Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/oxrdf/src/dataset.rs

1494 lines
46 KiB

//! [In-memory implementation](Dataset) of [RDF datasets](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-dataset).
//!
//! Usage example:
//! ```
//! use oxrdf::*;
//!
//! let mut dataset = Dataset::default();
//!
//! // insertion
//! let ex = NamedNodeRef::new("http://example.com")?;
//! let quad = QuadRef::new(ex, ex, ex, ex);
//! dataset.insert(quad);
//!
//! // simple filter
//! let results: Vec<_> = dataset.quads_for_subject(ex).collect();
//! assert_eq!(vec![quad], results);
//!
//! // direct access to a dataset graph
//! let results: Vec<_> = dataset.graph(ex).iter().collect();
//! assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
//!
//! // Print
//! assert_eq!(dataset.to_string(), "<http://example.com> <http://example.com> <http://example.com> <http://example.com> .\n");
//! # Result::<_,Box<dyn std::error::Error>>::Ok(())
//! ```
//!
//! See also [`Graph`] if you only care about plain triples.
use crate::interning::*;
use crate::SubjectRef;
use crate::*;
use std::collections::hash_map::DefaultHasher;
use std::collections::BTreeSet;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::hash::{Hash, Hasher};
/// An in-memory [RDF dataset](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-dataset).
///
/// It can accommodate a fairly large number of quads (in the few millions).
/// Beware: it interns the string and does not do any garbage collection yet:
/// if you insert and remove a lot of different terms, memory will grow without any reduction.
///
/// Usage example:
/// ```
/// use oxrdf::*;
///
/// let mut dataset = Dataset::default();
///
/// // insertion
/// let ex = NamedNodeRef::new("http://example.com")?;
/// let quad = QuadRef::new(ex, ex, ex, ex);
/// dataset.insert(quad);
///
/// // simple filter
/// let results: Vec<_> = dataset.quads_for_subject(ex).collect();
/// assert_eq!(vec![quad], results);
///
/// // direct access to a dataset graph
/// let results: Vec<_> = dataset.graph(ex).iter().collect();
/// assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
#[derive(Debug, Default)]
pub struct Dataset {
interner: Interner,
gspo: BTreeSet<(
InternedGraphName,
InternedSubject,
InternedNamedNode,
InternedTerm,
)>,
gpos: BTreeSet<(
InternedGraphName,
InternedNamedNode,
InternedTerm,
InternedSubject,
)>,
gosp: BTreeSet<(
InternedGraphName,
InternedTerm,
InternedSubject,
InternedNamedNode,
)>,
spog: BTreeSet<(
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
)>,
posg: BTreeSet<(
InternedNamedNode,
InternedTerm,
InternedSubject,
InternedGraphName,
)>,
ospg: BTreeSet<(
InternedTerm,
InternedSubject,
InternedNamedNode,
InternedGraphName,
)>,
}
impl Dataset {
/// Creates a new dataset
pub fn new() -> Self {
Self::default()
}
/// Provides a read-only view on an [RDF graph](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-graph) contained in this dataset.
///
/// ```
/// use oxrdf::*;
///
/// let mut dataset = Dataset::default();
/// let ex = NamedNodeRef::new("http://example.com")?;
/// dataset.insert(QuadRef::new(ex, ex, ex, ex));
///
/// let results: Vec<_> = dataset.graph(ex).iter().collect();
/// assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn graph<'a, 'b>(&'a self, graph_name: impl Into<GraphNameRef<'b>>) -> GraphView<'a> {
let graph_name = self
.encoded_graph_name(graph_name)
.unwrap_or_else(InternedGraphName::impossible);
GraphView {
dataset: self,
graph_name,
}
}
/// Provides a read/write view on an [RDF graph](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-graph) contained in this dataset.
///
/// ```
/// use oxrdf::*;
///
/// let mut dataset = Dataset::default();
/// let ex = NamedNodeRef::new("http://example.com")?;
///
/// // We edit and query the dataset http://example.com graph
/// {
/// let mut graph = dataset.graph_mut(ex);
/// graph.insert(TripleRef::new(ex, ex, ex));
/// let results: Vec<_> = graph.iter().collect();
/// assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
/// }
///
/// // We have also changes the dataset itself
/// let results: Vec<_> = dataset.iter().collect();
/// assert_eq!(vec![QuadRef::new(ex, ex, ex, ex)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn graph_mut<'a, 'b>(
&'a mut self,
graph_name: impl Into<GraphNameRef<'b>>,
) -> GraphViewMut<'a> {
let graph_name = InternedGraphName::encoded_into(graph_name.into(), &mut self.interner);
GraphViewMut {
dataset: self,
graph_name,
}
}
/// Returns all the quads contained by the dataset.
