*mc->mc_dbflag & DB_DIRTY)) {
MDB_cursor mc2;
MDB_xcursor mcx;
mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx);
rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY);
if (rc)
return rc;
*mc->mc_dbflag |= DB_DIRTY;
}
for (mc->mc_top = 0; mc->mc_top < mc->mc_snum; mc->mc_top++) {
rc = mdb_page_touch(mc);
if (rc)
return rc;
}
mc->mc_top = mc->mc_snum-1;
return MDB_SUCCESS;
}
/** Do not spill pages to disk if txn is getting full, may fail instead */
#define MDB_NOSPILL 0x8000
int
mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data,
unsigned int flags)
{
enum { MDB_NO_ROOT = MDB_LAST_ERRCODE+10 }; /* internal code */
MDB_node *leaf = NULL;
MDB_val xdata, *rdata, dkey;
MDB_page *fp;
MDB_db dummy;
int do_sub = 0, insert = 0;
unsigned int mcount = 0, dcount = 0, nospill;
size_t nsize;
int rc, rc2;
MDB_pagebuf pbuf;
char dbuf[MDB_MAXKEYSIZE+1];
unsigned int nflags;
DKBUF;
/* Check this first so counter will always be zero on any
* early failures.
*/
if (flags & MDB_MULTIPLE) {
dcount = data[1].mv_size;
data[1].mv_size = 0;
if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED))
return EINVAL;
}
nospill = flags & MDB_NOSPILL;
flags &= ~MDB_NOSPILL;
if (F_ISSET(mc->mc_txn->mt_flags, MDB_TXN_RDONLY))
return EACCES;
if (flags != MDB_CURRENT && (key->mv_size == 0 || key->mv_size > MDB_MAXKEYSIZE))
return EINVAL;
if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT) && data->mv_size > MDB_MAXKEYSIZE)
return EINVAL;
#if SIZE_MAX > MAXDATASIZE
if (data->mv_size > MAXDATASIZE)
return EINVAL;
#endif
DPRINTF("==> put db %u key [%s], size %zu, data size %zu",
mc->mc_dbi, DKEY(key), key ? key->mv_size:0, data->mv_size);
dkey.mv_size = 0;
if (flags == MDB_CURRENT) {
if (!(mc->mc_flags & C_INITIALIZED))
return EINVAL;
rc = MDB_SUCCESS;
} else if (mc->mc_db->md_root == P_INVALID) {
/* new database, cursor has nothing to point to */
mc->mc_snum = 0;
mc->mc_flags &= ~C_INITIALIZED;
rc = MDB_NO_ROOT;
} else {
int exact = 0;
MDB_val d2;
if (flags & MDB_APPEND) {
MDB_val k2;
rc = mdb_cursor_last(mc, &k2, &d2);
if (rc == 0) {
rc = mc->mc_dbx->md_cmp(key, &k2);
if (rc > 0) {
rc = MDB_NOTFOUND;
mc->mc_ki[mc->mc_top]++;
} else {
/* new key is <= last key */
rc = MDB_KEYEXIST;
}
}
} else {
rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact);
}
if ((flags & MDB_NOOVERWRITE) && rc == 0) {
DPRINTF("duplicate key [%s]", DKEY(key));
*data = d2;
return MDB_KEYEXIST;
}
if (rc && rc != MDB_NOTFOUND)
return rc;
}
/* Cursor is positioned, check for room in the dirty list */
if (!nospill) {
if (flags & MDB_MULTIPLE) {
rdata = &xdata;
xdata.mv_size = data->mv_size * dcount;
} else {
rdata = data;
}
if ((rc2 = mdb_page_spill(mc, key, rdata)))
return rc2;
}
if (rc == MDB_NO_ROOT) {
MDB_page *np;
/* new database, write a root leaf page */
DPUTS("allocating new root leaf page");
if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) {
return rc2;
}
mdb_cursor_push(mc, np);
mc->mc_db->md_root = np->mp_pgno;
mc->mc_db->md_depth++;
*mc->mc_dbflag |= DB_DIRTY;
if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED))
== MDB_DUPFIXED)
np->mp_flags |= P_LEAF2;
mc->mc_flags |= C_INITIALIZED;
} else {
/* make sure all cursor pages are writable */
rc2 = mdb_cursor_touch(mc);
if (rc2)
return rc2;
}
/* The key already exists */
if (rc == MDB_SUCCESS) {
/* there's only a key anyway, so this is a no-op */
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
unsigned int ksize = mc->mc_db->md_pad;
if (key->mv_size != ksize)
return EINVAL;
if (flags == MDB_CURRENT) {
char *ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize);
memcpy(ptr, key->mv_data, ksize);
}
return MDB_SUCCESS;
}
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
/* DB has dups? */
if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) {
/* Was a single item before, must convert now */
more:
if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
/* Just overwrite the current item */
if (flags == MDB_CURRENT)
goto current;
dkey.mv_size = NODEDSZ(leaf);
dkey.mv_data = NODEDATA(leaf);
#if UINT_MAX < SIZE_MAX
if (mc->mc_dbx->md_dcmp == mdb_cmp_int && dkey.mv_size == sizeof(size_t))
#ifdef MISALIGNED_OK
mc->mc_dbx->md_dcmp = mdb_cmp_long;
#else
mc->mc_dbx->md_dcmp = mdb_cmp_cint;
#endif
#endif
/* if data matches, ignore it */
if (!mc->mc_dbx->md_dcmp(data, &dkey))
return (flags == MDB_NODUPDATA) ? MDB_KEYEXIST : MDB_SUCCESS;
/* create a fake page for the dup items */
memcpy(dbuf, dkey.mv_data, dkey.mv_size);
dkey.mv_data = dbuf;
fp = (MDB_page *)&pbuf;
fp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
fp->mp_flags = P_LEAF|P_DIRTY|P_SUBP;
fp->mp_lower = PAGEHDRSZ;
fp->mp_upper = PAGEHDRSZ + dkey.mv_size + data->mv_size;
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
fp->mp_flags |= P_LEAF2;
fp->mp_pad = data->mv_size;
fp->mp_upper += 2 * data->mv_size; /* leave space for 2 more */
} else {
fp->mp_upper += 2 * sizeof(indx_t) + 2 * NODESIZE +
(dkey.mv_size & 1) + (data->mv_size & 1);
}
mdb_node_del(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], 0);
do_sub = 1;
rdata = &xdata;
xdata.mv_size = fp->mp_upper;
xdata.mv_data = fp;
flags |= F_DUPDATA;
goto new_sub;
}
if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
/* See if we need to convert from fake page to subDB */
MDB_page *mp;
unsigned int offset;
unsigned int i;
uint16_t fp_flags;
fp = NODEDATA(leaf);
if (flags == MDB_CURRENT) {
reuse:
fp->mp_flags |= P_DIRTY;
COPY_PGNO(fp->mp_pgno, mc->mc_pg[mc->mc_top]->mp_pgno);
mc->mc_xcursor->mx_cursor.mc_pg[0] = fp;
flags |= F_DUPDATA;
goto put_sub;
}
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
offset = fp->mp_pad;
if (SIZELEFT(fp) >= offset)
goto reuse;
offset *= 4; /* space for 4 more */
} else {
offset = NODESIZE + sizeof(indx_t) + data->mv_size;
}
offset += offset & 1;
fp_flags = fp->mp_flags;
if (NODESIZE + sizeof(indx_t) + NODEKSZ(leaf) + NODEDSZ(leaf) +
offset >= mc->mc_txn->mt_env->me_nodemax) {
/* yes, convert it */
dummy.md_flags = 0;
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
dummy.md_pad = fp->mp_pad;
dummy.md_flags = MDB_DUPFIXED;
if (mc->mc_db->md_flags & MDB_INTEGERDUP)
dummy.md_flags |= MDB_INTEGERKEY;
}
dummy.md_depth = 1;
dummy.md_branch_pages = 0;
dummy.md_leaf_pages = 1;
dummy.md_overflow_pages = 0;
dummy.md_entries = NUMKEYS(fp);
rdata = &xdata;
xdata.mv_size = sizeof(MDB_db);
xdata.mv_data = &dummy;
if ((rc = mdb_page_alloc(mc, 1, &mp)))
return rc;
offset = mc->mc_txn->mt_env->me_psize - NODEDSZ(leaf);
flags |= F_DUPDATA|F_SUBDATA;
dummy.md_root = mp->mp_pgno;
fp_flags &= ~P_SUBP;
} else {
/* no, just grow it */
rdata = &xdata;
xdata.mv_size = NODEDSZ(leaf) + offset;
xdata.mv_data = &pbuf;
mp = (MDB_page *)&pbuf;
mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
flags |= F_DUPDATA;
}
mp->mp_flags = fp_flags | P_DIRTY;
mp->mp_pad = fp->mp_pad;
mp->mp_lower = fp->mp_lower;
mp->mp_upper = fp->mp_upper + offset;
if (IS_LEAF2(fp)) {
memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad);
} else {
nsize = NODEDSZ(leaf) - fp->mp_upper;
memcpy((char *)mp + mp->mp_upper, (char *)fp + fp->mp_upper, nsize);
for (i=0; i<NUMKEYS(fp); i++)
mp->mp_ptrs[i] = fp->mp_ptrs[i] + offset;
}
mdb_node_del(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], 0);
do_sub = 1;
goto new_sub;
}
/* data is on sub-DB, just store it */
flags |= F_DUPDATA|F_SUBDATA;
goto put_sub;
}
current:
/* overflow page overwrites need special handling */
if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
MDB_page *omp;
pgno_t pg;
unsigned psize = mc->mc_txn->mt_env->me_psize;
int level, ovpages, dpages = OVPAGES(data->mv_size, psize);
memcpy(&pg, NODEDATA(leaf), sizeof(pg));
if ((rc2 = mdb_page_get(mc->mc_txn, pg, &omp, &level)) != 0)
return rc2;
ovpages = omp->mp_pages;
/* Is the ov page large enough? */
if (ovpages >= dpages) {
if (!(omp->mp_flags & P_DIRTY) &&
(level || (mc->mc_txn->mt_env->me_flags & MDB_WRITEMAP)))
{
rc = mdb_page_unspill(mc->mc_txn, omp, &omp);
if (rc)
return rc;
level = 0; /* dirty in this txn or clean */
}
/* Is it dirty? */
if (omp->mp_flags & P_DIRTY) {
/* yes, overwrite it. Note in this case we don't
* bother to try shrinking the page if the new data
* is smaller than the overflow threshold.
