Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/src/sparql/plan_builder.rs

1106 lines
47 KiB

use crate::model::{BlankNode, Term};
use crate::sparql::algebra::*;
use crate::sparql::model::*;
use crate::sparql::plan::*;
use crate::store::numeric_encoder::{Encoder, ENCODED_DEFAULT_GRAPH};
use crate::Error;
use crate::Result;
use std::collections::{BTreeSet, HashSet};
use std::rc::Rc;
pub struct PlanBuilder<E: Encoder> {
encoder: E,
}
impl<E: Encoder> PlanBuilder<E> {
pub fn build(encoder: E, pattern: &GraphPattern) -> Result<(PlanNode, Vec<Variable>)> {
let mut variables = Vec::default();
let plan = PlanBuilder { encoder }.build_for_graph_pattern(
pattern,
&mut variables,
PatternValue::Constant(ENCODED_DEFAULT_GRAPH),
)?;
Ok((plan, variables))
}
pub fn build_graph_template(
encoder: E,
template: &[TriplePattern],
mut variables: Vec<Variable>,
) -> Result<Vec<TripleTemplate>> {
PlanBuilder { encoder }.build_for_graph_template(template, &mut variables)
}
fn build_for_graph_pattern(
&mut self,
pattern: &GraphPattern,
variables: &mut Vec<Variable>,
graph_name: PatternValue,
) -> Result<PlanNode> {
Ok(match pattern {
GraphPattern::BGP(p) => self.build_for_bgp(p, variables, graph_name)?,
GraphPattern::Join(a, b) => PlanNode::Join {
left: Rc::new(self.build_for_graph_pattern(a, variables, graph_name)?),
right: Rc::new(self.build_for_graph_pattern(b, variables, graph_name)?),
},
GraphPattern::LeftJoin(a, b, e) => {
let left = self.build_for_graph_pattern(a, variables, graph_name)?;
let right = self.build_for_graph_pattern(b, variables, graph_name)?;
let mut possible_problem_vars = BTreeSet::new();
self.add_left_join_problematic_variables(&right, &mut possible_problem_vars);
//We add the extra filter if needed
let right = if let Some(e) = e {
PlanNode::Filter {
child: Rc::new(right),
expression: Rc::new(self.build_for_expression(e, variables, graph_name)?),
}
} else {
right
};
PlanNode::LeftJoin {
left: Rc::new(left),
right: Rc::new(right),
possible_problem_vars: Rc::new(possible_problem_vars.into_iter().collect()),
}
}
GraphPattern::Filter(e, p) => PlanNode::Filter {
child: Rc::new(self.build_for_graph_pattern(p, variables, graph_name)?),
expression: Rc::new(self.build_for_expression(e, variables, graph_name)?),
},
GraphPattern::Union(a, b) => {
//We flatten the UNIONs
let mut stack: Vec<&GraphPattern> = vec![a, b];
let mut children = vec![];
loop {
match stack.pop() {
None => break,
Some(GraphPattern::Union(a, b)) => {
stack.push(a);
stack.push(b);
}
Some(p) => children.push(Rc::new(
self.build_for_graph_pattern(p, variables, graph_name)?,
)),
}
}
PlanNode::Union { children }
}
GraphPattern::Graph(g, p) => {
let graph_name = self.pattern_value_from_named_node_or_variable(g, variables)?;
self.build_for_graph_pattern(p, variables, graph_name)?