pub fn iter(&self) -> Iter<'_> {
let iter = self.spog.iter();
Iter {
dataset: self,
inner: iter,
}
}
pub fn quads_for_subject<'a, 'b>(
&'a self,
subject: impl Into<SubjectRef<'b>>,
) -> impl Iterator<Item = QuadRef<'a>> + 'a {
let subject = self
.encoded_subject(subject)
.unwrap_or_else(InternedSubject::impossible);
self.interned_quads_for_subject(&subject)
.map(move |q| self.decode_spog(q))
}
fn interned_quads_for_subject(
&self,
subject: &InternedSubject,
) -> impl Iterator<
Item = (
&InternedSubject,
&InternedNamedNode,
&InternedTerm,
&InternedGraphName,
),
> + '_ {
self.spog
.range(
&(
subject.clone(),
InternedNamedNode::first(),
InternedTerm::first(),
InternedGraphName::first(),
)
..&(
subject.next(),
InternedNamedNode::first(),
InternedTerm::first(),
InternedGraphName::first(),
),
)
.map(|(s, p, o, g)| (s, p, o, g))
}
pub fn quads_for_predicate<'a, 'b>(
&'a self,
predicate: impl Into<NamedNodeRef<'b>>,
) -> impl Iterator<Item = QuadRef<'a>> + 'a {
let predicate = self
.encoded_named_node(predicate)
.unwrap_or_else(InternedNamedNode::impossible);
self.interned_quads_for_predicate(predicate)
.map(move |q| self.decode_spog(q))
}
fn interned_quads_for_predicate(
&self,
predicate: InternedNamedNode,
) -> impl Iterator<
Item = (
&InternedSubject,
&InternedNamedNode,
&InternedTerm,
&InternedGraphName,
),
> + '_ {
self.posg
.range(
&(
predicate,
InternedTerm::first(),
InternedSubject::first(),
InternedGraphName::first(),
)
..&(
predicate.next(),
InternedTerm::first(),
InternedSubject::first(),
InternedGraphName::first(),
),
)
.map(|(p, o, s, g)| (s, p, o, g))
}
pub fn quads_for_object<'a, 'b>(
&'a self,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = QuadRef<'a>> + 'a {
let object = self
.encoded_term(object)
.unwrap_or_else(InternedTerm::impossible);
self.interned_quads_for_object(&object)
.map(move |q| self.decode_spog(q))
}
fn interned_quads_for_object(
&self,
object: &InternedTerm,
) -> impl Iterator<
Item = (
&InternedSubject,
&InternedNamedNode,
&InternedTerm,
&InternedGraphName,
),
> + '_ {
self.ospg
.range(
&(
object.clone(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedGraphName::first(),
)
..&(
object.next(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedGraphName::first(),
),
)
.map(|(o, s, p, g)| (s, p, o, g))
}
fn interned_quads_for_graph_name(
&self,
graph_name: &InternedGraphName,
) -> impl Iterator<
Item = (
&InternedSubject,
&InternedNamedNode,
&InternedTerm,
&InternedGraphName,
),
> + '_ {
self.gspo
.range(
&(
graph_name.clone(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedTerm::first(),
)
..&(
graph_name.next(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedTerm::first(),
),
)
.map(|(g, s, p, o)| (s, p, o, g))
}
/// Checks if the dataset contains the given quad
pub fn contains<'a>(&self, quad: impl Into<QuadRef<'a>>) -> bool {
if let Some(q) = self.encoded_quad(quad.into()) {
self.spog.contains(&q)
} else {
false
}
}
/// Returns the number of quads in this dataset.
pub fn len(&self) -> usize {
self.gspo.len()
}
/// Checks if this dataset contains a quad.
pub fn is_empty(&self) -> bool {
self.gspo.is_empty()
}
/// Adds a quad to the dataset.
pub fn insert<'a>(&mut self, quad: impl Into<QuadRef<'a>>) -> bool {
let quad = self.encode_quad(quad.into());
self.insert_encoded(quad)
}
fn insert_encoded(
&mut self,
quad: (
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
),
) -> bool {
let (s, p, o, g) = quad;
self.gspo.insert((g.clone(), s.clone(), p, o.clone()));
self.gpos.insert((g.clone(), p, o.clone(), s.clone()));
self.gosp.insert((g.clone(), o.clone(), s.clone(), p));
self.spog.insert((s.clone(), p, o.clone(), g.clone()));
self.posg.insert((p, o.clone(), s.clone(), g.clone()));
self.ospg.insert((o, s, p, g))
}
/// Removes a concrete quad from the dataset.
pub fn remove<'a>(&mut self, quad: impl Into<QuadRef<'a>>) -> bool {
if let Some(quad) = self.encoded_quad(quad.into()) {
self.remove_encoded(quad)
} else {
false
}
}
fn remove_encoded(
&mut self,
quad: (
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
),
) -> bool {
let (s, p, o, g) = quad;
self.gspo.remove(&(g.clone(), s.clone(), p, o.clone()));
self.gpos.remove(&(g.clone(), p, o.clone(), s.clone()));
self.gosp.remove(&(g.clone(), o.clone(), s.clone(), p));
self.spog.remove(&(s.clone(), p, o.clone(), g.clone()));
self.posg.remove(&(p, o.clone(), s.clone(), g.clone()));
self.ospg.remove(&(o, s, p, g))
}
/// Clears the dataset.