*/
if (level > 1) {
/* It is writable only in a parent txn */
size_t sz = (size_t) psize * ovpages, off;
MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages);
MDB_ID2 id2;
if (!np)
return ENOMEM;
id2.mid = pg;
id2.mptr = np;
mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2);
if (!(flags & MDB_RESERVE)) {
/* Copy end of page, adjusting alignment so
* compiler may copy words instead of bytes.
*/
off = (PAGEHDRSZ + data->mv_size) & -sizeof(size_t);
memcpy((size_t *)((char *)np + off),
(size_t *)((char *)omp + off), sz - off);
sz = PAGEHDRSZ;
}
memcpy(np, omp, sz); /* Copy beginning of page */
omp = np;
}
SETDSZ(leaf, data->mv_size);
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = METADATA(omp);
else
memcpy(METADATA(omp), data->mv_data, data->mv_size);
goto done;
}
}
if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS)
return rc2;
} else if (NODEDSZ(leaf) == data->mv_size) {
/* same size, just replace it. Note that we could
* also reuse this node if the new data is smaller,
* but instead we opt to shrink the node in that case.
*/
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = NODEDATA(leaf);
else if (data->mv_size)
memcpy(NODEDATA(leaf), data->mv_data, data->mv_size);
else
memcpy(NODEKEY(leaf), key->mv_data, key->mv_size);
goto done;
}
mdb_node_del(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], 0);
mc->mc_db->md_entries--;
} else {
DPRINTF("inserting key at index %i", mc->mc_ki[mc->mc_top]);
insert = 1;
}
rdata = data;
new_sub:
nflags = flags & NODE_ADD_FLAGS;
nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(mc->mc_txn->mt_env, key, rdata);
if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) {
if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA )
nflags &= ~MDB_APPEND;
if (!insert)
nflags |= MDB_SPLIT_REPLACE;
rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags);
} else {
/* There is room already in this leaf page. */
rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags);
if (rc == 0 && !do_sub && insert) {
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
unsigned i = mc->mc_top;
MDB_page *mp = mc->mc_pg[i];
if (mc->mc_flags & C_SUB)
dbi--;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc || m3->mc_snum < mc->mc_snum) continue;
if (m3->mc_pg[i] == mp && m3->mc_ki[i] >= mc->mc_ki[i]) {
m3->mc_ki[i]++;
}
}
}
}
if (rc != MDB_SUCCESS)
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
else {
/* Now store the actual data in the child DB. Note that we're
* storing the user data in the keys field, so there are strict
* size limits on dupdata. The actual data fields of the child
* DB are all zero size.
*/
if (do_sub) {
int xflags;
put_sub:
xdata.mv_size = 0;
xdata.mv_data = "";
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (flags & MDB_CURRENT) {
xflags = MDB_CURRENT|MDB_NOSPILL;
} else {
mdb_xcursor_init1(mc, leaf);
xflags = (flags & MDB_NODUPDATA) ?
MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL;
}
/* converted, write the original data first */
if (dkey.mv_size) {
rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags);
if (rc)
return rc;
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2;
unsigned i = mc->mc_top;
MDB_page *mp = mc->mc_pg[i];
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
if (!(m2->mc_flags & C_INITIALIZED)) continue;
if (m2->mc_pg[i] == mp && m2->mc_ki[i] == mc->mc_ki[i]) {
mdb_xcursor_init1(m2, leaf);
}
}
}
/* we've done our job */
dkey.mv_size = 0;
}
if (flags & MDB_APPENDDUP)
xflags |= MDB_APPEND;
rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags);
if (flags & F_SUBDATA) {
void *db = NODEDATA(leaf);
memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
}
}
/* sub-writes might have failed so check rc again.
* Don't increment count if we just replaced an existing item.
*/
if (!rc && !(flags & MDB_CURRENT))
mc->mc_db->md_entries++;
if (flags & MDB_MULTIPLE) {
if (!rc) {
mcount++;
if (mcount < dcount) {
data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size;
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
goto more;
}
}
/* let caller know how many succeeded, if any */
data[1].mv_size = mcount;
}
}
done:
/* If we succeeded and the key didn't exist before, make sure
* the cursor is marked valid.
*/
if (!rc && insert)
mc->mc_flags |= C_INITIALIZED;
return rc;
}
int
mdb_cursor_del(MDB_cursor *mc, unsigned int flags)
{
MDB_node *leaf;
int rc;
if (F_ISSET(mc->mc_txn->mt_flags, MDB_TXN_RDONLY))
return EACCES;
if (!(mc->mc_flags & C_INITIALIZED))
return EINVAL;
if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL)))
return rc;
flags &= ~MDB_NOSPILL; /* TODO: Or change (flags != MDB_NODUPDATA) to ~(flags & MDB_NODUPDATA), not looking at the logic of that code just now */
rc = mdb_cursor_touch(mc);
if (rc)
return rc;
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (!IS_LEAF2(mc->mc_pg[mc->mc_top]) && F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (flags != MDB_NODUPDATA) {
if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
}
rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL);
/* If sub-DB still has entries, we're done */
if (mc->mc_xcursor->mx_db.md_entries) {
if (leaf->mn_flags & F_SUBDATA) {
/* update subDB info */
void *db = NODEDATA(leaf);
memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
} else {
MDB_cursor *m2;
/* shrink fake page */
mdb_node_shrink(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
/* fix other sub-DB cursors pointed at this fake page */
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
if (m2->mc_pg[mc->mc_top] == mc->mc_pg[mc->mc_top] &&
m2->mc_ki[mc->mc_top] == mc->mc_ki[mc->mc_top])
m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
}
}
mc->mc_db->md_entries--;
return rc;
}
/* otherwise fall thru and delete the sub-DB */
}
if (leaf->mn_flags & F_SUBDATA) {
/* add all the child DB's pages to the free list */
rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
if (rc == MDB_SUCCESS) {
mc->mc_db->md_entries -=
mc->mc_xcursor->mx_db.md_entries;
}
}
}
return mdb_cursor_del0(mc, leaf);
}
/** Allocate and initialize new pages for a database.
* @param[in] mc a cursor on the database being added to.
* @param[in] flags flags defining what type of page is being allocated.
* @param[in] num the number of pages to allocate. This is usually 1,
* unless allocating overflow pages for a large record.
* @param[out] mp Address of a page, or NULL on failure.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp)
{
MDB_page *np;
int rc;
if ((rc = mdb_page_alloc(mc, num, &np)))
return rc;
DPRINTF("allocated new mpage %zu, page size %u",
np->mp_pgno, mc->mc_txn->mt_env->me_psize);
np->mp_flags = flags | P_DIRTY;
np->mp_lower = PAGEHDRSZ;
np->mp_upper = mc->mc_txn->mt_env->me_psize;
if (IS_BRANCH(np))
mc->mc_db->md_branch_pages++;
else if (IS_LEAF(np))
mc->mc_db->md_leaf_pages++;
else if (IS_OVERFLOW(np)) {
mc->mc_db->md_overflow_pages += num;
np->mp_pages = num;
}
*mp = np;
return 0;
}
/** Calculate the size of a leaf node.
* The size depends on the environment's page size; if a data item
* is too large it will be put onto an overflow page and the node
* size will only include the key and not the data. Sizes are always
* rounded up to an even number of bytes, to guarantee 2-byte alignment
* of the #MDB_node headers.
* @param[in] env The environment handle.
* @param[in] key The key for the node.
* @param[in] data The data for the node.
* @return The number of bytes needed to store the node.
*/
static size_t
mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data)
{
size_t sz;
sz = LEAFSIZE(key, data);
if (sz >= env->me_nodemax) {
/* put on overflow page */
sz -= data->mv_size - sizeof(pgno_t);
}
sz += sz & 1;
return sz + sizeof(indx_t);
}
/** Calculate the size of a branch node.
* The size should depend on the environment's page size but since
* we currently don't support spilling large keys onto overflow
* pages, it's simply the size of the #MDB_node header plus the
* size of the key. Sizes are always rounded up to an even number
* of bytes, to guarantee 2-byte alignment of the #MDB_node headers.
* @param[in] env The environment handle.
* @param[in] key The key for the node.
* @return The number of bytes needed to store the node.
*/
static size_t
mdb_branch_size(MDB_env *env, MDB_val *key)
{
size_t sz;
sz = INDXSIZE(key);
if (sz >= env->me_nodemax) {
/* put on overflow page */
/* not implemented */
/* sz -= key->size - sizeof(pgno_t); */
}
return sz + sizeof(indx_t);
}
/** Add a node to the page pointed to by the cursor.
* @param[in] mc The cursor for this operation.
* @param[in] indx The index on the page where the new node should be added.
* @param[in] key The key for the new node.
* @param[in] data The data for the new node, if any.
* @param[in] pgno The page number, if adding a branch node.
* @param[in] flags Flags for the node.
* @return 0 on success, non-zero on failure. Possible errors are:
* <ul>
* <li>ENOMEM - failed to allocate overflow pages for the node.
* <li>MDB_PAGE_FULL - there is insufficient room in the page. This error
* should never happen since all callers already calculate the
* page's free space before calling this function.
