use crate::model::NamedNode; use crate::storage::numeric_encoder::EncodedTerm; use oxrdf::Variable; use spargebra::algebra::GraphPattern; use std::cmp::max; use std::collections::btree_map::Entry; use std::collections::{BTreeMap, BTreeSet}; use std::rc::Rc; #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum PlanNode { StaticBindings { tuples: Vec, }, Service { service_name: PatternValue, variables: Rc>, child: Box, graph_pattern: Rc, silent: bool, }, QuadPattern { subject: PatternValue, predicate: PatternValue, object: PatternValue, graph_name: PatternValue, }, PathPattern { subject: PatternValue, path: Rc, object: PatternValue, graph_name: PatternValue, }, /// Streams left and materializes right join HashJoin { left: Box, right: Box, }, /// Right nested in left loop ForLoopJoin { left: Box, right: Box, }, /// Streams left and materializes right anti join AntiJoin { left: Box, right: Box, }, Filter { child: Box, expression: Box, }, Union { children: Vec, }, /// right nested in left loop LeftJoin { left: Box, right: Box, possible_problem_vars: Rc>, //Variables that should not be part of the entry of the left join }, Extend { child: Box, position: usize, expression: Box, }, Sort { child: Box, by: Vec, }, HashDeduplicate { child: Box, }, /// Removes duplicated consecutive elements Reduced { child: Box, }, Skip { child: Box, count: usize, }, Limit { child: Box, count: usize, }, Project { child: Box, mapping: Rc>, // pairs of (variable key in child, variable key in output) lateral_mapping: Rc>, // pairs of (variable key in child, variable key in output) }, Aggregate { // By definition the group by key are the range 0..key_mapping.len() child: Box, key_variables: Rc>, aggregates: Rc>, }, } impl PlanNode { /// Returns variables that might be bound in the result set pub fn used_variables(&self) -> BTreeSet { let mut set = BTreeSet::default(); self.add_used_variables(&mut set); set } pub fn add_used_variables(&self, set: &mut BTreeSet) { match self { Self::StaticBindings { tuples } => { for tuple in tuples { for (key, value) in tuple.iter().enumerate() { if value.is_some() { set.insert(key); } } } } Self::QuadPattern { subject, predicate, object, graph_name, } => { if let PatternValue::Variable(var) = subject { set.insert(*var); } if let PatternValue::Variable(var) = predicate { set.insert(*var); } if let PatternValue::Variable(var) = object { set.insert(*var); } if let PatternValue::Variable(var) = graph_name { set.insert(*var); } } Self::PathPattern { subject, object, graph_name, .. } => { if let PatternValue::Variable(var) = subject { set.insert(*var); } if let PatternValue::Variable(var) = object { set.insert(*var); } if let PatternValue::Variable(var) = graph_name { set.insert(*var); } } Self::Filter { child, expression } => { expression.add_used_variables(set); child.add_used_variables(set); } Self::Union { children } => { for child in children.iter() { child.add_used_variables(set); } } Self::HashJoin { left, right } | Self::ForLoopJoin { left, right, .. } | Self::AntiJoin { left, right } | Self::LeftJoin { left, right, .. } => { left.add_used_variables(set); right.add_used_variables(set); } Self::Extend { child, position, expression, } => { set.insert(*position); expression.add_used_variables(set); child.add_used_variables(set); } Self::Sort { child, .. } | Self::HashDeduplicate { child } | Self::Reduced { child } | Self::Skip { child, .. } | Self::Limit { child, .. } => child.add_used_variables(set), Self::Service { child, service_name, .. } => { if let