pub fn clear(&mut self) {
self.gspo.clear();
self.gpos.clear();
self.gosp.clear();
self.spog.clear();
self.posg.clear();
self.ospg.clear();
}
fn encode_quad(
&mut self,
quad: QuadRef<'_>,
) -> (
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
) {
(
InternedSubject::encoded_into(quad.subject, &mut self.interner),
InternedNamedNode::encoded_into(quad.predicate, &mut self.interner),
InternedTerm::encoded_into(quad.object, &mut self.interner),
InternedGraphName::encoded_into(quad.graph_name, &mut self.interner),
)
}
fn encoded_quad(
&self,
quad: QuadRef<'_>,
) -> Option<(
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
)> {
Some((
self.encoded_subject(quad.subject)?,
self.encoded_named_node(quad.predicate)?,
self.encoded_term(quad.object)?,
self.encoded_graph_name(quad.graph_name)?,
))
}
pub(super) fn encoded_named_node<'a>(
&self,
node: impl Into<NamedNodeRef<'a>>,
) -> Option<InternedNamedNode> {
InternedNamedNode::encoded_from(node.into(), &self.interner)
}
pub(super) fn encoded_subject<'a>(
&self,
node: impl Into<SubjectRef<'a>>,
) -> Option<InternedSubject> {
InternedSubject::encoded_from(node.into(), &self.interner)
}
pub(super) fn encoded_term<'a>(&self, term: impl Into<TermRef<'a>>) -> Option<InternedTerm> {
InternedTerm::encoded_from(term.into(), &self.interner)
}
pub(super) fn encoded_graph_name<'a>(
&self,
graph_name: impl Into<GraphNameRef<'a>>,
) -> Option<InternedGraphName> {
InternedGraphName::encoded_from(graph_name.into(), &self.interner)
}
fn decode_spog(
&self,
quad: (
&InternedSubject,
&InternedNamedNode,
&InternedTerm,
&InternedGraphName,
),
) -> QuadRef<'_> {
QuadRef {
subject: quad.0.decode_from(&self.interner),
predicate: quad.1.decode_from(&self.interner),
object: quad.2.decode_from(&self.interner),
graph_name: quad.3.decode_from(&self.interner),
}
}
fn decode_spo(
&self,
triple: (&InternedSubject, &InternedNamedNode, &InternedTerm),
) -> TripleRef<'_> {
TripleRef {
subject: triple.0.decode_from(&self.interner),
predicate: triple.1.decode_from(&self.interner),
object: triple.2.decode_from(&self.interner),
}
}
/// Applies on the dataset the canonicalization process described in
/// [Canonical Forms for Isomorphic and Equivalent RDF Graphs: Algorithms for Leaning and Labelling Blank Nodes, Aidan Hogan, 2017](http://aidanhogan.com/docs/rdf-canonicalisation.pdf).
///
/// Usage example ([Dataset isomorphism](https://www.w3.org/TR/rdf11-concepts/#dfn-dataset-isomorphism)):
/// ```
/// use oxrdf::*;
///
/// let iri = NamedNodeRef::new("http://example.com")?;
///
/// let mut graph1 = Graph::new();
/// let bnode1 = BlankNode::default();
/// let g1 = BlankNode::default();
/// graph1.insert(QuadRef::new(iri, iri, &bnode1, &g1));
/// graph1.insert(QuadRef::new(&bnode1, iri, iri, &g1));
///
/// let mut graph2 = Graph::new();
/// let bnode2 = BlankNode::default();
/// let g2 = BlankNode::default();
/// graph2.insert(QuadRef::new(iri, iri, &bnode2, &g2));
/// graph2.insert(QuadRef::new(&bnode2, iri, iri, &g2));
///
/// assert_ne!(graph1, graph2);
/// graph1.canonicalize();
/// graph2.canonicalize();
/// assert_eq!(graph1, graph2);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
///
/// Warning 1: Blank node ids depends on the current shape of the graph. Adding a new quad might change the ids of a lot of blank nodes.
/// Hence, this canonization might not be suitable for diffs.
///
/// Warning 2: The canonicalization algorithm is not stable and canonical blank node ids might change between Oxigraph version.
///
/// Warning 3: This implementation worst-case complexity is in *O(b!)* with *b* the number of blank nodes in the input dataset.