* </ul>
*/
static int
mdb_node_add(MDB_cursor *mc, indx_t indx,
MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags)
{
unsigned int i;
size_t node_size = NODESIZE;
indx_t ofs;
MDB_node *node;
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_page *ofp = NULL; /* overflow page */
DKBUF;
assert(mp->mp_upper >= mp->mp_lower);
DPRINTF("add to %s %spage %zu index %i, data size %zu key size %zu [%s]",
IS_LEAF(mp) ? "leaf" : "branch",
IS_SUBP(mp) ? "sub-" : "",
mp->mp_pgno, indx, data ? data->mv_size : 0,
key ? key->mv_size : 0, key ? DKEY(key) : NULL);
if (IS_LEAF2(mp)) {
/* Move higher keys up one slot. */
int ksize = mc->mc_db->md_pad, dif;
char *ptr = LEAF2KEY(mp, indx, ksize);
dif = NUMKEYS(mp) - indx;
if (dif > 0)
memmove(ptr+ksize, ptr, dif*ksize);
/* insert new key */
memcpy(ptr, key->mv_data, ksize);
/* Just using these for counting */
mp->mp_lower += sizeof(indx_t);
mp->mp_upper -= ksize - sizeof(indx_t);
return MDB_SUCCESS;
}
if (key != NULL)
node_size += key->mv_size;
if (IS_LEAF(mp)) {
assert(data);
if (F_ISSET(flags, F_BIGDATA)) {
/* Data already on overflow page. */
node_size += sizeof(pgno_t);
} else if (node_size + data->mv_size >= mc->mc_txn->mt_env->me_nodemax) {
int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize);
int rc;
/* Put data on overflow page. */
DPRINTF("data size is %zu, node would be %zu, put data on overflow page",
data->mv_size, node_size+data->mv_size);
node_size += sizeof(pgno_t);
if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp)))
return rc;
DPRINTF("allocated overflow page %zu", ofp->mp_pgno);
flags |= F_BIGDATA;
} else {
node_size += data->mv_size;
}
}
node_size += node_size & 1;
if (node_size + sizeof(indx_t) > SIZELEFT(mp)) {
DPRINTF("not enough room in page %zu, got %u ptrs",
mp->mp_pgno, NUMKEYS(mp));
DPRINTF("upper - lower = %u - %u = %u", mp->mp_upper, mp->mp_lower,
mp->mp_upper - mp->mp_lower);
DPRINTF("node size = %zu", node_size);
return MDB_PAGE_FULL;
}
/* Move higher pointers up one slot. */
for (i = NUMKEYS(mp); i > indx; i--)
mp->mp_ptrs[i] = mp->mp_ptrs[i - 1];
/* Adjust free space offsets. */
ofs = mp->mp_upper - node_size;
assert(ofs >= mp->mp_lower + sizeof(indx_t));
mp->mp_ptrs[indx] = ofs;
mp->mp_upper = ofs;
mp->mp_lower += sizeof(indx_t);
/* Write the node data. */
node = NODEPTR(mp, indx);
node->mn_ksize = (key == NULL) ? 0 : key->mv_size;
node->mn_flags = flags;
if (IS_LEAF(mp))
SETDSZ(node,data->mv_size);
else
SETPGNO(node,pgno);
if (key)
memcpy(NODEKEY(node), key->mv_data, key->mv_size);
if (IS_LEAF(mp)) {
assert(key);
if (ofp == NULL) {
if (F_ISSET(flags, F_BIGDATA))
memcpy(node->mn_data + key->mv_size, data->mv_data,
sizeof(pgno_t));
else if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = node->mn_data + key->mv_size;
else
memcpy(node->mn_data + key->mv_size, data->mv_data,
data->mv_size);
} else {
memcpy(node->mn_data + key->mv_size, &ofp->mp_pgno,
sizeof(pgno_t));
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = METADATA(ofp);
else
memcpy(METADATA(ofp), data->mv_data, data->mv_size);
}
}
return MDB_SUCCESS;
}
/** Delete the specified node from a page.
* @param[in] mp The page to operate on.
* @param[in] indx The index of the node to delete.
* @param[in] ksize The size of a node. Only used if the page is
* part of a #MDB_DUPFIXED database.
*/
static void
mdb_node_del(MDB_page *mp, indx_t indx, int ksize)
{
unsigned int sz;
indx_t i, j, numkeys, ptr;
MDB_node *node;
char *base;
#if MDB_DEBUG
{
pgno_t pgno;
COPY_PGNO(pgno, mp->mp_pgno);
DPRINTF("delete node %u on %s page %zu", indx,
IS_LEAF(mp) ? "leaf" : "branch", pgno);
}
#endif
assert(indx < NUMKEYS(mp));
if (IS_LEAF2(mp)) {
int x = NUMKEYS(mp) - 1 - indx;
base = LEAF2KEY(mp, indx, ksize);
if (x)
memmove(base, base + ksize, x * ksize);
mp->mp_lower -= sizeof(indx_t);
mp->mp_upper += ksize - sizeof(indx_t);
return;
}
node = NODEPTR(mp, indx);
sz = NODESIZE + node->mn_ksize;
if (IS_LEAF(mp)) {
if (F_ISSET(node->mn_flags, F_BIGDATA))
sz += sizeof(pgno_t);
else
sz += NODEDSZ(node);
}
sz += sz & 1;
ptr = mp->mp_ptrs[indx];
numkeys = NUMKEYS(mp);
for (i = j = 0; i < numkeys; i++) {
if (i != indx) {
mp->mp_ptrs[j] = mp->mp_ptrs[i];
if (mp->mp_ptrs[i] < ptr)
mp->mp_ptrs[j] += sz;
j++;
}
}
base = (char *)mp + mp->mp_upper;
memmove(base + sz, base, ptr - mp->mp_upper);
mp->mp_lower -= sizeof(indx_t);
mp->mp_upper += sz;
}
/** Compact the main page after deleting a node on a subpage.
* @param[in] mp The main page to operate on.
* @param[in] indx The index of the subpage on the main page.
*/
static void
mdb_node_shrink(MDB_page *mp, indx_t indx)
{
MDB_node *node;
MDB_page *sp, *xp;
char *base;
int osize, nsize;
int delta;
indx_t i, numkeys, ptr;
node = NODEPTR(mp, indx);
sp = (MDB_page *)NODEDATA(node);
osize = NODEDSZ(node);
delta = sp->mp_upper - sp->mp_lower;
SETDSZ(node, osize - delta);
xp = (MDB_page *)((char *)sp + delta);
/* shift subpage upward */
if (IS_LEAF2(sp)) {
nsize = NUMKEYS(sp) * sp->mp_pad;
memmove(METADATA(xp), METADATA(sp), nsize);
} else {
int i;
nsize = osize - sp->mp_upper;
numkeys = NUMKEYS(sp);
for (i=numkeys-1; i>=0; i--)
xp->mp_ptrs[i] = sp->mp_ptrs[i] - delta;
}
xp->mp_upper = sp->mp_lower;
xp->mp_lower = sp->mp_lower;
xp->mp_flags = sp->mp_flags;
xp->mp_pad = sp->mp_pad;
COPY_PGNO(xp->mp_pgno, mp->mp_pgno);
/* shift lower nodes upward */
ptr = mp->mp_ptrs[indx];
numkeys = NUMKEYS(mp);
for (i = 0; i < numkeys; i++) {
if (mp->mp_ptrs[i] <= ptr)
mp->mp_ptrs[i] += delta;
}
base = (char *)mp + mp->mp_upper;
memmove(base + delta, base, ptr - mp->mp_upper + NODESIZE + NODEKSZ(node));
mp->mp_upper += delta;
}
/** Initial setup of a sorted-dups cursor.
* Sorted duplicates are implemented as a sub-database for the given key.
* The duplicate data items are actually keys of the sub-database.
* Operations on the duplicate data items are performed using a sub-cursor
* initialized when the sub-database is first accessed. This function does
* the preliminary setup of the sub-cursor, filling in the fields that
* depend only on the parent DB.
* @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
*/
static void
mdb_xcursor_init0(MDB_cursor *mc)
{
MDB_xcursor *mx = mc->mc_xcursor;
mx->mx_cursor.mc_xcursor = NULL;
mx->mx_cursor.mc_txn = mc->mc_txn;
mx->mx_cursor.mc_db = &mx->mx_db;
mx->mx_cursor.mc_dbx = &mx->mx_dbx;
mx->mx_cursor.mc_dbi = mc->mc_dbi+1;
mx->mx_cursor.mc_dbflag = &mx->mx_dbflag;
mx->mx_cursor.mc_snum = 0;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_flags = C_SUB;
mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp;
mx->mx_dbx.md_dcmp = NULL;
mx->mx_dbx.md_rel = mc->mc_dbx->md_rel;
}
/** Final setup of a sorted-dups cursor.
* Sets up the fields that depend on the data from the main cursor.
* @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
* @param[in] node The data containing the #MDB_db record for the
* sorted-dup database.
*/
static void
mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node)
{
MDB_xcursor *mx = mc->mc_xcursor;
if (node->mn_flags & F_SUBDATA) {
memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db));
mx->mx_cursor.mc_pg[0] = 0;
mx->mx_cursor.mc_snum = 0;
mx->mx_cursor.mc_flags = C_SUB;
} else {
MDB_page *fp = NODEDATA(node);
mx->mx_db.md_pad = mc->mc_pg[mc->mc_top]->mp_pad;
mx->mx_db.md_flags = 0;
mx->mx_db.md_depth = 1;
mx->mx_db.md_branch_pages = 0;
mx->mx_db.md_leaf_pages = 1;
mx->mx_db.md_overflow_pages = 0;
mx->mx_db.md_entries = NUMKEYS(fp);
COPY_PGNO(mx->mx_db.md_root, fp->mp_pgno);
mx->mx_cursor.mc_snum = 1;
mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_pg[0] = fp;
mx->mx_cursor.mc_ki[0] = 0;
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
mx->mx_db.md_flags = MDB_DUPFIXED;
mx->mx_db.md_pad = fp->mp_pad;
if (mc->mc_db->md_flags & MDB_INTEGERDUP)
mx->mx_db.md_flags |= MDB_INTEGERKEY;
}
}
DPRINTF("Sub-db %u for db %u root page %zu", mx->mx_cursor.mc_dbi, mc->mc_dbi,
mx->mx_db.md_root);
mx->mx_dbflag = DB_VALID | (F_ISSET(mc->mc_pg[mc->mc_top]->mp_flags, P_DIRTY) ?
