Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
oxigraph/lib/src/sparql/eval.rs

351 lines
15 KiB

use num_traits::identities::Zero;
use sparql::algebra::*;
use sparql::plan::*;
use std::collections::HashSet;
use std::iter::once;
use std::iter::Iterator;
use std::sync::Arc;
use store::numeric_encoder::*;
use store::store::EncodedQuadsStore;
use Result;
type EncodedTuplesIterator = Box<dyn Iterator<Item = Result<EncodedTuple>>>;
pub struct SimpleEvaluator<S: EncodedQuadsStore> {
store: Arc<S>,
}
impl<S: EncodedQuadsStore> Clone for SimpleEvaluator<S> {
fn clone(&self) -> Self {
Self {
store: self.store.clone(),
}
}
}
impl<S: EncodedQuadsStore> SimpleEvaluator<S> {
pub fn new(store: Arc<S>) -> Self {
Self { store }
}
pub fn evaluate(&self, query: &Query) -> Result<QueryResult> {
match query {
Query::SelectQuery { algebra, dataset } => {
let (plan, variables) = PlanBuilder::build(&*self.store, algebra)?;
let iter = self.eval_plan(plan, vec![None; variables.len()]);
Ok(QueryResult::Bindings(self.decode_bindings(iter, variables)))
}
_ => unimplemented!(),
}
}
fn eval_plan(&self, node: PlanNode, from: EncodedTuple) -> EncodedTuplesIterator {
match node {
PlanNode::Init => Box::new(once(Ok(from))),
PlanNode::StaticBindings { tuples } => Box::new(tuples.into_iter().map(Ok)),
PlanNode::TriplePatternJoin {
child,
subject,
predicate,
object,
} => {
let eval = self.clone();
Box::new(
self.eval_plan(*child, from)
.flat_map(move |tuple| match tuple {
Ok(tuple) => {
let iter: EncodedTuplesIterator = match eval
.store
.quads_for_pattern(
get_pattern_value(&subject, &tuple),
get_pattern_value(&predicate, &tuple),
get_pattern_value(&object, &tuple),
None, //TODO
) {
Ok(mut iter) => {
if subject.is_var() && subject == predicate {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.subject == quad.predicate,
}))
}
if subject.is_var() && subject == object {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.subject == quad.object,
}))
}
if predicate.is_var() && predicate == object {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.predicate == quad.object,
}))
}
Box::new(iter.map(move |quad| {
let quad = quad?;
let mut new_tuple = tuple.clone();
put_pattern_value(
&subject,
quad.subject,
&mut new_tuple,
);
put_pattern_value(
&predicate,
quad.predicate,
&mut new_tuple,
);
put_pattern_value(&object, quad.object, &mut new_tuple);
Ok(new_tuple)
}))
}
Err(error) => Box::new(once(Err(error))),
};
iter
}
Err(error) => Box::new(once(Err(error))),
}),
)
}
PlanNode::Filter { child, expression } => {
let eval = self.clone();
Box::new(self.eval_plan(*child, from).filter(move |tuple| {
match tuple {
Ok(tuple) => eval
.eval_expression(&expression, tuple)
.and_then(|term| eval.to_bool(term))
.unwrap_or(false),
Err(_) => true,
}
}))
}
PlanNode::Union { entry, children } => {
//TODO: avoid clones
let eval = self.clone();
Box::new(self.eval_plan(*entry, from).flat_map(move |tuple| {
let eval = eval.clone();
let iter: EncodedTuplesIterator = match tuple {
Ok(tuple) => Box::new(
children
.clone()
.into_iter()
.flat_map(move |child| eval.eval_plan(child, tuple.clone())),
),
Err(error) => Box::new(once(Err(error))),
};
iter
}))
}
PlanNode::HashDeduplicate { child } => {
let iter = self.eval_plan(*child, from);
let mut values = HashSet::with_capacity(iter.size_hint().0);
let mut errors = Vec::default();
for result in iter {
match result {
Ok(result) => {
values.insert(result);
}
Err(error) => errors.push(Err(error)),
}
}
Box::new(errors.into_iter().chain(values.into_iter().map(Ok)))
}
PlanNode::Skip { child, count } => Box::new(self.eval_plan(*child, from).skip(count)),
PlanNode::Limit { child, count } => Box::new(self.eval_plan(*child, from).take(count)),
PlanNode::Project { child, mapping } => {
Box::new(self.eval_plan(*child, from).map(move |tuple| {
let tuple = tuple?;
let mut new_tuple = Vec::with_capacity(mapping.len());
for key in &mapping {
new_tuple.push(tuple[*key]);
}
Ok(new_tuple)
}))
}
}
}
fn eval_expression(
&self,
expression: &PlanExpression,
tuple: &[Option<EncodedTerm>],
) -> Option<EncodedTerm> {
match expression {
PlanExpression::Constant(t) => Some(*t),
PlanExpression::Variable(v) => if *v < tuple.len() {
tuple[*v]
} else {
None
},
PlanExpression::Or(a, b) => match self.to_bool(self.eval_expression(a, tuple)?) {
Some(true) => Some(true.into()),
Some(false) => self.eval_expression(b, tuple),
None => match self.to_bool(self.eval_expression(b, tuple)?) {
Some(true) => Some(true.into()),
_ => None,
},
},
PlanExpression::And(a, b) => match self.to_bool(self.eval_expression(a, tuple)?) {
Some(true) => self.eval_expression(b, tuple),
Some(false) => Some(false.into()),
None => match self.to_bool(self.eval_expression(b, tuple)?) {
Some(false) => Some(false.into()),
_ => None,
},
},
PlanExpression::Equal(a, b) => {
Some((self.eval_expression(a, tuple)? == self.eval_expression(b, tuple)?).into())
}
PlanExpression::NotEqual(a, b) => {
Some((self.eval_expression(a, tuple)? != self.eval_expression(b, tuple)?).into())
}
PlanExpression::Greater(a, b) => {
Some((self.eval_expression(a, tuple)? > self.eval_expression(b, tuple)?).into())
}
PlanExpression::GreaterOrEq(a, b) => {
Some((self.eval_expression(a, tuple)? >= self.eval_expression(b, tuple)?).into())
}
PlanExpression::Lower(a, b) => {
Some((self.eval_expression(a, tuple)? < self.eval_expression(b, tuple)?).into())
}
PlanExpression::LowerOrEq(a, b) => {
Some((self.eval_expression(a, tuple)? <= self.eval_expression(b, tuple)?).into())
}
PlanExpression::UnaryNot(e) => self
.to_bool(self.eval_expression(e, tuple)?)
