Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
oxigraph/src/store/isomorphism.rs

155 lines
4.6 KiB

use model::*;
use std::collections::hash_map::DefaultHasher;
use std::collections::BTreeSet;
use std::collections::HashMap;
use std::collections::HashSet;
use std::hash::Hash;
use std::hash::Hasher;
use store::memory::MemoryGraph;
#[derive(Eq, PartialEq, Hash, Ord, PartialOrd)]
struct SubjectPredicate<'a> {
subject: &'a NamedOrBlankNode,
predicate: &'a NamedNode,
}
impl<'a> SubjectPredicate<'a> {
fn new(subject: &'a NamedOrBlankNode, predicate: &'a NamedNode) -> Self {
Self { subject, predicate }
}
}
#[derive(Eq, PartialEq, Hash, Ord, PartialOrd)]
struct PredicateObject<'a> {
predicate: &'a NamedNode,
object: &'a Term,
}
impl<'a> PredicateObject<'a> {
fn new(predicate: &'a NamedNode, object: &'a Term) -> Self {
Self { predicate, object }
}
}
fn subject_predicates_for_object<'a>(
graph: &'a MemoryGraph,
object: &'a Term,
) -> impl Iterator<Item = SubjectPredicate<'a>> {
graph
.triples_for_object(object)
.map(|t| SubjectPredicate::new(t.subject(), t.predicate()))
}
fn predicate_objects_for_subject<'a>(
graph: &'a MemoryGraph,
subject: &'a NamedOrBlankNode,
) -> impl Iterator<Item = PredicateObject<'a>> {
graph
.triples_for_subject(subject)
.map(|t| PredicateObject::new(t.predicate(), t.object()))
}
fn hash_blank_nodes<'a>(
bnodes: HashSet<&'a BlankNode>,
graph: &'a MemoryGraph,
) -> HashMap<u64, Vec<&'a BlankNode>> {
let mut bnodes_by_hash: HashMap<u64, Vec<&BlankNode>> = HashMap::default();
// NB: we need to sort the triples to have the same hash
for bnode in bnodes.into_iter() {
let mut hasher = DefaultHasher::new();
{
let subject = NamedOrBlankNode::from(bnode.clone());
let mut po_set: BTreeSet<PredicateObject> = BTreeSet::default();
for po in predicate_objects_for_subject(&graph, &subject) {
if !po.object.is_blank_node() {
po_set.insert(po);
}
}
for po in po_set {
po.hash(&mut hasher);
}
}
{
let object = Term::from(bnode.clone());
let mut sp_set: BTreeSet<SubjectPredicate> = BTreeSet::default();
for sp in subject_predicates_for_object(&graph, &object) {
if !sp.subject.is_blank_node() {
sp_set.insert(sp);
}
}
for sp in sp_set {
sp.hash(&mut hasher);
}
}
bnodes_by_hash
.entry(hasher.finish())
.or_insert_with(Vec::default)
.push(bnode);
}
bnodes_by_hash
}
pub trait GraphIsomorphism {
/// Checks if two graphs are [isomorphic](https://www.w3.org/TR/rdf11-concepts/#dfn-graph-isomorphism)
fn is_isomorphic(&self, other: &Self) -> bool;
}
impl GraphIsomorphism for MemoryGraph {
//TODO: proper isomorphism building
fn is_isomorphic(&self, other: &Self) -> bool {
if self.len() != other.len() {
return false;
}
let mut self_bnodes: HashSet<&BlankNode> = HashSet::default();
let mut other_bnodes: HashSet<&BlankNode> = HashSet::default();
for t in self {
if let NamedOrBlankNode::BlankNode(subject) = t.subject() {
self_bnodes.insert(subject);
if let Term::BlankNode(object) = t.object() {
self_bnodes.insert(object);
}
} else if let Term::BlankNode(object) = t.object() {
self_bnodes.insert(object);
} else if !other.contains(t) {
return false;
}
}
for t in other {
if let NamedOrBlankNode::BlankNode(subject) = t.subject() {
other_bnodes.insert(subject);
if let Term::BlankNode(object) = t.object() {
other_bnodes.insert(object);
}
} else if let Term::BlankNode(object) = t.object() {
other_bnodes.insert(object);
} else if !self.contains(t) {
return false;
}
}
let self_bnodes_by_hash = hash_blank_nodes(self_bnodes, &self);
let other_bnodes_by_hash = hash_blank_nodes(other_bnodes, &other);
if self_bnodes_by_hash.len() != other_bnodes_by_hash.len() {
return false;
}
for hash in self_bnodes_by_hash.keys() {
if self_bnodes_by_hash.get(hash).map(|l| l.len())
!= other_bnodes_by_hash.get(hash).map(|l| l.len())
{
return false;
}
}
true
}
}