DB_DIRTY : 0);
mx->mx_dbx.md_name.mv_data = NODEKEY(node);
mx->mx_dbx.md_name.mv_size = node->mn_ksize;
#if UINT_MAX < SIZE_MAX
if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t))
#ifdef MISALIGNED_OK
mx->mx_dbx.md_cmp = mdb_cmp_long;
#else
mx->mx_dbx.md_cmp = mdb_cmp_cint;
#endif
#endif
}
/** Initialize a cursor for a given transaction and database. */
static void
mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx)
{
mc->mc_next = NULL;
mc->mc_backup = NULL;
mc->mc_dbi = dbi;
mc->mc_txn = txn;
mc->mc_db = &txn->mt_dbs[dbi];
mc->mc_dbx = &txn->mt_dbxs[dbi];
mc->mc_dbflag = &txn->mt_dbflags[dbi];
mc->mc_snum = 0;
mc->mc_top = 0;
mc->mc_pg[0] = 0;
mc->mc_flags = 0;
if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) {
assert(mx != NULL);
mc->mc_xcursor = mx;
mdb_xcursor_init0(mc);
} else {
mc->mc_xcursor = NULL;
}
if (*mc->mc_dbflag & DB_STALE) {
mdb_page_search(mc, NULL, MDB_PS_ROOTONLY);
}
}
int
mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret)
{
MDB_cursor *mc;
size_t size = sizeof(MDB_cursor);
if (txn == NULL || ret == NULL || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
/* Allow read access to the freelist */
if (!dbi && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
return EINVAL;
if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)
size += sizeof(MDB_xcursor);
if ((mc = malloc(size)) != NULL) {
mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1));
if (txn->mt_cursors) {
mc->mc_next = txn->mt_cursors[dbi];
txn->mt_cursors[dbi] = mc;
mc->mc_flags |= C_UNTRACK;
}
} else {
return ENOMEM;
}
*ret = mc;
return MDB_SUCCESS;
}
int
mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc)
{
if (txn == NULL || mc == NULL || mc->mc_dbi >= txn->mt_numdbs)
return EINVAL;
if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors)
return EINVAL;
mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor);
return MDB_SUCCESS;
}
/* Return the count of duplicate data items for the current key */
int
mdb_cursor_count(MDB_cursor *mc, size_t *countp)
{
MDB_node *leaf;
if (mc == NULL || countp == NULL)
return EINVAL;
if (!(mc->mc_db->md_flags & MDB_DUPSORT))
return EINVAL;
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
*countp = 1;
} else {
if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
return EINVAL;
*countp = mc->mc_xcursor->mx_db.md_entries;
}
return MDB_SUCCESS;
}
void
mdb_cursor_close(MDB_cursor *mc)
{
if (mc && !mc->mc_backup) {
/* remove from txn, if tracked */
if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) {
MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi];
while (*prev && *prev != mc) prev = &(*prev)->mc_next;
if (*prev == mc)
*prev = mc->mc_next;
}
free(mc);
}
}
MDB_txn *
mdb_cursor_txn(MDB_cursor *mc)
{
if (!mc) return NULL;
return mc->mc_txn;
}
MDB_dbi
mdb_cursor_dbi(MDB_cursor *mc)
{
assert(mc != NULL);
return mc->mc_dbi;
}
/** Replace the key for a node with a new key.
* @param[in] mc Cursor pointing to the node to operate on.
* @param[in] key The new key to use.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_update_key(MDB_cursor *mc, MDB_val *key)
{
MDB_page *mp;
MDB_node *node;
char *base;
size_t len;
int delta, delta0;
indx_t ptr, i, numkeys, indx;
DKBUF;
indx = mc->mc_ki[mc->mc_top];
mp = mc->mc_pg[mc->mc_top];
node = NODEPTR(mp, indx);
ptr = mp->mp_ptrs[indx];
#if MDB_DEBUG
{
MDB_val k2;
char kbuf2[(MDB_MAXKEYSIZE*2+1)];
k2.mv_data = NODEKEY(node);
k2.mv_size = node->mn_ksize;
DPRINTF("update key %u (ofs %u) [%s] to [%s] on page %zu",
indx, ptr,
mdb_dkey(&k2, kbuf2),
DKEY(key),
mp->mp_pgno);
}
#endif
delta0 = delta = key->mv_size - node->mn_ksize;
/* Must be 2-byte aligned. If new key is
* shorter by 1, the shift will be skipped.
*/
delta += (delta & 1);
if (delta) {
if (delta > 0 && SIZELEFT(mp) < delta) {
pgno_t pgno;
/* not enough space left, do a delete and split */
DPRINTF("Not enough room, delta = %d, splitting...", delta);
pgno = NODEPGNO(node);
mdb_node_del(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], 0);
return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE);
}
numkeys = NUMKEYS(mp);
for (i = 0; i < numkeys; i++) {
if (mp->mp_ptrs[i] <= ptr)
mp->mp_ptrs[i] -= delta;
}
base = (char *)mp + mp->mp_upper;
len = ptr - mp->mp_upper + NODESIZE;
memmove(base - delta, base, len);
mp->mp_upper -= delta;
node = NODEPTR(mp, indx);
}
/* But even if no shift was needed, update ksize */
if (delta0)
node->mn_ksize = key->mv_size;
if (key->mv_size)
memcpy(NODEKEY(node), key->mv_data, key->mv_size);
return MDB_SUCCESS;
}
static void
mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst);
/** Move a node from csrc to cdst.
*/
static int
mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst)
{
MDB_node *srcnode;
MDB_val key, data;
pgno_t srcpg;
MDB_cursor mn;
int rc;
unsigned short flags;
DKBUF;
/* Mark src and dst as dirty. */
if ((rc = mdb_page_touch(csrc)) ||
(rc = mdb_page_touch(cdst)))
return rc;
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0); /* fake */
key.mv_size = csrc->mc_db->md_pad;
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
data.mv_size = 0;
data.mv_data = NULL;
srcpg = 0;
flags = 0;
} else {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]);
assert(!((long)srcnode&1));
srcpg = NODEPGNO(srcnode);
flags = srcnode->mn_flags;
if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
unsigned int snum = csrc->mc_snum;
MDB_node *s2;
/* must find the lowest key below src */
mdb_page_search_lowest(csrc);
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_size = csrc->mc_db->md_pad;
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
} else {
s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
key.mv_size = NODEKSZ(s2);
key.mv_data = NODEKEY(s2);
}
csrc->mc_snum = snum--;
csrc->mc_top = snum;
} else {
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
data.mv_size = NODEDSZ(srcnode);
data.mv_data = NODEDATA(srcnode);
}
if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) {
unsigned int snum = cdst->mc_snum;
MDB_node *s2;
MDB_val bkey;
/* must find the lowest key below dst */
mdb_page_search_lowest(cdst);
if (IS_LEAF2(cdst->mc_pg[cdst->mc_top])) {
bkey.mv_size = cdst->mc_db->md_pad;
bkey.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, bkey.mv_size);
} else {
s2 = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
bkey.mv_size = NODEKSZ(s2);
bkey.mv_data = NODEKEY(s2);
}
cdst->mc_snum = snum--;
cdst->mc_top = snum;
mdb_cursor_copy(cdst, &mn);
mn.mc_ki[snum] = 0;
rc = mdb_update_key(&mn, &bkey);
if (rc)
return rc;
}
DPRINTF("moving %s node %u [%s] on page %zu to node %u on page %zu",
IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch",
csrc->mc_ki[csrc->mc_top],
DKEY(&key),
csrc->mc_pg[csrc->mc_top]->mp_pgno,
cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno);
/* Add the node to the destination page.
*/
rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags);
if (rc != MDB_SUCCESS)
return rc;
/* Delete the node from the source page.
*/
mdb_node_del(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = csrc->mc_dbi;
MDB_page *mp = csrc->mc_pg[csrc->mc_top];
if (csrc->mc_flags & C_SUB)
dbi--;
for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (csrc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == csrc) continue;
if (m3->mc_pg[csrc->mc_top] == mp && m3->mc_ki[csrc->mc_top] ==
csrc->mc_ki[csrc->mc_top]) {
m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
}
}
}
/* Update the parent separators.
*/
if (csrc->mc_ki[csrc->mc_top] == 0) {
if (csrc->mc_ki[csrc->mc_top-1] != 0) {
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
} else {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
DPRINTF("update separator for source page %zu to [%s]",
csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key));
mdb_cursor_copy(csrc, &mn);
mn.mc_snum--;
mn.mc_top--;
if ((rc = mdb_update_key(&mn, &key)) != MDB_SUCCESS)
return rc;
}
if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
MDB_val nullkey;
indx_t ix = csrc->mc_ki[csrc->mc_top];
nullkey.mv_size = 0;
csrc->mc_ki[csrc->mc_top] = 0;
rc = mdb_update_key(csrc, &nullkey);
csrc->mc_ki[csrc->mc_top] = ix;
assert(rc == MDB_SUCCESS);
}
}
if (cdst->mc_ki[cdst->mc_top] == 0) {
if (cdst->mc_ki[cdst->mc_top-1] != 0) {
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size);
} else {
srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
DPRINTF("update separator for destination page %zu to [%s]",
cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key));
mdb_cursor_copy(cdst, &mn);
mn.mc_snum--;
mn.mc_top--;
if ((rc = mdb_update_key(&mn, &key)) != MDB_SUCCESS)
return rc;
}
if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) {
MDB_val nullkey;
indx_t ix = cdst->mc_ki[cdst->mc_top];
nullkey.mv_size = 0;
cdst->mc_ki[cdst->mc_top] = 0;
rc = mdb_update_key(cdst, &nullkey);
cdst->mc_ki[cdst->mc_top] = ix;
assert(rc == MDB_SUCCESS);
}
}
return MDB_SUCCESS;
}
/** Merge one page into another.