}
GraphPattern::Extend(p, v, e) => PlanNode::Extend {
child: Rc::new(self.build_for_graph_pattern(p, variables, graph_name)?),
position: variable_key(variables, v),
expression: Rc::new(self.build_for_expression(e, variables, graph_name)?),
},
GraphPattern::Minus(a, b) => PlanNode::AntiJoin {
left: Rc::new(self.build_for_graph_pattern(a, variables, graph_name)?),
right: Rc::new(self.build_for_graph_pattern(b, variables, graph_name)?),
},
GraphPattern::Service(n, p, s) => {
// Child building should be at the begging in order for `variables` to be filled
let child = self.build_for_graph_pattern(p, variables, graph_name)?;
let service_name = self.pattern_value_from_named_node_or_variable(n, variables)?;
PlanNode::Service {
service_name,
variables: Rc::new(variables.clone()),
child: Rc::new(child),
graph_pattern: Rc::new(*p.clone()),
silent: *s,
}
}
GraphPattern::AggregateJoin(GroupPattern(key, p), aggregates) => {
let mut inner_variables = key.clone();
let inner_graph_name =
self.convert_pattern_value_id(graph_name, variables, &mut inner_variables);
PlanNode::Aggregate {
child: Rc::new(self.build_for_graph_pattern(
p,
&mut inner_variables,
inner_graph_name,
)?),
key_mapping: Rc::new(
key.iter()
.map(|k| {
(
variable_key(&mut inner_variables, k),
variable_key(variables, k),
)
})
.collect(),
),
aggregates: Rc::new(
aggregates
.iter()
.map(|(a, v)| {
Ok((
self.build_for_aggregate(a, &mut inner_variables, graph_name)?,
variable_key(variables, v),
))
})
.collect::<Result<Vec<_>>>()?,
),
}
}
GraphPattern::Data(bs) => PlanNode::StaticBindings {
tuples: self.encode_bindings(bs, variables)?,
},
GraphPattern::OrderBy(l, o) => {
let by: Result<Vec<_>> = o
.iter()
.map(|comp| match comp {
OrderComparator::Asc(e) => Ok(Comparator::Asc(
self.build_for_expression(e, variables, graph_name)?,
)),
OrderComparator::Desc(e) => Ok(Comparator::Desc(
self.build_for_expression(e, variables, graph_name)?,
)),
})
.collect();
PlanNode::Sort {
child: Rc::new(self.build_for_graph_pattern(l, variables, graph_name)?),
by: by?,
}
}
GraphPattern::Project(l, new_variables) => {
let mut inner_variables = new_variables.clone();
let inner_graph_name =
self.convert_pattern_value_id(graph_name, variables, &mut inner_variables);
PlanNode::Project {
child: Rc::new(self.build_for_graph_pattern(
l,
&mut inner_variables,
inner_graph_name,
)?),
mapping: Rc::new(
new_variables
.iter()
.enumerate()
.map(|(new_variable, variable)| {
(new_variable, variable_key(variables, variable))
})
.collect(),
),
}
}
GraphPattern::Distinct(l) => PlanNode::HashDeduplicate {
child: Rc::new(self.build_for_graph_pattern(l, variables, graph_name)?),
},
GraphPattern::Reduced(l) => self.build_for_graph_pattern(l, variables, graph_name)?,
GraphPattern::Slice(l, start, length) => {
let mut plan = self.build_for_graph_pattern(l, variables, graph_name)?;
if *start > 0 {
plan = PlanNode::Skip {
child: Rc::new(plan),
count: *start,
};
}
if let Some(length) = length {
plan = PlanNode::Limit {
child: Rc::new(plan),
count: *length,
};
}
plan
}
})
}
fn build_for_bgp(
&mut self,
p: &[TripleOrPathPattern],
variables: &mut Vec<Variable>,
graph_name: PatternValue,
) -> Result<PlanNode> {
let mut plan = PlanNode::Init;
for pattern in sort_bgp(p) {
plan = match pattern {
TripleOrPathPattern::Triple(pattern) => PlanNode::QuadPatternJoin {
child: Rc::new(plan),
subject: self
.pattern_value_from_term_or_variable(&pattern.subject, variables)?,
predicate: self
.pattern_value_from_named_node_or_variable(&pattern.predicate, variables)?,
object: self.pattern_value_from_term_or_variable(&pattern.object, variables)?,
graph_name,
},
TripleOrPathPattern::Path(pattern) => PlanNode::PathPatternJoin {
child: Rc::new(plan),
subject: self
.pattern_value_from_term_or_variable(&pattern.subject, variables)?,
path: Rc::new(self.build_for_path(&pattern.path)?),
object: self.pattern_value_from_term_or_variable(&pattern.object, variables)?,
graph_name,
},
}
}
Ok(plan)
}
fn build_for_path(&mut self, path: &PropertyPath) -> Result<PlanPropertyPath> {
Ok(match path {
PropertyPath::PredicatePath(p) => PlanPropertyPath::PredicatePath(
self.encoder.encode_named_node(p).map_err(|e| e.into())?,
),
PropertyPath::InversePath(p) => {
PlanPropertyPath::InversePath(Rc::new(self.build_for_path(p)?))
