Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
oxigraph/lib/src/sparql/dataset.rs

220 lines
7.8 KiB

use crate::sparql::algebra::QueryDataset;
use crate::sparql::EvaluationError;
use crate::store::numeric_encoder::{
EncodedQuad, EncodedTerm, ReadEncoder, StrContainer, StrEncodingAware, StrHash, StrLookup,
};
use crate::store::ReadableEncodedStore;
use std::cell::RefCell;
use std::collections::HashMap;
use std::iter::{empty, once, Once};
pub(crate) struct DatasetView<S: ReadableEncodedStore> {
store: S,
extra: RefCell<HashMap<StrHash, String>>,
dataset: EncodedDatasetSpec,
}
impl<S: ReadableEncodedStore> DatasetView<S> {
pub fn new(store: S, dataset: &QueryDataset) -> Result<Self, EvaluationError> {
let dataset = EncodedDatasetSpec {
default: dataset
.default_graph_graphs()
.map(|graphs| {
graphs
.iter()
.flat_map(|g| store.get_encoded_graph_name(g.as_ref()).transpose())
.collect::<Result<Vec<_>, _>>()
})
.transpose()
.map_err(|e| e.into())?,
named: dataset
.available_named_graphs()
.map(|graphs| {
graphs
.iter()
.flat_map(|g| {
store
.get_encoded_named_or_blank_node(g.as_ref())
.transpose()
})
.collect::<Result<Vec<_>, _>>()
})
.transpose()
.map_err(|e| e.into())?,
};
Ok(Self {
store,
extra: RefCell::new(HashMap::default()),
dataset,
})
}
fn store_encoded_quads_for_pattern(
&self,
subject: Option<EncodedTerm>,
predicate: Option<EncodedTerm>,
object: Option<EncodedTerm>,
graph_name: Option<EncodedTerm>,
) -> impl Iterator<Item = Result<EncodedQuad, EvaluationError>> + 'static {
self.store
.encoded_quads_for_pattern(subject, predicate, object, graph_name)
.map(|t| t.map_err(|e| e.into()))
}
}
impl<S: ReadableEncodedStore> StrEncodingAware for DatasetView<S> {
type Error = EvaluationError;
}
impl<S: ReadableEncodedStore> StrLookup for DatasetView<S> {
fn get_str(&self, id: StrHash) -> Result<Option<String>, EvaluationError> {
self.extra
.borrow()
.get(&id)
.cloned()
.map(Ok)
.or_else(|| self.store.get_str(id).map_err(|e| e.into()).transpose())
.transpose()
}
fn get_str_id(&self, value: &str) -> Result<Option<StrHash>, EvaluationError> {
let id = StrHash::new(value);
Ok(if self.extra.borrow().contains_key(&id) {
Some(id)
} else {
self.store.get_str_id(value).map_err(|e| e.into())?
})
}
}
impl<S: ReadableEncodedStore + 'static> ReadableEncodedStore for DatasetView<S> {
type QuadsIter = Box<dyn Iterator<Item = Result<EncodedQuad, EvaluationError>>>;
type GraphsIter = Once<Result<EncodedTerm, EvaluationError>>;
#[allow(clippy::needless_collect)]
fn encoded_quads_for_pattern(
&self,
subject: Option<EncodedTerm>,
predicate: Option<EncodedTerm>,
object: Option<EncodedTerm>,
graph_name: Option<EncodedTerm>,
) -> Box<dyn Iterator<Item = Result<EncodedQuad, EvaluationError>>> {
if let Some(graph_name) = graph_name {
if graph_name.is_default_graph() {
if let Some(default_graph_graphs) = &self.dataset.default {
if default_graph_graphs.len() == 1 {
// Single graph optimization
Box::new(
self.store_encoded_quads_for_pattern(
subject,
predicate,
object,
Some(default_graph_graphs[0]),
)
.map(|quad| {
let quad = quad?;
Ok(EncodedQuad::new(
quad.subject,
quad.predicate,
quad.object,
EncodedTerm::DefaultGraph,
))
}),
)
} else {
let iters = default_graph_graphs
.iter()
.map(|graph_name| {
self.store_encoded_quads_for_pattern(
subject,
predicate,
object,
Some(*graph_name),
)
})
.collect::<Vec<_>>();
Box::new(iters.into_iter().flatten().map(|quad| {
let quad = quad?;
Ok(EncodedQuad::new(
quad.subject,
quad.predicate,
quad.object,
EncodedTerm::DefaultGraph,
))
}))
}
} else {
Box::new(self.store_encoded_quads_for_pattern(subject, predicate, object, None))
}
} else if self
.dataset
.named
.as_ref()
.map_or(true, |d| d.contains(&graph_name))
{
Box::new(self.store_encoded_quads_for_pattern(
subject,
predicate,
object,
Some(graph_name),
))
} else {
Box::new(empty())
}
} else if let Some(named_graphs) = &self.dataset.named {
let iters = named_graphs
.iter()
.map(|graph_name| {
self.store_encoded_quads_for_pattern(
subject,
predicate,
object,
Some(*graph_name),
)
})
.collect::<Vec<_>>();
Box::new(iters.into_iter().flatten())
} else {
Box::new(
self.store_encoded_quads_for_pattern(subject, predicate, object, None)
.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.graph_name != EncodedTerm::DefaultGraph,
}),
)
}
}
fn encoded_named_graphs(&self) -> Self::GraphsIter {
once(Err(EvaluationError::msg(
"Graphs lookup is not implemented by DatasetView",
)))
}
fn contains_encoded_named_graph(&self, _: EncodedTerm) -> Result<bool, EvaluationError> {
Err(EvaluationError::msg(
"Graphs lookup is not implemented by DatasetView",
))
}
}
impl<'a, S: ReadableEncodedStore> StrContainer for &'a DatasetView<S> {
fn insert_str(&self, value: &str) -> Result<StrHash, EvaluationError> {
if let Some(hash) = self.store.get_str_id(value).map_err(|e| e.into())? {
Ok(hash)
} else {
let hash = StrHash::new(value);
self.extra
.borrow_mut()
.entry(hash)
.or_insert_with(|| value.to_owned());
Ok(hash)
}
}
}
struct EncodedDatasetSpec {
default: Option<Vec<EncodedTerm>>,
named: Option<Vec<EncodedTerm>>,
}