* The nodes from the page pointed to by \b csrc will
* be copied to the page pointed to by \b cdst and then
* the \b csrc page will be freed.
* @param[in] csrc Cursor pointing to the source page.
* @param[in] cdst Cursor pointing to the destination page.
*/
static int
mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst)
{
int rc;
indx_t i, j;
MDB_node *srcnode;
MDB_val key, data;
unsigned nkeys;
DPRINTF("merging page %zu into %zu", csrc->mc_pg[csrc->mc_top]->mp_pgno,
cdst->mc_pg[cdst->mc_top]->mp_pgno);
assert(csrc->mc_snum > 1); /* can't merge root page */
assert(cdst->mc_snum > 1);
/* Mark dst as dirty. */
if ((rc = mdb_page_touch(cdst)))
return rc;
/* Move all nodes from src to dst.
*/
j = nkeys = NUMKEYS(cdst->mc_pg[cdst->mc_top]);
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_size = csrc->mc_db->md_pad;
key.mv_data = METADATA(csrc->mc_pg[csrc->mc_top]);
for (i = 0; i < NUMKEYS(csrc->mc_pg[csrc->mc_top]); i++, j++) {
rc = mdb_node_add(cdst, j, &key, NULL, 0, 0);
if (rc != MDB_SUCCESS)
return rc;
key.mv_data = (char *)key.mv_data + key.mv_size;
}
} else {
for (i = 0; i < NUMKEYS(csrc->mc_pg[csrc->mc_top]); i++, j++) {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], i);
if (i == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
unsigned int snum = csrc->mc_snum;
MDB_node *s2;
/* must find the lowest key below src */
mdb_page_search_lowest(csrc);
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_size = csrc->mc_db->md_pad;
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
} else {
s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
key.mv_size = NODEKSZ(s2);
key.mv_data = NODEKEY(s2);
}
csrc->mc_snum = snum--;
csrc->mc_top = snum;
} else {
key.mv_size = srcnode->mn_ksize;
key.mv_data = NODEKEY(srcnode);
}
data.mv_size = NODEDSZ(srcnode);
data.mv_data = NODEDATA(srcnode);
rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags);
if (rc != MDB_SUCCESS)
return rc;
}
}
DPRINTF("dst page %zu now has %u keys (%.1f%% filled)",
cdst->mc_pg[cdst->mc_top]->mp_pgno, NUMKEYS(cdst->mc_pg[cdst->mc_top]), (float)PAGEFILL(cdst->mc_txn->mt_env, cdst->mc_pg[cdst->mc_top]) / 10);
/* Unlink the src page from parent and add to free list.
*/
mdb_node_del(csrc->mc_pg[csrc->mc_top-1], csrc->mc_ki[csrc->mc_top-1], 0);
if (csrc->mc_ki[csrc->mc_top-1] == 0) {
key.mv_size = 0;
csrc->mc_top--;
rc = mdb_update_key(csrc, &key);
csrc->mc_top++;
if (rc)
return rc;
}
rc = mdb_midl_append(&csrc->mc_txn->mt_free_pgs,
csrc->mc_pg[csrc->mc_top]->mp_pgno);
if (rc)
return rc;
if (IS_LEAF(csrc->mc_pg[csrc->mc_top]))
csrc->mc_db->md_leaf_pages--;
else
csrc->mc_db->md_branch_pages--;
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = csrc->mc_dbi;
MDB_page *mp = cdst->mc_pg[cdst->mc_top];
if (csrc->mc_flags & C_SUB)
dbi--;
for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (csrc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == csrc) continue;
if (m3->mc_snum < csrc->mc_snum) continue;
if (m3->mc_pg[csrc->mc_top] == csrc->mc_pg[csrc->mc_top]) {
m3->mc_pg[csrc->mc_top] = mp;
m3->mc_ki[csrc->mc_top] += nkeys;
}
}
}
mdb_cursor_pop(csrc);
return mdb_rebalance(csrc);
}
/** Copy the contents of a cursor.
* @param[in] csrc The cursor to copy from.
* @param[out] cdst The cursor to copy to.
*/
static void
mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst)
{
unsigned int i;
cdst->mc_txn = csrc->mc_txn;
cdst->mc_dbi = csrc->mc_dbi;
cdst->mc_db = csrc->mc_db;
cdst->mc_dbx = csrc->mc_dbx;
cdst->mc_snum = csrc->mc_snum;
cdst->mc_top = csrc->mc_top;
cdst->mc_flags = csrc->mc_flags;
for (i=0; i<csrc->mc_snum; i++) {
cdst->mc_pg[i] = csrc->mc_pg[i];
cdst->mc_ki[i] = csrc->mc_ki[i];
}
}
/** Rebalance the tree after a delete operation.
* @param[in] mc Cursor pointing to the page where rebalancing
* should begin.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_rebalance(MDB_cursor *mc)
{
MDB_node *node;
int rc;
unsigned int ptop, minkeys;
MDB_cursor mn;
minkeys = 1 + (IS_BRANCH(mc->mc_pg[mc->mc_top]));
#if MDB_DEBUG
{
pgno_t pgno;
COPY_PGNO(pgno, mc->mc_pg[mc->mc_top]->mp_pgno);
DPRINTF("rebalancing %s page %zu (has %u keys, %.1f%% full)",
IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch",
pgno, NUMKEYS(mc->mc_pg[mc->mc_top]), (float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10);
}
#endif
if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= FILL_THRESHOLD &&
NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) {
#if MDB_DEBUG
pgno_t pgno;
COPY_PGNO(pgno, mc->mc_pg[mc->mc_top]->mp_pgno);
DPRINTF("no need to rebalance page %zu, above fill threshold",
pgno);
#endif
return MDB_SUCCESS;
}
if (mc->mc_snum < 2) {
MDB_page *mp = mc->mc_pg[0];
if (IS_SUBP(mp)) {
DPUTS("Can't rebalance a subpage, ignoring");
return MDB_SUCCESS;
}
if (NUMKEYS(mp) == 0) {
DPUTS("tree is completely empty");
mc->mc_db->md_root = P_INVALID;
mc->mc_db->md_depth = 0;
mc->mc_db->md_leaf_pages = 0;
rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
if (rc)
return rc;
/* Adjust cursors pointing to mp */
mc->mc_snum = 0;
mc->mc_top = 0;
{
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
if (mc->mc_flags & C_SUB)
dbi--;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3->mc_snum < mc->mc_snum) continue;
if (m3->mc_pg[0] == mp) {
m3->mc_snum = 0;
m3->mc_top = 0;
}
}
}
} else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) {
DPUTS("collapsing root page!");
rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
if (rc)
return rc;
mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0));
rc = mdb_page_get(mc->mc_txn,mc->mc_db->md_root,&mc->mc_pg[0],NULL);
if (rc)
return rc;
mc->mc_db->md_depth--;
mc->mc_db->md_branch_pages--;
mc->mc_ki[0] = mc->mc_ki[1];
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
if (mc->mc_flags & C_SUB)
dbi--;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc || m3->mc_snum < mc->mc_snum) continue;
if (m3->mc_pg[0] == mp) {
m3->mc_pg[0] = mc->mc_pg[0];
m3->mc_snum = 1;
m3->mc_top = 0;
m3->mc_ki[0] = m3->mc_ki[1];
}
}
}
} else
DPUTS("root page doesn't need rebalancing");
return MDB_SUCCESS;
}
/* The parent (branch page) must have at least 2 pointers,
* otherwise the tree is invalid.
*/
ptop = mc->mc_top-1;
assert(NUMKEYS(mc->mc_pg[ptop]) > 1);
/* Leaf page fill factor is below the threshold.
* Try to move keys from left or right neighbor, or
* merge with a neighbor page.
*/
/* Find neighbors.
*/
mdb_cursor_copy(mc, &mn);
mn.mc_xcursor = NULL;
if (mc->mc_ki[ptop] == 0) {
/* We're the leftmost leaf in our parent.
*/
DPUTS("reading right neighbor");
mn.mc_ki[ptop]++;
node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
rc = mdb_page_get(mc->mc_txn,NODEPGNO(node),&mn.mc_pg[mn.mc_top],NULL);
if (rc)
return rc;
mn.mc_ki[mn.mc_top] = 0;
mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
} else {
/* There is at least one neighbor to the left.
*/
DPUTS("reading left neighbor");
mn.mc_ki[ptop]--;
node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
rc = mdb_page_get(mc->mc_txn,NODEPGNO(node),&mn.mc_pg[mn.mc_top],NULL);
if (rc)
return rc;
mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1;
mc->mc_ki[mc->mc_top] = 0;
}
DPRINTF("found neighbor page %zu (%u keys, %.1f%% full)",
mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]), (float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10);
/* If the neighbor page is above threshold and has enough keys,
* move one key from it. Otherwise we should try to merge them.
* (A branch page must never have less than 2 keys.)