pub fn canonicalize(&mut self) {
let bnodes = self.blank_nodes();
let (hash, partition) =
self.hash_bnodes(bnodes.into_iter().map(|bnode| (bnode, 0)).collect());
let new_quads = self.distinguish(&hash, &partition);
self.clear();
for quad in new_quads {
self.insert_encoded(quad);
}
}
fn blank_nodes(&self) -> HashSet<InternedBlankNode> {
let mut bnodes = HashSet::new();
for (g, s, _, o) in &self.gspo {
if let InternedSubject::BlankNode(bnode) = s {
bnodes.insert(*bnode);
}
#[cfg(feature = "rdf-star")]
if let InternedSubject::Triple(triple) = s {
Self::triple_blank_nodes(triple, &mut bnodes);
}
if let InternedTerm::BlankNode(bnode) = o {
bnodes.insert(*bnode);
}
#[cfg(feature = "rdf-star")]
if let InternedTerm::Triple(triple) = o {
Self::triple_blank_nodes(triple, &mut bnodes);
}
if let InternedGraphName::BlankNode(bnode) = g {
bnodes.insert(*bnode);
}
}
bnodes
}
#[cfg(feature = "rdf-star")]
fn triple_blank_nodes(triple: &InternedTriple, bnodes: &mut HashSet<InternedBlankNode>) {
if let InternedSubject::BlankNode(bnode) = &triple.subject {
bnodes.insert(*bnode);
} else if let InternedSubject::Triple(t) = &triple.subject {
Self::triple_blank_nodes(t, bnodes);
}
if let InternedTerm::BlankNode(bnode) = &triple.object {
bnodes.insert(*bnode);
} else if let InternedTerm::Triple(t) = &triple.object {
Self::triple_blank_nodes(t, bnodes);
}
}
fn hash_bnodes(
&self,
mut hashes: HashMap<InternedBlankNode, u64>,
) -> (
HashMap<InternedBlankNode, u64>,
Vec<(u64, Vec<InternedBlankNode>)>,
) {
let mut to_hash = Vec::new();
let mut partition: HashMap<u64, Vec<InternedBlankNode>> = HashMap::new();
let mut partition_len = 0;
loop {
//TODO: improve termination
let mut new_hashes = HashMap::new();
for (bnode, old_hash) in &hashes {
for (_, p, o, g) in
self.interned_quads_for_subject(&InternedSubject::BlankNode(*bnode))
{
to_hash.push((
self.hash_named_node(*p),
self.hash_term(o, &hashes),
self.hash_graph_name(g, &hashes),
0,
));
}
for (s, p, _, g) in self.interned_quads_for_object(&InternedTerm::BlankNode(*bnode))
{
to_hash.push((
self.hash_subject(s, &hashes),
self.hash_named_node(*p),
self.hash_graph_name(g, &hashes),
1,
));
}
for (s, p, o, _) in
self.interned_quads_for_graph_name(&InternedGraphName::BlankNode(*bnode))
{
to_hash.push((
self.hash_subject(s, &hashes),
self.hash_named_node(*p),
self.hash_term(o, &hashes),
2,
));
}
to_hash.sort_unstable();
let hash = Self::hash_tuple((old_hash, &to_hash));
to_hash.clear();
new_hashes.insert(*bnode, hash);
partition.entry(hash).or_default().push(*bnode);
}
if partition.len() == partition_len {
let mut partition: Vec<_> = partition.into_iter().collect();
partition.sort_by(|(h1, b1), (h2, b2)| (b1.len(), h1).cmp(&(b2.len(), h2)));
return (hashes, partition);
}
hashes = new_hashes;
partition_len = partition.len();
partition.clear();
}
}
fn hash_named_node(&self, node: InternedNamedNode) -> u64 {
Self::hash_tuple(node.decode_from(&self.interner))
}
fn hash_subject(
&self,
node: &InternedSubject,
bnodes_hash: &HashMap<InternedBlankNode, u64>,
) -> u64 {
#[cfg(feature = "rdf-star")]
if let InternedSubject::Triple(triple) = node {
return self.hash_triple(triple, bnodes_hash);
}
if let InternedSubject::BlankNode(bnode) = node {
bnodes_hash[bnode]
} else {
Self::hash_tuple(node.decode_from(&self.interner))
}
}
fn hash_term(&self, term: &InternedTerm, bnodes_hash: &HashMap<InternedBlankNode, u64>) -> u64 {
#[cfg(feature = "rdf-star")]
if let InternedTerm::Triple(triple) = term {
return self.hash_triple(triple, bnodes_hash);
}
if let InternedTerm::BlankNode(bnode) = term {
bnodes_hash[bnode]
} else {
Self::hash_tuple(term.decode_from(&self.interner))
}
}
fn hash_graph_name(
&self,
graph_name: &InternedGraphName,
bnodes_hash: &HashMap<InternedBlankNode, u64>,
) -> u64 {
if let InternedGraphName::BlankNode(bnode) = graph_name {
bnodes_hash[bnode]
} else {
Self::hash_tuple(graph_name.decode_from(&self.interner))
}
}
#[cfg(feature = "rdf-star")]
fn hash_triple(
&self,
triple: &InternedTriple,
bnodes_hash: &HashMap<InternedBlankNode, u64>,
) -> u64 {
Self::hash_tuple((
self.hash_subject(&triple.subject, bnodes_hash),
self.hash_named_node(triple.predicate),
self.hash_term(&triple.object, bnodes_hash),
))
}
fn hash_tuple(v: impl Hash) -> u64 {
let mut hasher = DefaultHasher::new();
v.hash(&mut hasher);
hasher.finish()