PatternValue::Variable(v) = service_name { set.insert(*v); } child.add_used_variables(set); } Self::Project { mapping, child, lateral_mapping, } => { let mut child_bound = child.used_variables(); for (child_i, output_i) in lateral_mapping.iter() { if set.contains(output_i) { child_bound.insert(*child_i); } } for (child_i, output_i) in mapping.iter() { if child_bound.contains(child_i) { set.insert(*output_i); } } } Self::Aggregate { key_variables, aggregates, .. } => { for var in key_variables.iter() { set.insert(*var); } for (_, var) in aggregates.iter() { set.insert(*var); } } } } /// Returns subset of the set of variables that are always bound in the result set /// /// (subset because this function is not perfect yet) pub fn always_bound_variables(&self) -> BTreeSet { let mut set = BTreeSet::default(); self.add_always_bound_variables(&mut set); set } pub fn add_always_bound_variables(&self, set: &mut BTreeSet) { match self { Self::StaticBindings { tuples } => { let mut variables = BTreeMap::default(); // value true iff always bound let max_tuple_length = tuples.iter().map(|t| t.capacity()).fold(0, max); for tuple in tuples { for key in 0..max_tuple_length { match variables.entry(key) { Entry::Vacant(e) => { e.insert(tuple.contains(key)); } Entry::Occupied(mut e) => { if !tuple.contains(key) { e.insert(false); } } } } } for (k, v) in variables { if v { set.insert(k); } } } Self::QuadPattern { subject, predicate, object, graph_name, } => { if let PatternValue::Variable(var) = subject { set.insert(*var); } if let PatternValue::Variable(var) = predicate { set.insert(*var); } if let PatternValue::Variable(var) = object { set.insert(*var); } if let PatternValue::Variable(var) = graph_name { set.insert(*var); } } Self::PathPattern { subject, object, graph_name, .. } => { if let PatternValue::Variable(var) = subject { set.insert(*var); } if let PatternValue::Variable(var) = object { set.insert(*var); } if let PatternValue::Variable(var) = graph_name { set.insert(*var); } } Self::Filter { child, .. } => { //TODO: have a look at the expression to know if it filters out unbound variables child.add_always_bound_variables(set); } Self::Union { children } => { if let Some(vars) = children .iter() .map(|c| c.always_bound_variables()) .reduce(|a, b| a.intersection(&b).copied().collect()) { for v in vars { set.insert(v); } } } Self::HashJoin { left, right } | Self::ForLoopJoin { left, right, .. } => { left.add_always_bound_variables(set); right.add_always_bound_variables(set); } Self::AntiJoin { left, .. } | Self::LeftJoin { left, .. } => { left.add_always_bound_variables(set); } Self::Extend { child, position, expression, } => { if matches!(expression.as_ref(), PlanExpression::Constant(_)) { // TODO: more cases? set.insert(*position); } child.add_always_bound_variables(set); } Self::Sort { child, .. } | Self::HashDeduplicate { child } | Self::Reduced { child } | Self::Skip { child, .. } | Self::Limit { child, .. } => child.add_always_bound_variables(set), Self::Service { child, silent, .. } => { if *silent { // none, might return a null tuple } else { child.add_always_bound_variables(set) } } Self::Project { mapping, child, lateral_mapping, } => { let mut child_bound = BTreeSet::new(); for (child_i, output_i) in lateral_mapping.iter() { if set.contains(output_i) { child_bound.insert(*child_i); } } child.add_always_bound_variables(&mut child_bound); for (child_i, output_i) in mapping.iter() { if child_bound.contains(child_i) { set.insert(*output_i); } } } Self::Aggregate { .. } => { //TODO } } } pub fn