*/
minkeys = 1 + (IS_BRANCH(mn.mc_pg[mn.mc_top]));
if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= FILL_THRESHOLD && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys)
return mdb_node_move(&mn, mc);
else {
if (mc->mc_ki[ptop] == 0)
rc = mdb_page_merge(&mn, mc);
else
rc = mdb_page_merge(mc, &mn);
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
}
return rc;
}
/** Complete a delete operation started by #mdb_cursor_del(). */
static int
mdb_cursor_del0(MDB_cursor *mc, MDB_node *leaf)
{
int rc;
MDB_page *mp;
indx_t ki;
mp = mc->mc_pg[mc->mc_top];
ki = mc->mc_ki[mc->mc_top];
/* add overflow pages to free list */
if (!IS_LEAF2(mp) && F_ISSET(leaf->mn_flags, F_BIGDATA)) {
MDB_page *omp;
pgno_t pg;
memcpy(&pg, NODEDATA(leaf), sizeof(pg));
if ((rc = mdb_page_get(mc->mc_txn, pg, &omp, NULL)) ||
(rc = mdb_ovpage_free(mc, omp)))
return rc;
}
mdb_node_del(mp, ki, mc->mc_db->md_pad);
mc->mc_db->md_entries--;
rc = mdb_rebalance(mc);
if (rc != MDB_SUCCESS)
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
/* if mc points past last node in page, invalidate */
else if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2;
unsigned int nkeys;
MDB_dbi dbi = mc->mc_dbi;
mp = mc->mc_pg[mc->mc_top];
nkeys = NUMKEYS(mp);
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (m2 == mc)
continue;
if (!(m2->mc_flags & C_INITIALIZED))
continue;
if (m2->mc_pg[mc->mc_top] == mp) {
if (m2->mc_ki[mc->mc_top] > ki)
m2->mc_ki[mc->mc_top]--;
if (m2->mc_ki[mc->mc_top] >= nkeys)
m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
}
}
}
return rc;
}
int
mdb_del(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data)
{
MDB_cursor mc;
MDB_xcursor mx;
MDB_cursor_op op;
MDB_val rdata, *xdata;
int rc, exact;
DKBUF;
assert(key != NULL);
DPRINTF("====> delete db %u key [%s]", dbi, DKEY(key));
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
return EACCES;
}
if (key->mv_size == 0 || key->mv_size > MDB_MAXKEYSIZE) {
return EINVAL;
}
mdb_cursor_init(&mc, txn, dbi, &mx);
exact = 0;
if (data) {
op = MDB_GET_BOTH;
rdata = *data;
xdata = &rdata;
} else {
op = MDB_SET;
xdata = NULL;
}
rc = mdb_cursor_set(&mc, key, xdata, op, &exact);
if (rc == 0) {
/* let mdb_page_split know about this cursor if needed:
* delete will trigger a rebalance; if it needs to move
* a node from one page to another, it will have to
* update the parent's separator key(s). If the new sepkey
* is larger than the current one, the parent page may
* run out of space, triggering a split. We need this
* cursor to be consistent until the end of the rebalance.
*/
mc.mc_flags |= C_UNTRACK;
mc.mc_next = txn->mt_cursors[dbi];
txn->mt_cursors[dbi] = &mc;
rc = mdb_cursor_del(&mc, data ? 0 : MDB_NODUPDATA);
txn->mt_cursors[dbi] = mc.mc_next;
}
return rc;
}
/** Split a page and insert a new node.
* @param[in,out] mc Cursor pointing to the page and desired insertion index.
* The cursor will be updated to point to the actual page and index where
* the node got inserted after the split.
* @param[in] newkey The key for the newly inserted node.
* @param[in] newdata The data for the newly inserted node.
* @param[in] newpgno The page number, if the new node is a branch node.
* @param[in] nflags The #NODE_ADD_FLAGS for the new node.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno,
unsigned int nflags)
{
unsigned int flags;
int rc = MDB_SUCCESS, ins_new = 0, new_root = 0, newpos = 1, did_split = 0;
indx_t newindx;
pgno_t pgno = 0;
unsigned int i, j, split_indx, nkeys, pmax;
MDB_node *node;
MDB_val sepkey, rkey, xdata, *rdata = &xdata;
MDB_page *copy;
MDB_page *mp, *rp, *pp;
unsigned int ptop;
MDB_cursor mn;
DKBUF;
mp = mc->mc_pg[mc->mc_top];
newindx = mc->mc_ki[mc->mc_top];
DPRINTF("-----> splitting %s page %zu and adding [%s] at index %i",
IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno,
DKEY(newkey), mc->mc_ki[mc->mc_top]);
/* Create a right sibling. */
if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp)))
return rc;
DPRINTF("new right sibling: page %zu", rp->mp_pgno);
if (mc->mc_snum < 2) {
if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp)))
return rc;
/* shift current top to make room for new parent */
mc->mc_pg[1] = mc->mc_pg[0];
mc->mc_ki[1] = mc->mc_ki[0];
mc->mc_pg[0] = pp;
mc->mc_ki[0] = 0;
mc->mc_db->md_root = pp->mp_pgno;
DPRINTF("root split! new root = %zu", pp->mp_pgno);
mc->mc_db->md_depth++;
new_root = 1;
/* Add left (implicit) pointer. */
if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) {
/* undo the pre-push */
mc->mc_pg[0] = mc->mc_pg[1];
mc->mc_ki[0] = mc->mc_ki[1];
mc->mc_db->md_root = mp->mp_pgno;
mc->mc_db->md_depth--;
return rc;
}
mc->mc_snum = 2;
mc->mc_top = 1;
ptop = 0;
} else {
ptop = mc->mc_top-1;
DPRINTF("parent branch page is %zu", mc->mc_pg[ptop]->mp_pgno);
}
mc->mc_flags |= C_SPLITTING;
mdb_cursor_copy(mc, &mn);
mn.mc_pg[mn.mc_top] = rp;
mn.mc_ki[ptop] = mc->mc_ki[ptop]+1;
if (nflags & MDB_APPEND) {
mn.mc_ki[mn.mc_top] = 0;
sepkey = *newkey;
split_indx = newindx;
nkeys = 0;
goto newsep;
}
nkeys = NUMKEYS(mp);
split_indx = nkeys / 2;
if (newindx < split_indx)
newpos = 0;
if (IS_LEAF2(rp)) {
char *split, *ins;
int x;
unsigned int lsize, rsize, ksize;
/* Move half of the keys to the right sibling */
copy = NULL;
x = mc->mc_ki[mc->mc_top] - split_indx;
ksize = mc->mc_db->md_pad;
split = LEAF2KEY(mp, split_indx, ksize);
rsize = (nkeys - split_indx) * ksize;
lsize = (nkeys - split_indx) * sizeof(indx_t);
mp->mp_lower -= lsize;
rp->mp_lower += lsize;
mp->mp_upper += rsize - lsize;
rp->mp_upper -= rsize - lsize;
sepkey.mv_size = ksize;
if (newindx == split_indx) {
sepkey.mv_data = newkey->mv_data;
} else {
sepkey.mv_data = split;
}
if (x<0) {
ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize);
memcpy(rp->mp_ptrs, split, rsize);
sepkey.mv_data = rp->mp_ptrs;
memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize);
memcpy(ins, newkey->mv_data, ksize);
mp->mp_lower += sizeof(indx_t);
mp->mp_upper -= ksize - sizeof(indx_t);
} else {
if (x)
memcpy(rp->mp_ptrs, split, x * ksize);
ins = LEAF2KEY(rp, x, ksize);
memcpy(ins, newkey->mv_data, ksize);
memcpy(ins+ksize, split + x * ksize, rsize - x * ksize);
rp->mp_lower += sizeof(indx_t);
rp->mp_upper -= ksize - sizeof(indx_t);
mc->mc_ki[mc->mc_top] = x;
mc->mc_pg[mc->mc_top] = rp;
}
goto newsep;
}
/* For leaf pages, check the split point based on what
* fits where, since otherwise mdb_node_add can fail.
*
* This check is only needed when the data items are
* relatively large, such that being off by one will
* make the difference between success or failure.
*
* It's also relevant if a page happens to be laid out
* such that one half of its nodes are all "small" and
* the other half of its nodes are "large." If the new
* item is also "large" and falls on the half with
* "large" nodes, it also may not fit.
*/
if (IS_LEAF(mp)) {
unsigned int psize, nsize;
/* Maximum free space in an empty page */
pmax = mc->mc_txn->mt_env->me_psize - PAGEHDRSZ;
nsize = mdb_leaf_size(mc->mc_txn->mt_env, newkey, newdata);
if ((nkeys < 20) || (nsize > pmax/16)) {
if (newindx <= split_indx) {
psize = nsize;
newpos = 0;
for (i=0; i<split_indx; i++) {
node = NODEPTR(mp, i);
psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
if (F_ISSET(node->mn_flags, F_BIGDATA))
psize += sizeof(pgno_t);
else
psize += NODEDSZ(node);
psize += psize & 1;
if (psize > pmax) {
if (i <= newindx) {
split_indx = newindx;
if (i < newindx)
newpos = 1;
}
else
split_indx = i;
break;
}
}
} else {
psize = nsize;
for (i=nkeys-1; i>=split_indx; i--) {
node = NODEPTR(mp, i);
psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
if (F_ISSET(node->mn_flags, F_BIGDATA))
psize += sizeof(pgno_t);
else
psize += NODEDSZ(node);
psize += psize & 1;
if (psize > pmax) {
if (i >= newindx) {
split_indx = newindx;
newpos = 0;
} else
split_indx = i+1;
break;
}
}
}
}
}
/* First find the separating key between the split pages.
* The case where newindx == split_indx is ambiguous; the
* new item could go to the new page or stay on the original
* page. If newpos == 1 it goes to the new page.
*/
if (newindx == split_indx && newpos) {
sepkey.mv_size = newkey->mv_size;
sepkey.mv_data = newkey->mv_data;
} else {
node = NODEPTR(mp, split_indx);
sepkey.mv_size = node->mn_ksize;
sepkey.mv_data = NODEKEY(node);
}
newsep:
DPRINTF("separator is [%s]", DKEY(&sepkey));
/* Copy separator key to the parent.
*/
if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(mc->mc_txn->mt_env, &sepkey)) {
mn.mc_snum--;
mn.mc_top--;
did_split = 1;
rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0);
/* root split? */
if (mn.mc_snum == mc->mc_snum) {
mc->mc_pg[mc->mc_snum] = mc->mc_pg[mc->mc_top];
mc->mc_ki[mc->mc_snum] = mc->mc_ki[mc->mc_top];
mc->mc_pg[mc->mc_top] = mc->mc_pg[ptop];
mc->mc_ki[mc->mc_top] = mc->mc_ki[ptop];
mc->mc_snum++;
mc->mc_top++;
ptop++;
}
/* Right page might now have changed parent.