}
fn distinguish(
&mut self,
hash: &HashMap<InternedBlankNode, u64>,
partition: &[(u64, Vec<InternedBlankNode>)],
) -> Vec<(
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
)> {
let b_prime = partition.iter().find_map(|(_, b)| (b.len() > 1).then(|| b));
if let Some(b_prime) = b_prime {
b_prime
.iter()
.map(|b| {
let mut hash_prime = hash.clone();
hash_prime.insert(*b, Self::hash_tuple((hash_prime[b], 22)));
let (hash_prime_prime, partition_prime) = self.hash_bnodes(hash_prime);
self.distinguish(&hash_prime_prime, &partition_prime)
})
.fold(None, |a, b| {
Some(if let Some(a) = a {
if a <= b {
a
} else {
b
}
} else {
b
})
})
.unwrap_or_default()
} else {
self.label(hash)
}
}
#[allow(clippy::needless_collect)]
fn label(
&mut self,
hashes: &HashMap<InternedBlankNode, u64>,
) -> Vec<(
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
)> {
let old_quads: Vec<_> = self.spog.iter().cloned().collect();
let mut quads: Vec<_> = old_quads
.into_iter()
.map(|(s, p, o, g)| {
(
if let InternedSubject::BlankNode(bnode) = s {
InternedSubject::BlankNode(self.map_bnode(bnode, hashes))
} else {
#[cfg(feature = "rdf-star")]
{
if let InternedSubject::Triple(triple) = s {
InternedSubject::Triple(Box::new(InternedTriple::encoded_into(
self.label_triple(&triple, hashes).as_ref(),
&mut self.interner,
)))
} else {
s
}
}
#[cfg(not(feature = "rdf-star"))]
{
s
}
},
p,
if let InternedTerm::BlankNode(bnode) = o {
InternedTerm::BlankNode(self.map_bnode(bnode, hashes))
} else {
#[cfg(feature = "rdf-star")]
{
if let InternedTerm::Triple(triple) = o {
InternedTerm::Triple(Box::new(InternedTriple::encoded_into(
self.label_triple(&triple, hashes).as_ref(),
&mut self.interner,
)))
} else {
o
}
}
#[cfg(not(feature = "rdf-star"))]
{
o
}
},
if let InternedGraphName::BlankNode(bnode) = g {
InternedGraphName::BlankNode(self.map_bnode(bnode, hashes))
} else {
g
},
)
})
.collect();
quads.sort();
quads
}
#[cfg(feature = "rdf-star")]
fn label_triple(
&mut self,
triple: &InternedTriple,
hashes: &HashMap<InternedBlankNode, u64>,
) -> Triple {
Triple {
subject: if let InternedSubject::BlankNode(bnode) = &triple.subject {
Self::gen_bnode(*bnode, hashes).into()
} else if let InternedSubject::Triple(t) = &triple.subject {
self.label_triple(t, hashes).into()
} else {
triple.subject.decode_from(&self.interner).into_owned()
},
predicate: triple.predicate.decode_from(&self.interner).into_owned(),
object: if let InternedTerm::BlankNode(bnode) = &triple.object {
Self::gen_bnode(*bnode, hashes).into()
} else if let InternedTerm::Triple(t) = &triple.object {
self.label_triple(t, hashes).into()
} else {
triple.object.decode_from(&self.interner).into_owned()
},
}
}
fn map_bnode(
&mut self,
old_bnode: InternedBlankNode,
hashes: &HashMap<InternedBlankNode, u64>,
) -> InternedBlankNode {
InternedBlankNode::encoded_into(
Self::gen_bnode(old_bnode, hashes).as_ref(),
&mut self.interner,
)
}
fn gen_bnode(
old_bnode: InternedBlankNode,
hashes: &HashMap<InternedBlankNode, u64>,
) -> BlankNode {
BlankNode::new_from_unique_id(hashes[&old_bnode].into())
}
}
impl PartialEq for Dataset {
fn eq(&self, other: &Self) -> bool {
if self.len() != other.len() {
return false;
}
for q in self {
if !other.contains(q) {
return false;
}
}
true
}
}
impl Eq for Dataset {}
impl<'a> IntoIterator for &'a Dataset {
type Item = QuadRef<'a>;
type IntoIter = Iter<'a>;
fn into_iter(self) -> Iter<'a> {
self.iter()
}
}
impl FromIterator<Quad> for Dataset {
fn from_iter<I: IntoIterator<Item = Quad>>(iter: I) -> Self {
let mut g = Self::new();
g.extend(iter);
g
}
}
impl<'a, T: Into<QuadRef<'a>>> FromIterator<T> for Dataset {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut g = Self::new();
g.extend(iter);
g
}
}
impl Extend<Quad> for Dataset {
fn extend<I: IntoIterator<Item = Quad>>(&mut self, iter: I) {
for t in iter {
self.insert(&t);
}
}
}
impl<'a, T: Into<QuadRef<'a>>> Extend<T> for Dataset {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for t in iter {
self.insert(t);
}
}
}
impl fmt::Display for Dataset {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for t in self {
writeln!(f, "{t} .")?;
}
Ok(())
}
}
/// A read-only view on an [RDF graph](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-graph) contained in a [`Dataset`].
///
/// It is built using the [`Dataset::graph`] method.