}
PropertyPath::AlternativePath(a, b) => PlanPropertyPath::AlternativePath(
Rc::new(self.build_for_path(a)?),
Rc::new(self.build_for_path(b)?),
),
PropertyPath::SequencePath(a, b) => PlanPropertyPath::SequencePath(
Rc::new(self.build_for_path(a)?),
Rc::new(self.build_for_path(b)?),
),
PropertyPath::ZeroOrMorePath(p) => {
PlanPropertyPath::ZeroOrMorePath(Rc::new(self.build_for_path(p)?))
}
PropertyPath::OneOrMorePath(p) => {
PlanPropertyPath::OneOrMorePath(Rc::new(self.build_for_path(p)?))
}
PropertyPath::ZeroOrOnePath(p) => {
PlanPropertyPath::ZeroOrOnePath(Rc::new(self.build_for_path(p)?))
}
PropertyPath::NegatedPropertySet(p) => PlanPropertyPath::NegatedPropertySet(Rc::new(
p.iter()
.map(|p| self.encoder.encode_named_node(p).map_err(|e| e.into()))
.collect::<Result<Vec<_>>>()?,
)),
})
}
fn build_for_expression(
&mut self,
expression: &Expression,
variables: &mut Vec<Variable>,
graph_name: PatternValue,
) -> Result<PlanExpression> {
Ok(match expression {
Expression::NamedNode(node) => PlanExpression::Constant(
self.encoder.encode_named_node(node).map_err(|e| e.into())?,
),
Expression::Literal(l) => {
PlanExpression::Constant(self.encoder.encode_literal(l).map_err(|e| e.into())?)
}
Expression::Variable(v) => PlanExpression::Variable(variable_key(variables, v)),
Expression::Or(a, b) => PlanExpression::Or(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::And(a, b) => PlanExpression::And(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Equal(a, b) => PlanExpression::Equal(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::NotEqual(a, b) => PlanExpression::NotEqual(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Greater(a, b) => PlanExpression::Greater(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::GreaterOrEq(a, b) => PlanExpression::GreaterOrEq(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Lower(a, b) => PlanExpression::Lower(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::LowerOrEq(a, b) => PlanExpression::LowerOrEq(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::In(e, l) => PlanExpression::In(
Box::new(self.build_for_expression(e, variables, graph_name)?),
self.expression_list(l, variables, graph_name)?,
),
Expression::NotIn(e, l) => PlanExpression::UnaryNot(Box::new(PlanExpression::In(
Box::new(self.build_for_expression(e, variables, graph_name)?),
self.expression_list(l, variables, graph_name)?,
))),
Expression::Add(a, b) => PlanExpression::Add(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Sub(a, b) => PlanExpression::Sub(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Mul(a, b) => PlanExpression::Mul(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::Div(a, b) => PlanExpression::Div(
Box::new(self.build_for_expression(a, variables, graph_name)?),
Box::new(self.build_for_expression(b, variables, graph_name)?),
),
Expression::UnaryPlus(e) => PlanExpression::UnaryPlus(Box::new(
self.build_for_expression(e, variables, graph_name)?,
)),
Expression::UnaryMinus(e) => PlanExpression::UnaryMinus(Box::new(
self.build_for_expression(e, variables, graph_name)?,
)),
Expression::UnaryNot(e) => PlanExpression::UnaryNot(Box::new(
self.build_for_expression(e, variables, graph_name)?,
)),
Expression::FunctionCall(function, parameters) => match function {
Function::Str => PlanExpression::Str(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Lang => PlanExpression::Lang(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::LangMatches => PlanExpression::LangMatches(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::Datatype => PlanExpression::Datatype(Box::new(
self.build_for_expression(&parameters[0], variables, graph_name)?,
)),
Function::IRI => PlanExpression::IRI(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::BNode => PlanExpression::BNode(match parameters.get(0) {
Some(e) => Some(Box::new(
self.build_for_expression(e, variables, graph_name)?,
)),
None => None,
}),
Function::Rand => PlanExpression::Rand,
Function::Abs => PlanExpression::Abs(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Ceil => PlanExpression::Ceil(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Floor => PlanExpression::Floor(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Round => PlanExpression::Round(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Concat => {
PlanExpression::Concat(self.expression_list(parameters, variables, graph_name)?)