* Check if left page also changed parent.
*/
if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
for (i=0; i<ptop; i++) {
mc->mc_pg[i] = mn.mc_pg[i];
mc->mc_ki[i] = mn.mc_ki[i];
}
mc->mc_pg[ptop] = mn.mc_pg[ptop];
mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
}
} else {
mn.mc_top--;
rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0);
mn.mc_top++;
}
mc->mc_flags ^= C_SPLITTING;
if (rc != MDB_SUCCESS) {
return rc;
}
if (nflags & MDB_APPEND) {
mc->mc_pg[mc->mc_top] = rp;
mc->mc_ki[mc->mc_top] = 0;
rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags);
if (rc)
return rc;
for (i=0; i<mc->mc_top; i++)
mc->mc_ki[i] = mn.mc_ki[i];
goto done;
}
if (IS_LEAF2(rp)) {
goto done;
}
/* Move half of the keys to the right sibling. */
/* grab a page to hold a temporary copy */
copy = mdb_page_malloc(mc->mc_txn, 1);
if (copy == NULL)
return ENOMEM;
copy->mp_pgno = mp->mp_pgno;
copy->mp_flags = mp->mp_flags;
copy->mp_lower = PAGEHDRSZ;
copy->mp_upper = mc->mc_txn->mt_env->me_psize;
mc->mc_pg[mc->mc_top] = copy;
for (i = j = 0; i <= nkeys; j++) {
if (i == split_indx) {
/* Insert in right sibling. */
/* Reset insert index for right sibling. */
if (i != newindx || (newpos ^ ins_new)) {
j = 0;
mc->mc_pg[mc->mc_top] = rp;
}
}
if (i == newindx && !ins_new) {
/* Insert the original entry that caused the split. */
rkey.mv_data = newkey->mv_data;
rkey.mv_size = newkey->mv_size;
if (IS_LEAF(mp)) {
rdata = newdata;
} else
pgno = newpgno;
flags = nflags;
ins_new = 1;
/* Update index for the new key. */
mc->mc_ki[mc->mc_top] = j;
} else if (i == nkeys) {
break;
} else {
node = NODEPTR(mp, i);
rkey.mv_data = NODEKEY(node);
rkey.mv_size = node->mn_ksize;
if (IS_LEAF(mp)) {
xdata.mv_data = NODEDATA(node);
xdata.mv_size = NODEDSZ(node);
rdata = &xdata;
} else
pgno = NODEPGNO(node);
flags = node->mn_flags;
i++;
}
if (!IS_LEAF(mp) && j == 0) {
/* First branch index doesn't need key data. */
rkey.mv_size = 0;
}
rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags);
if (rc) break;
}
nkeys = NUMKEYS(copy);
for (i=0; i<nkeys; i++)
mp->mp_ptrs[i] = copy->mp_ptrs[i];
mp->mp_lower = copy->mp_lower;
mp->mp_upper = copy->mp_upper;
memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1),
mc->mc_txn->mt_env->me_psize - copy->mp_upper);
/* reset back to original page */
if (newindx < split_indx || (!newpos && newindx == split_indx)) {
mc->mc_pg[mc->mc_top] = mp;
if (nflags & MDB_RESERVE) {
node = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (!(node->mn_flags & F_BIGDATA))
newdata->mv_data = NODEDATA(node);
}
} else {
mc->mc_ki[ptop]++;
/* Make sure mc_ki is still valid.
*/
if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
for (i=0; i<ptop; i++) {
mc->mc_pg[i] = mn.mc_pg[i];
mc->mc_ki[i] = mn.mc_ki[i];
}
mc->mc_pg[ptop] = mn.mc_pg[ptop];
mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
}
}
/* return tmp page to freelist */
mdb_page_free(mc->mc_txn->mt_env, copy);
done:
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
int fixup = NUMKEYS(mp);
if (mc->mc_flags & C_SUB)
dbi--;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc)
continue;
if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
continue;
if (m3->mc_flags & C_SPLITTING)
continue;
if (new_root) {
int k;
/* root split */
for (k=m3->mc_top; k>=0; k--) {
m3->mc_ki[k+1] = m3->mc_ki[k];
m3->mc_pg[k+1] = m3->mc_pg[k];
}
if (m3->mc_ki[0] >= split_indx) {
m3->mc_ki[0] = 1;
} else {
m3->mc_ki[0] = 0;
}
m3->mc_pg[0] = mc->mc_pg[0];
m3->mc_snum++;
m3->mc_top++;
}
if (m3->mc_pg[mc->mc_top] == mp) {
if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE))
m3->mc_ki[mc->mc_top]++;
if (m3->mc_ki[mc->mc_top] >= fixup) {
m3->mc_pg[mc->mc_top] = rp;
m3->mc_ki[mc->mc_top] -= fixup;
m3->mc_ki[ptop] = mn.mc_ki[ptop];
}
} else if (!did_split && m3->mc_pg[ptop] == mc->mc_pg[ptop] &&
m3->mc_ki[ptop] >= mc->mc_ki[ptop]) {
m3->mc_ki[ptop]++;
}
}
}
return rc;
}
int
mdb_put(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data, unsigned int flags)
{
MDB_cursor mc;
MDB_xcursor mx;
assert(key != NULL);
assert(data != NULL);
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
return EACCES;
}
if (key->mv_size == 0 || key->mv_size > MDB_MAXKEYSIZE) {
return EINVAL;
}
if ((flags & (MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP)) != flags)
return EINVAL;
mdb_cursor_init(&mc, txn, dbi, &mx);
return mdb_cursor_put(&mc, key, data, flags);
}
int
mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff)
{
if ((flag & CHANGEABLE) != flag)
return EINVAL;
if (onoff)
env->me_flags |= flag;
else
env->me_flags &= ~flag;
return MDB_SUCCESS;
}
int
mdb_env_get_flags(MDB_env *env, unsigned int *arg)
{
if (!env || !arg)
return EINVAL;
*arg = env->me_flags;
return MDB_SUCCESS;
}
int
mdb_env_get_path(MDB_env *env, const char **arg)
{
if (!env || !arg)
return EINVAL;
*arg = env->me_path;
return MDB_SUCCESS;
}
/** Common code for #mdb_stat() and #mdb_env_stat().
* @param[in] env the environment to operate in.
* @param[in] db the #MDB_db record containing the stats to return.
* @param[out] arg the address of an #MDB_stat structure to receive the stats.
* @return 0, this function always succeeds.
*/
static int
mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg)
{
arg->ms_psize = env->me_psize;
arg->ms_depth = db->md_depth;
arg->ms_branch_pages = db->md_branch_pages;
arg->ms_leaf_pages = db->md_leaf_pages;
arg->ms_overflow_pages = db->md_overflow_pages;
arg->ms_entries = db->md_entries;
return MDB_SUCCESS;
}
int
mdb_env_stat(MDB_env *env, MDB_stat *arg)
{
int toggle;
if (env == NULL || arg == NULL)
return EINVAL;
toggle = mdb_env_pick_meta(env);
return mdb_stat0(env, &env->me_metas[toggle]->mm_dbs[MAIN_DBI], arg);
}
int
mdb_env_info(MDB_env *env, MDB_envinfo *arg)
{
int toggle;
if (env == NULL || arg == NULL)
return EINVAL;
toggle = mdb_env_pick_meta(env);
arg->me_mapaddr = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : 0;
arg->me_mapsize = env->me_mapsize;
arg->me_maxreaders = env->me_maxreaders;
arg->me_numreaders = env->me_numreaders;
arg->me_last_pgno = env->me_metas[toggle]->mm_last_pg;
arg->me_last_txnid = env->me_metas[toggle]->mm_txnid;
return MDB_SUCCESS;
}
/** Set the default comparison functions for a database.
* Called immediately after a database is opened to set the defaults.
* The user can then override them with #mdb_set_compare() or
* #mdb_set_dupsort().