///
/// Usage example:
/// ```
/// use oxrdf::*;
///
/// let mut dataset = Dataset::default();
/// let ex = NamedNodeRef::new("http://example.com")?;
/// dataset.insert(QuadRef::new(ex, ex, ex, ex));
///
/// let results: Vec<_> = dataset.graph(ex).iter().collect();
/// assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
#[derive(Clone, Debug)]
pub struct GraphView<'a> {
dataset: &'a Dataset,
graph_name: InternedGraphName,
}
impl<'a> GraphView<'a> {
/// Returns all the triples contained by the graph.
pub fn iter(&self) -> GraphViewIter<'a> {
let iter = self.dataset.gspo.range(
&(
self.graph_name.clone(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedTerm::first(),
)
..&(
self.graph_name.next(),
InternedSubject::first(),
InternedNamedNode::first(),
InternedTerm::first(),
),
);
GraphViewIter {
dataset: self.dataset,
inner: iter,
}
}
pub fn triples_for_subject<'b>(
&self,
subject: impl Into<SubjectRef<'b>>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.triples_for_interned_subject(self.dataset.encoded_subject(subject))
}
pub(super) fn triples_for_interned_subject(
&self,
subject: Option<InternedSubject>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
let subject = subject.unwrap_or_else(InternedSubject::impossible);
let ds = self.dataset;
self.dataset
.gspo
.range(
&(
self.graph_name.clone(),
subject.clone(),
InternedNamedNode::first(),
InternedTerm::first(),
)
..&(
self.graph_name.clone(),
subject.next(),
InternedNamedNode::first(),
InternedTerm::first(),
),
)
.map(move |q| {
let (_, s, p, o) = q;
ds.decode_spo((s, p, o))
})
}
pub fn objects_for_subject_predicate<'b>(
&self,
subject: impl Into<SubjectRef<'b>>,
predicate: impl Into<NamedNodeRef<'b>>,
) -> impl Iterator<Item = TermRef<'a>> + 'a {
self.objects_for_interned_subject_predicate(
self.dataset.encoded_subject(subject),
self.dataset.encoded_named_node(predicate),
)
}
pub(super) fn objects_for_interned_subject_predicate(
&self,
subject: Option<InternedSubject>,
predicate: Option<InternedNamedNode>,
) -> impl Iterator<Item = TermRef<'a>> + 'a {
let subject = subject.unwrap_or_else(InternedSubject::impossible);
let predicate = predicate.unwrap_or_else(InternedNamedNode::impossible);
let ds = self.dataset;
self.dataset
.gspo
.range(
&(
self.graph_name.clone(),
subject.clone(),
predicate,
InternedTerm::first(),
)
..&(
self.graph_name.clone(),
subject,
predicate.next(),
InternedTerm::first(),
),
)
.map(move |q| q.3.decode_from(&ds.interner))
}
pub fn object_for_subject_predicate<'b>(
&self,
subject: impl Into<SubjectRef<'b>>,
predicate: impl Into<NamedNodeRef<'b>>,
) -> Option<TermRef<'a>> {
self.objects_for_subject_predicate(subject, predicate)
.next()
}
pub fn predicates_for_subject_object<'b>(
&self,
subject: impl Into<SubjectRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = NamedNodeRef<'a>> + 'a {
self.predicates_for_interned_subject_object(
self.dataset.encoded_subject(subject),
self.dataset.encoded_term(object),
)
}
pub(super) fn predicates_for_interned_subject_object(
&self,
subject: Option<InternedSubject>,
object: Option<InternedTerm>,
) -> impl Iterator<Item = NamedNodeRef<'a>> + 'a {
let subject = subject.unwrap_or_else(InternedSubject::impossible);
let object = object.unwrap_or_else(InternedTerm::impossible);
let ds = self.dataset;
self.dataset
.gosp
.range(
&(
self.graph_name.clone(),
object.clone(),
subject.clone(),
InternedNamedNode::first(),
)
..&(
self.graph_name.clone(),
object,
subject.next(),
InternedNamedNode::first(),
),
)
.map(move |q| q.3.decode_from(&ds.interner))
}
pub fn triples_for_predicate<'b>(
&self,
predicate: impl Into<NamedNodeRef<'b>>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.triples_for_interned_predicate(self.dataset.encoded_named_node(predicate))
}
pub(super) fn triples_for_interned_predicate(
&self,
predicate: Option<InternedNamedNode>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
let predicate = predicate.unwrap_or_else(InternedNamedNode::impossible);
let ds = self.dataset;
self.dataset
.gpos
.range(
&(
self.graph_name.clone(),
predicate,
InternedTerm::first(),
InternedSubject::first(),
)
..&(
self.graph_name.clone(),
predicate.next(),
InternedTerm::first(),
InternedSubject::first(),
),
)
.map(move |(_, p, o, s)| ds.decode_spo((s, p, o)))
}
pub fn subjects_for_predicate_object<'b>(
&self,