are_all_variable_bound<'a>( &self, variables: impl IntoIterator, ) -> bool { let bound = self.always_bound_variables(); variables.into_iter().all(|v| bound.contains(v)) } } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum PatternValue { Constant(EncodedTerm), Variable(usize), Triple(Box), } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub struct TriplePatternValue { pub subject: PatternValue, pub predicate: PatternValue, pub object: PatternValue, } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum PlanExpression { Constant(EncodedTerm), Variable(usize), Exists(Rc), Or(Box, Box), And(Box, Box), Equal(Box, Box), Greater(Box, Box), GreaterOrEqual(Box, Box), Less(Box, Box), LessOrEqual(Box, Box), Add(Box, Box), Subtract(Box, Box), Multiply(Box, Box), Divide(Box, Box), UnaryPlus(Box), UnaryMinus(Box), Not(Box), Str(Box), Lang(Box), LangMatches(Box, Box), Datatype(Box), Bound(usize), Iri(Box), BNode(Option>), Rand, Abs(Box), Ceil(Box), Floor(Box), Round(Box), Concat(Vec), SubStr(Box, Box, Option>), StrLen(Box), Replace(Box, Box, Box, Option>), UCase(Box), LCase(Box), EncodeForUri(Box), Contains(Box, Box), StrStarts(Box, Box), StrEnds(Box, Box), StrBefore(Box, Box), StrAfter(Box, Box), Year(Box), Month(Box), Day(Box), Hours(Box), Minutes(Box), Seconds(Box), Timezone(Box), Tz(Box), Now, Uuid, StrUuid, Md5(Box), Sha1(Box), Sha256(Box), Sha384(Box), Sha512(Box), Coalesce(Vec), If(Box, Box, Box), StrLang(Box, Box), StrDt(Box, Box), SameTerm(Box, Box), IsIri(Box), IsBlank(Box), IsLiteral(Box), IsNumeric(Box), Regex(Box, Box, Option>), Triple(Box, Box, Box), Subject(Box), Predicate(Box), Object(Box), IsTriple(Box), BooleanCast(Box), DoubleCast(Box), FloatCast(Box), DecimalCast(Box), IntegerCast(Box), DateCast(Box), TimeCast(Box), DateTimeCast(Box), DurationCast(Box), YearMonthDurationCast(Box), DayTimeDurationCast(Box), StringCast(Box), CustomFunction(NamedNode, Vec), } impl PlanExpression { /// Returns variables that are used in the expression pub fn used_variables(&self) -> BTreeSet { let mut set = BTreeSet::default(); self.add_used_variables(&mut set); set } pub fn add_used_variables(&self, set: &mut BTreeSet) { match self { Self::Variable(v) | Self::Bound(v) => { set.insert(*v); } Self::Constant(_) | Self::Rand | Self::Now | Self::Uuid | Self::StrUuid | Self::BNode(None) => (), Self::UnaryPlus(e) | Self::UnaryMinus(e) | Self::Not(e) | Self::BNode(Some(e)) | Self::Str(e) | Self::Lang(e) | Self::Datatype(e) | Self::Iri(e) | Self::Abs(e) | Self::Ceil(e) | Self::Floor(e) | Self::Round(e) | Self::UCase(e) | Self::LCase(e) | Self::StrLen(e) | Self::EncodeForUri(e) | Self::Year(e) | Self::Month(e) | Self::Day(e) | Self::Hours(e) | Self::Minutes(e) | Self::Seconds(e) | Self::Timezone(e) | Self::Tz(e) | Self::Md5(e) | Self::Sha1(e) | Self::Sha256(e) | Self::Sha384(e) | Self::Sha512(e) | Self::IsIri(e) | Self::IsBlank(e) | Self::IsLiteral(e) | Self::IsNumeric(e) | Self::IsTriple(e) | Self::Subject(e) | Self::Predicate(e) | Self::Object(e) | Self::BooleanCast(e) | Self::DoubleCast(e) | Self::FloatCast(e) | Self::DecimalCast(e) | Self::IntegerCast(e) | Self::DateCast(e) | Self::TimeCast(e) | Self::DateTimeCast(e) | Self::DurationCast(e) | Self::YearMonthDurationCast(e) | Self::DayTimeDurationCast(e) | Self::StringCast(e) => e.add_used_variables(set), Self::Or(a, b) | Self::And(a, b) | Self::Equal(a, b) | Self::Greater(a, b) | Self::GreaterOrEqual(a, b) | Self::Less(a, b) | Self::LessOrEqual(a, b) | Self::Add(a, b) | Self::Subtract(a, b) | Self::Multiply(a, b) | Self::Divide(a, b) | Self::