.map(|v| (!v).into()),
PlanExpression::Str(e) => Some(EncodedTerm::SimpleLiteral {
value_id: self.to_string_id(self.eval_expression(e, tuple)?)?,
}),
PlanExpression::Lang(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::LangStringLiteral { language_id, .. } => {
Some(EncodedTerm::SimpleLiteral {
value_id: language_id,
})
}
_ => None,
},
PlanExpression::Datatype(e) => self.eval_expression(e, tuple)?.datatype(),
PlanExpression::Bound(v) => Some((*v >= tuple.len() && tuple[*v].is_some()).into()),
PlanExpression::IRI(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::NamedNode { iri_id } => Some(EncodedTerm::NamedNode { iri_id }),
EncodedTerm::SimpleLiteral { value_id } => {
Some(EncodedTerm::NamedNode { iri_id: value_id })
}
EncodedTerm::StringLiteral { value_id } => {
Some(EncodedTerm::NamedNode { iri_id: value_id })
}
_ => None,
},
PlanExpression::SameTerm(a, b) => {
Some((self.eval_expression(a, tuple)? == self.eval_expression(b, tuple)?).into())
}
PlanExpression::IsIRI(e) => {
Some(self.eval_expression(e, tuple)?.is_named_node().into())
}
PlanExpression::IsBlank(e) => {
Some(self.eval_expression(e, tuple)?.is_blank_node().into())
}
PlanExpression::IsLiteral(e) => {
Some(self.eval_expression(e, tuple)?.is_literal().into())
}
PlanExpression::BooleanCast(e) => {
Some(self.to_bool(self.eval_expression(e, tuple)?)?.into())
}
PlanExpression::StringCast(e) => Some(EncodedTerm::StringLiteral {
value_id: self.to_string_id(self.eval_expression(e, tuple)?)?,
}),
e => unimplemented!(),
}
}
fn to_bool(&self, term: EncodedTerm) -> Option<bool> {
match term {
EncodedTerm::BooleanLiteral(value) => Some(value),
EncodedTerm::SimpleLiteral { .. } => Some(term != ENCODED_EMPTY_SIMPLE_LITERAL),
EncodedTerm::StringLiteral { .. } => Some(term != ENCODED_EMPTY_STRING_LITERAL),
EncodedTerm::FloatLiteral(value) => Some(!value.is_zero()),
EncodedTerm::DoubleLiteral(value) => Some(!value.is_zero()),
EncodedTerm::IntegerLiteral(value) => Some(!value.is_zero()),
_ => None,
}
}
fn to_string_id(&self, term: EncodedTerm) -> Option<u64> {
match term {
EncodedTerm::NamedNode { iri_id } => Some(iri_id),
EncodedTerm::SimpleLiteral { value_id } | EncodedTerm::StringLiteral { value_id } => {
Some(value_id)
}
EncodedTerm::LangStringLiteral { value_id, .. } => Some(value_id),
EncodedTerm::TypedLiteral { value_id, .. } => Some(value_id),
EncodedTerm::BooleanLiteral(value) => self
.store
.insert_bytes(if value { b"true" } else { b"false" })
.ok(),
EncodedTerm::FloatLiteral(value) => {
self.store.insert_bytes(value.to_string().as_bytes()).ok()
}
EncodedTerm::DoubleLiteral(value) => {
self.store.insert_bytes(value.to_string().as_bytes()).ok()
}
EncodedTerm::IntegerLiteral(value) => {
self.store.insert_bytes(value.to_string().as_bytes()).ok()
}
_ => None,
}
}
fn decode_bindings(
&self,
iter: EncodedTuplesIterator,
variables: Vec<Variable>,
) -> BindingsIterator {
let store = self.store.clone();
BindingsIterator::new(
variables,
Box::new(iter.map(move |values| {
let encoder = store.encoder();
values?
.into_iter()
.map(|value| {
Ok(match value {
Some(term) => Some(encoder.decode_term(term)?),
None => None,
})
}).collect()
})),
)
}
}
fn get_pattern_value(
selector: &PatternValue,
tuple: &[Option<EncodedTerm>],
) -> Option<EncodedTerm> {
match selector {
PatternValue::Constant(term) => Some(*term),
PatternValue::Variable(v) => if *v < tuple.len() {
tuple[*v]
} else {
None
},
}
}
fn put_pattern_value(selector: &PatternValue, value: EncodedTerm, tuple: &mut EncodedTuple) {
match selector {
PatternValue::Constant(_) => (),
PatternValue::Variable(v) => {
let v = *v;
if tuple.len() > v {
tuple[v] = Some(value)
} else {
if tuple.len() < v {
tuple.resize(v, None);
}
tuple.push(Some(value))
}
}
}
}