* @param[in] txn A transaction handle returned by #mdb_txn_begin()
* @param[in] dbi A database handle returned by #mdb_dbi_open()
*/
static void
mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi)
{
uint16_t f = txn->mt_dbs[dbi].md_flags;
txn->mt_dbxs[dbi].md_cmp =
(f & MDB_REVERSEKEY) ? mdb_cmp_memnr :
(f & MDB_INTEGERKEY) ? mdb_cmp_cint : mdb_cmp_memn;
txn->mt_dbxs[dbi].md_dcmp =
!(f & MDB_DUPSORT) ? 0 :
((f & MDB_INTEGERDUP)
? ((f & MDB_DUPFIXED) ? mdb_cmp_int : mdb_cmp_cint)
: ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn));
}
int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi)
{
MDB_val key, data;
MDB_dbi i;
MDB_cursor mc;
int rc, dbflag, exact;
unsigned int unused = 0;
size_t len;
if (txn->mt_dbxs[FREE_DBI].md_cmp == NULL) {
mdb_default_cmp(txn, FREE_DBI);
}
if ((flags & VALID_FLAGS) != flags)
return EINVAL;
/* main DB? */
if (!name) {
*dbi = MAIN_DBI;
if (flags & PERSISTENT_FLAGS) {
uint16_t f2 = flags & PERSISTENT_FLAGS;
/* make sure flag changes get committed */
if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) {
txn->mt_dbs[MAIN_DBI].md_flags |= f2;
txn->mt_flags |= MDB_TXN_DIRTY;
}
}
mdb_default_cmp(txn, MAIN_DBI);
return MDB_SUCCESS;
}
if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) {
mdb_default_cmp(txn, MAIN_DBI);
}
/* Is the DB already open? */
len = strlen(name);
for (i=2; i<txn->mt_numdbs; i++) {
if (!txn->mt_dbxs[i].md_name.mv_size) {
/* Remember this free slot */
if (!unused) unused = i;
continue;
}
if (len == txn->mt_dbxs[i].md_name.mv_size &&
!strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) {
*dbi = i;
return MDB_SUCCESS;
}
}
/* If no free slot and max hit, fail */
if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs)
return MDB_DBS_FULL;
/* Cannot mix named databases with some mainDB flags */
if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY))
return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND;
/* Find the DB info */
dbflag = DB_NEW|DB_VALID;
exact = 0;
key.mv_size = len;
key.mv_data = (void *)name;
mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact);
if (rc == MDB_SUCCESS) {
/* make sure this is actually a DB */
MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
if (!(node->mn_flags & F_SUBDATA))
return EINVAL;
} else if (rc == MDB_NOTFOUND && (flags & MDB_CREATE)) {
/* Create if requested */
MDB_db dummy;
data.mv_size = sizeof(MDB_db);
data.mv_data = &dummy;
memset(&dummy, 0, sizeof(dummy));
dummy.md_root = P_INVALID;
dummy.md_flags = flags & PERSISTENT_FLAGS;
rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA);
dbflag |= DB_DIRTY;
}
/* OK, got info, add to table */
if (rc == MDB_SUCCESS) {
unsigned int slot = unused ? unused : txn->mt_numdbs;
txn->mt_dbxs[slot].md_name.mv_data = strdup(name);
txn->mt_dbxs[slot].md_name.mv_size = len;
txn->mt_dbxs[slot].md_rel = NULL;
txn->mt_dbflags[slot] = dbflag;
memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db));
*dbi = slot;
txn->mt_env->me_dbflags[slot] = txn->mt_dbs[slot].md_flags;
mdb_default_cmp(txn, slot);
if (!unused) {
txn->mt_numdbs++;
}
}
return rc;
}
int mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg)
{
if (txn == NULL || arg == NULL || dbi >= txn->mt_numdbs)
return EINVAL;
if (txn->mt_dbflags[dbi] & DB_STALE) {
MDB_cursor mc;
MDB_xcursor mx;
/* Stale, must read the DB's root. cursor_init does it for us. */
mdb_cursor_init(&mc, txn, dbi, &mx);
}
return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg);
}
void mdb_dbi_close(MDB_env *env, MDB_dbi dbi)
{
char *ptr;
if (dbi <= MAIN_DBI || dbi >= env->me_maxdbs)
return;
ptr = env->me_dbxs[dbi].md_name.mv_data;
env->me_dbxs[dbi].md_name.mv_data = NULL;
env->me_dbxs[dbi].md_name.mv_size = 0;
env->me_dbflags[dbi] = 0;
free(ptr);
}
int mdb_dbi_flags(MDB_env *env, MDB_dbi dbi, unsigned int *flags)
{
/* We could return the flags for the FREE_DBI too but what's the point? */
if (dbi <= MAIN_DBI || dbi >= env->me_numdbs)
return EINVAL;
*flags = env->me_dbflags[dbi];
return MDB_SUCCESS;
}
/** Add all the DB's pages to the free list.
* @param[in] mc Cursor on the DB to free.
* @param[in] subs non-Zero to check for sub-DBs in this DB.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_drop0(MDB_cursor *mc, int subs)
{
int rc;
rc = mdb_page_search(mc, NULL, 0);
if (rc == MDB_SUCCESS) {
MDB_txn *txn = mc->mc_txn;
MDB_node *ni;
MDB_cursor mx;
unsigned int i;
/* LEAF2 pages have no nodes, cannot have sub-DBs */
if (IS_LEAF2(mc->mc_pg[mc->mc_top]))
mdb_cursor_pop(mc);
mdb_cursor_copy(mc, &mx);
while (mc->mc_snum > 0) {
MDB_page *mp = mc->mc_pg[mc->mc_top];
unsigned n = NUMKEYS(mp);
if (IS_LEAF(mp)) {
for (i=0; i<n; i++) {
ni = NODEPTR(mp, i);
if (ni->mn_flags & F_BIGDATA) {
MDB_page *omp;
pgno_t pg;
memcpy(&pg, NODEDATA(ni), sizeof(pg));
rc = mdb_page_get(txn, pg, &omp, NULL);
if (rc != 0)
return rc;
assert(IS_OVERFLOW(omp));
rc = mdb_midl_append_range(&txn->mt_free_pgs,
pg, omp->mp_pages);
if (rc)
return rc;
} else if (subs && (ni->mn_flags & F_SUBDATA)) {
mdb_xcursor_init1(mc, ni);
rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
if (rc)
return rc;
}
}
} else {
if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0)
return rc;
for (i=0; i<n; i++) {
pgno_t pg;
ni = NODEPTR(mp, i);
pg = NODEPGNO(ni);
/* free it */
mdb_midl_xappend(txn->mt_free_pgs, pg);
}
}
if (!mc->mc_top)
break;
mc->mc_ki[mc->mc_top] = i;
rc = mdb_cursor_sibling(mc, 1);
if (rc) {
/* no more siblings, go back to beginning
* of previous level.
*/
mdb_cursor_pop(mc);
mc->mc_ki[0] = 0;
for (i=1; i<mc->mc_snum; i++) {
mc->mc_ki[i] = 0;
mc->mc_pg[i] = mx.mc_pg[i];
}
}
}
/* free it */
rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root);
} else if (rc == MDB_NOTFOUND) {
rc = MDB_SUCCESS;
}
return rc;
}
int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del)
{
MDB_cursor *mc, *m2;
int rc;
if (!txn || !dbi || dbi >= txn->mt_numdbs || (unsigned)del > 1 || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
return EACCES;
rc = mdb_cursor_open(txn, dbi, &mc);
if (rc)
return rc;
rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT);
/* Invalidate the dropped DB's cursors */
for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next)
m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
if (rc)
goto leave;
/* Can't delete the main DB */
if (del && dbi > MAIN_DBI) {
rc = mdb_del(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL);
if (!rc) {
txn->mt_dbflags[dbi] = DB_STALE;
mdb_dbi_close(txn->mt_env, dbi);
}
} else {
/* reset the DB record, mark it dirty */
txn->mt_dbflags[dbi] |= DB_DIRTY;
txn->mt_dbs[dbi].md_depth = 0;
txn->mt_dbs[dbi].md_branch_pages = 0;
txn->mt_dbs[dbi].md_leaf_pages = 0;
txn->mt_dbs[dbi].md_overflow_pages = 0;
txn->mt_dbs[dbi].md_entries = 0;
txn->mt_dbs[dbi].md_root = P_INVALID;
txn->mt_flags |= MDB_TXN_DIRTY;
}
leave:
mdb_cursor_close(mc);
return rc;
}
int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
{
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
txn->mt_dbxs[dbi].md_cmp = cmp;
return MDB_SUCCESS;
}
int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
{
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
txn->mt_dbxs[dbi].md_dcmp = cmp;
return MDB_SUCCESS;
}
int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel)
{
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
txn->mt_dbxs[dbi].md_rel = rel;
return MDB_SUCCESS;
}
int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx)
{
if (txn == NULL || !dbi || dbi >= txn->mt_numdbs || !(txn->mt_dbflags[dbi] & DB_VALID))
return EINVAL;
txn->mt_dbxs[dbi].md_relctx = ctx;
return MDB_SUCCESS;
}
int mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx)
{
unsigned int i, rdrs;
MDB_reader *mr;
char buf[64];
int first = 1;
if (!env || !func)
return -1;
if (!env->me_txns) {
return func("(no reader locks)\n", ctx);
}
rdrs = env->me_txns->mti_numreaders;
mr = env->me_txns->mti_readers;
for (i=0; i<rdrs; i++) {
if (mr[i].mr_pid) {
size_t tid;
int rc;
tid = mr[i].mr_tid;
if (mr[i].mr_txnid == (txnid_t)-1) {
sprintf(buf, "%10d %zx -\n", mr[i].mr_pid, tid);
} else {
sprintf(buf, "%10d %zx %zu\n", mr[i].mr_pid, tid, mr[i].mr_txnid);
}
if (first) {
first = 0;
func(" pid thread txnid\n", ctx);
}
rc = func(buf, ctx);
if (rc < 0)
return rc;
}
}
if (first) {
func("(no active readers)\n", ctx);
}
return 0;
}
/* insert pid into list if not already present.
* return -1 if already present.
*/
static int mdb_pid_insert(pid_t *ids, pid_t pid)
{
/* binary search of pid in list */
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = pid - ids[cursor];
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
/* found, so it's a duplicate */
return -1;
}
}
if( val > 0 ) {
++cursor;
}
ids[0]++;
for (n = ids[0]; n > cursor; n--)
ids[n] = ids[n-1];
ids[n] = pid;
return 0;
}
int mdb_reader_check(MDB_env *env, int *dead)
{
unsigned int i, j, rdrs;
MDB_reader *mr;
pid_t *pids, pid;
int count = 0;
if (!env)
return EINVAL;
if (dead)
*dead = 0;
if (!env->me_txns)
return MDB_SUCCESS;
rdrs = env->me_txns->mti_numreaders;
pids = malloc((rdrs+1) * sizeof(pid_t));
if (!pids)
return ENOMEM;
pids[0] = 0;
mr = env->me_txns->mti_readers;
j = 0;
for (i=0; i<rdrs; i++) {
if (mr[i].mr_pid && mr[i].mr_pid != env->me_pid) {
pid = mr[i].mr_pid;
if (mdb_pid_insert(pids, pid) == 0) {
if (mdb_reader_pid(env, Pidcheck, pid)) {
LOCK_MUTEX_R(env);
for (j=i; j<rdrs; j++)
if (mr[j].mr_pid == pid) {
mr[j].mr_pid = 0;
count++;
}
UNLOCK_MUTEX_R(env);
}
}
}
}
free(pids);
if (dead)
*dead = count;
return MDB_SUCCESS;
}
/** @} */