predicate: impl Into<NamedNodeRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = SubjectRef<'a>> + 'a {
self.subjects_for_interned_predicate_object(
self.dataset.encoded_named_node(predicate),
self.dataset.encoded_term(object),
)
}
pub(super) fn subjects_for_interned_predicate_object(
&self,
predicate: Option<InternedNamedNode>,
object: Option<InternedTerm>,
) -> impl Iterator<Item = SubjectRef<'a>> + 'a {
let predicate = predicate.unwrap_or_else(InternedNamedNode::impossible);
let object = object.unwrap_or_else(InternedTerm::impossible);
let ds = self.dataset;
self.dataset
.gpos
.range(
&(
self.graph_name.clone(),
predicate,
object.clone(),
InternedSubject::first(),
)
..&(
self.graph_name.clone(),
predicate,
object.next(),
InternedSubject::first(),
),
)
.map(move |q| q.3.decode_from(&ds.interner))
}
pub fn subject_for_predicate_object<'b>(
&self,
predicate: impl Into<NamedNodeRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> Option<SubjectRef<'a>> {
self.subjects_for_predicate_object(predicate, object).next()
}
pub fn triples_for_object<'b>(
&self,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.triples_for_interned_object(self.dataset.encoded_term(object))
}
pub(super) fn triples_for_interned_object(
&self,
object: Option<InternedTerm>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
let object = object.unwrap_or_else(InternedTerm::impossible);
let ds = self.dataset;
self.dataset
.gosp
.range(
&(
self.graph_name.clone(),
object.clone(),
InternedSubject::first(),
InternedNamedNode::first(),
)
..&(
self.graph_name.clone(),
object.next(),
InternedSubject::first(),
InternedNamedNode::first(),
),
)
.map(move |(_, o, s, p)| ds.decode_spo((s, p, o)))
}
/// Checks if the graph contains the given triple.
pub fn contains<'b>(&self, triple: impl Into<TripleRef<'b>>) -> bool {
if let Some(triple) = self.encoded_triple(triple.into()) {
self.dataset.gspo.contains(&(
self.graph_name.clone(),
triple.subject,
triple.predicate,
triple.object,
))
} else {
false
}
}
/// Returns the number of triples in this graph.
pub fn len(&self) -> usize {
self.iter().count()
}
/// Checks if this graph contains a triple.
pub fn is_empty(&self) -> bool {
self.iter().next().is_none()
}
fn encoded_triple(&self, triple: TripleRef<'_>) -> Option<InternedTriple> {
Some(InternedTriple {
subject: self.dataset.encoded_subject(triple.subject)?,
predicate: self.dataset.encoded_named_node(triple.predicate)?,
object: self.dataset.encoded_term(triple.object)?,
})
}
}
impl<'a> IntoIterator for GraphView<'a> {
type Item = TripleRef<'a>;
type IntoIter = GraphViewIter<'a>;
fn into_iter(self) -> GraphViewIter<'a> {
self.iter()
}
}
impl<'a, 'b> IntoIterator for &'b GraphView<'a> {
type Item = TripleRef<'a>;
type IntoIter = GraphViewIter<'a>;
fn into_iter(self) -> GraphViewIter<'a> {
self.iter()
}
}
impl<'a> fmt::Display for GraphView<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for t in self {
writeln!(f, "{t} .")?;
}
Ok(())
}
}
/// A read/write view on an [RDF graph](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-graph) contained in a [`Dataset`].
///
/// It is built using the [`Dataset::graph_mut`] method.
///
/// Usage example:
/// ```
/// use oxrdf::*;
///
/// let mut dataset = Dataset::default();
/// let ex = NamedNodeRef::new("http://example.com")?;
///
/// // We edit and query the dataset http://example.com graph
/// {
/// let mut graph = dataset.graph_mut(ex);
/// graph.insert(TripleRef::new(ex, ex, ex));
/// let results: Vec<_> = graph.iter().collect();
/// assert_eq!(vec![TripleRef::new(ex, ex, ex)], results);
/// }
///
/// // We have also changes the dataset itself
/// let results: Vec<_> = dataset.iter().collect();
/// assert_eq!(vec![QuadRef::new(ex, ex, ex, ex)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
#[derive(Debug)]
pub struct GraphViewMut<'a> {
dataset: &'a mut Dataset,
graph_name: InternedGraphName,
}
impl<'a> GraphViewMut<'a> {
fn read(&self) -> GraphView<'_> {
GraphView {
dataset: self.dataset,
graph_name: self.graph_name.clone(),
}
}
/// Adds a triple to the graph.
pub fn insert<'b>(&mut self, triple: impl Into<TripleRef<'b>>) -> bool {
let triple = self.encode_triple(triple.into());
self.dataset.insert_encoded((
triple.subject,
triple.predicate,
triple.object,
self.graph_name.clone(),
))
}
/// Removes a concrete triple from the graph.