LangMatches(a, b) | Self::Contains(a, b) | Self::StrStarts(a, b) | Self::StrEnds(a, b) | Self::StrBefore(a, b) | Self::StrAfter(a, b) | Self::StrLang(a, b) | Self::StrDt(a, b) | Self::SameTerm(a, b) | Self::SubStr(a, b, None) | Self::Regex(a, b, None) => { a.add_used_variables(set); b.add_used_variables(set); } Self::If(a, b, c) | Self::SubStr(a, b, Some(c)) | Self::Regex(a, b, Some(c)) | Self::Replace(a, b, c, None) | Self::Triple(a, b, c) => { a.add_used_variables(set); b.add_used_variables(set); c.add_used_variables(set); } Self::Replace(a, b, c, Some(d)) => { a.add_used_variables(set); b.add_used_variables(set); c.add_used_variables(set); d.add_used_variables(set); } Self::Concat(es) | Self::Coalesce(es) | Self::CustomFunction(_, es) => { for e in es { e.add_used_variables(set); } } Self::Exists(e) => { e.add_used_variables(set); } } } } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub struct PlanAggregation { pub function: PlanAggregationFunction, pub parameter: Option, pub distinct: bool, } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum PlanAggregationFunction { Count, Sum, Min, Max, Avg, Sample, GroupConcat { separator: Rc }, } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum PlanPropertyPath { Path(EncodedTerm), Reverse(Rc), Sequence(Rc, Rc), Alternative(Rc, Rc), ZeroOrMore(Rc), OneOrMore(Rc), ZeroOrOne(Rc), NegatedPropertySet(Rc>), } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum Comparator { Asc(PlanExpression), Desc(PlanExpression), } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub struct TripleTemplate { pub subject: TripleTemplateValue, pub predicate: TripleTemplateValue, pub object: TripleTemplateValue, } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub enum TripleTemplateValue { Constant(EncodedTerm), BlankNode(usize), Variable(usize), Triple(Box), } #[derive(Eq, PartialEq, Debug, Clone, Hash)] pub struct EncodedTuple { inner: Vec>, } impl EncodedTuple { pub fn with_capacity(capacity: usize) -> Self { Self { inner: Vec::with_capacity(capacity), } } pub fn capacity(&self) -> usize { self.inner.capacity() } pub fn contains(&self, index: usize) -> bool { self.inner.get(index).map_or(false, Option::is_some) } pub fn get(&self, index: usize) -> Option<&EncodedTerm> { self.inner.get(index).unwrap_or(&None).as_ref() } pub fn iter(&self) -> impl Iterator> + '_ { self.inner.iter().cloned() } pub fn set(&mut self, index: usize, value: EncodedTerm) { if self.inner.len() <= index { self.inner.resize(index + 1, None); } self.inner[index] = Some(value); } pub fn unset(&mut self, index: usize) { if let Some(v) = self.inner.get_mut(index) { *v = None; } } pub fn combine_with(&self, other: &Self) -> Option { if self.inner.len() < other.inner.len() { let mut result = other.inner.clone(); for (key, self_value) in self.inner.iter().enumerate() { if let Some(self_value) = self_value { match &other.inner[key] { Some(other_value) => { if self_value != other_value { return None; } } None => result[key] = Some(self_value.clone()), } } } Some(Self { inner: result }) } else { let mut result = self.inner.clone(); for (key, other_value) in other.inner.iter().enumerate() { if let Some(other_value) = other_value { match &self.inner[key] { Some(self_value) => { if self_value != other_value { return None; } } None => result[key] = Some(other_value.clone()), } } } Some(Self { inner: result }) } } } impl IntoIterator for EncodedTuple { type Item = Option; type IntoIter = std::vec::IntoIter>; fn into_iter(self) -> Self::IntoIter { self.inner.into_iter() } }