import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from collections import defaultdict from glob import glob from numpy import array def plot_y_per_x_per_plot(data, xlabel, ylabel, file, log=False): plt.figure(file) bar_width = 1 / (len(data) + 1) for i, (label, xys) in enumerate(sorted(data.items())): plt.bar(array(list(xys.keys())) + bar_width * (i + 1 - len(data) / 2), array(list(xys.values())), bar_width, label=label) plt.legend() plt.xlabel(xlabel) plt.ylabel(ylabel) if log: plt.yscale('log') plt.savefig(file) # BSBM explore aqet = defaultdict(dict) for file in glob('bsbm.explore.*.xml'): run = file.replace('bsbm.explore.', '').replace('.xml', '') for query in ET.parse(file).getroot().find('queries').findall('query'): val = float(query.find('aqet').text) if val > 0: aqet[run][int(query.attrib['nr'])] = val plot_y_per_x_per_plot(aqet, 'query id', 'execution time (s)', 'bsbm.explore.png') # BSBM business intelligence aqet = defaultdict(dict) for file in glob('bsbm.businessIntelligence.*.xml'): run = file.replace('bsbm.businessIntelligence.', '').replace('.xml', '') for query in ET.parse(file).getroot().find('queries').findall('query'): val = float(query.find('aqet').text) if val > 0: aqet[run][int(query.attrib['nr'])] = val plot_y_per_x_per_plot(aqet, 'query id', 'execution time (s) - log scale', 'bsbm.businessIntelligence.png', log=True) plt.show()