pub fn remove<'b>(&mut self, triple: impl Into<TripleRef<'b>>) -> bool {
if let Some(triple) = self.read().encoded_triple(triple.into()) {
self.dataset.remove_encoded((
triple.subject,
triple.predicate,
triple.object,
self.graph_name.clone(),
))
} else {
false
}
}
fn encode_triple(&mut self, triple: TripleRef<'_>) -> InternedTriple {
InternedTriple {
subject: InternedSubject::encoded_into(triple.subject, &mut self.dataset.interner),
predicate: InternedNamedNode::encoded_into(
triple.predicate,
&mut self.dataset.interner,
),
object: InternedTerm::encoded_into(triple.object, &mut self.dataset.interner),
}
}
/// Returns all the triples contained by the graph
pub fn iter(&'a self) -> GraphViewIter<'a> {
self.read().iter()
}
pub fn triples_for_subject<'b>(
&'a self,
subject: impl Into<SubjectRef<'b>>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.read()
.triples_for_interned_subject(self.dataset.encoded_subject(subject))
}
pub fn objects_for_subject_predicate<'b>(
&'a self,
subject: impl Into<SubjectRef<'b>>,
predicate: impl Into<NamedNodeRef<'b>>,
) -> impl Iterator<Item = TermRef<'a>> + 'a {
self.read().objects_for_interned_subject_predicate(
self.dataset.encoded_subject(subject),
self.dataset.encoded_named_node(predicate),
)
}
pub fn object_for_subject_predicate<'b>(
&'a self,
subject: impl Into<SubjectRef<'b>>,
predicate: impl Into<NamedNodeRef<'b>>,
) -> Option<TermRef<'a>> {
self.read().object_for_subject_predicate(subject, predicate)
}
pub fn predicates_for_subject_object<'b>(
&'a self,
subject: impl Into<SubjectRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = NamedNodeRef<'a>> + 'a {
self.read().predicates_for_interned_subject_object(
self.dataset.encoded_subject(subject),
self.dataset.encoded_term(object),
)
}
pub fn triples_for_predicate<'b>(
&'a self,
predicate: impl Into<NamedNodeRef<'b>>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.read()
.triples_for_interned_predicate(self.dataset.encoded_named_node(predicate))
}
pub fn subjects_for_predicate_object<'b>(
&'a self,
predicate: impl Into<NamedNodeRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> impl Iterator<Item = SubjectRef<'a>> + 'a {
self.read().subjects_for_interned_predicate_object(
self.dataset.encoded_named_node(predicate),
self.dataset.encoded_term(object),
)
}
pub fn subject_for_predicate_object<'b>(
&'a self,
predicate: impl Into<NamedNodeRef<'b>>,
object: impl Into<TermRef<'b>>,
) -> Option<SubjectRef<'a>> {
self.read().subject_for_predicate_object(predicate, object)
}
pub fn triples_for_object<'b>(
&'a self,
object: TermRef<'b>,
) -> impl Iterator<Item = TripleRef<'a>> + 'a {
self.read()
.triples_for_interned_object(self.dataset.encoded_term(object))
}
/// Checks if the graph contains the given triple.
pub fn contains<'b>(&self, triple: impl Into<TripleRef<'b>>) -> bool {
self.read().contains(triple)
}
/// Returns the number of triples in this graph.
pub fn len(&self) -> usize {
self.read().len()
}
/// Checks if this graph contains a triple.
pub fn is_empty(&self) -> bool {
self.read().is_empty()
}
}
impl<'a> Extend<Triple> for GraphViewMut<'a> {
fn extend<I: IntoIterator<Item = Triple>>(&mut self, iter: I) {
for t in iter {
self.insert(&t);
}
}
}
impl<'a, 'b, T: Into<TripleRef<'b>>> Extend<T> for GraphViewMut<'a> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for t in iter {
self.insert(t);
}
}
}
impl<'a> IntoIterator for &'a GraphViewMut<'a> {
type Item = TripleRef<'a>;
type IntoIter = GraphViewIter<'a>;
fn into_iter(self) -> GraphViewIter<'a> {
self.iter()
}
}
impl<'a> fmt::Display for GraphViewMut<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for t in self {
writeln!(f, "{t}")?;
}
Ok(())
}
}
/// Iterator returned by [`Dataset::iter`].
pub struct Iter<'a> {
dataset: &'a Dataset,
inner: std::collections::btree_set::Iter<
'a,
(
InternedSubject,
InternedNamedNode,
InternedTerm,
InternedGraphName,
),
>,
}
impl<'a> Iterator for Iter<'a> {
type Item = QuadRef<'a>;
fn next(&mut self) -> Option<QuadRef<'a>> {
self.inner
.next()
.map(|(s, p, o, g)| self.dataset.decode_spog((s, p, o, g)))
}
}
/// Iterator returned by [`GraphView::iter`].
pub struct GraphViewIter<'a> {
dataset: &'a Dataset,
inner: std::collections::btree_set::Range<
'a,
(
InternedGraphName,
InternedSubject,
InternedNamedNode,
InternedTerm,
),
>,
}
impl<'a> Iterator for GraphViewIter<'a> {
type Item = TripleRef<'a>;
fn next(&mut self) -> Option<TripleRef<'a>> {
self.inner
.next()
.map(|(_, s, p, o)| self.dataset.decode_spo((s, p, o)))
}
}