}
Function::SubStr => PlanExpression::SubStr(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
match parameters.get(2) {
Some(flags) => Some(Box::new(
self.build_for_expression(flags, variables, graph_name)?,
)),
None => None,
},
),
Function::StrLen => PlanExpression::StrLen(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Replace => PlanExpression::Replace(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[2], variables, graph_name)?),
match parameters.get(3) {
Some(flags) => Some(Box::new(
self.build_for_expression(flags, variables, graph_name)?,
)),
None => None,
},
),
Function::UCase => PlanExpression::UCase(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::LCase => PlanExpression::LCase(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::EncodeForURI => PlanExpression::EncodeForURI(Box::new(
self.build_for_expression(&parameters[0], variables, graph_name)?,
)),
Function::Contains => PlanExpression::Contains(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::StrStarts => PlanExpression::StrStarts(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::StrEnds => PlanExpression::StrEnds(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::StrBefore => PlanExpression::StrBefore(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::StrAfter => PlanExpression::StrAfter(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::Year => PlanExpression::Year(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Month => PlanExpression::Month(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Day => PlanExpression::Day(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Hours => PlanExpression::Hours(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Minutes => PlanExpression::Minutes(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Seconds => PlanExpression::Seconds(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Timezone => PlanExpression::Timezone(Box::new(
self.build_for_expression(&parameters[0], variables, graph_name)?,
)),
Function::Tz => PlanExpression::Tz(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Now => PlanExpression::Now,
Function::UUID => PlanExpression::UUID,
Function::StrUUID => PlanExpression::StrUUID,
Function::MD5 => PlanExpression::MD5(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::SHA1 => PlanExpression::SHA1(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::SHA256 => PlanExpression::SHA256(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::SHA384 => PlanExpression::SHA384(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::SHA512 => PlanExpression::SHA512(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::Coalesce => PlanExpression::Coalesce(
self.expression_list(parameters, variables, graph_name)?,
),
Function::If => PlanExpression::If(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[2], variables, graph_name)?),
),
Function::StrLang => PlanExpression::StrLang(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::StrDT => PlanExpression::StrDT(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::SameTerm => PlanExpression::SameTerm(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
),
Function::IsIRI => PlanExpression::IsIRI(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::IsBlank => PlanExpression::IsBlank(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)),
Function::IsLiteral => PlanExpression::IsLiteral(Box::new(
self.build_for_expression(&parameters[0], variables, graph_name)?,
)),
Function::IsNumeric => PlanExpression::IsNumeric(Box::new(
self.build_for_expression(&parameters[0], variables, graph_name)?,
)),
Function::Regex => PlanExpression::Regex(
Box::new(self.build_for_expression(&parameters[0], variables, graph_name)?),
Box::new(self.build_for_expression(&parameters[1], variables, graph_name)?),
match parameters.get(2) {
Some(flags) => Some(Box::new(
self.build_for_expression(flags, variables, graph_name)?,
)),
None => None,
},
),
Function::Custom(name) => {
if name == "http://www.w3.org/2001/XMLSchema#boolean" {
self.build_cast(
parameters,
PlanExpression::BooleanCast,
variables,
graph_name,
"boolean",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#double" {
self.build_cast(
parameters,
PlanExpression::DoubleCast,
variables,
graph_name,
"double",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#float" {
self.build_cast(
parameters,
PlanExpression::FloatCast,
variables,
graph_name,
"float",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#decimal" {
self.build_cast(
parameters,
PlanExpression::DecimalCast,
variables,
graph_name,
"decimal",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#integer" {
self.build_cast(
parameters,
PlanExpression::IntegerCast,
variables,
graph_name,
"integer",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#date" {
self.build_cast(
parameters,
PlanExpression::DateCast,
variables,
graph_name,
"date",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#time" {
self.build_cast(
parameters,
PlanExpression::TimeCast,
variables,
graph_name,
"time",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#dateTime" {
self.build_cast(
parameters,
PlanExpression::DateTimeCast,
variables,
graph_name,
"dateTime",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#duration" {
self.build_cast(
parameters,
PlanExpression::DurationCast,
variables,
graph_name,
"duration",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#yearMonthDuration" {
self.build_cast(
parameters,
PlanExpression::YearMonthDurationCast,
variables,
graph_name,
"yearMonthDuration",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#dayTimeDuration" {
self.build_cast(
parameters,
PlanExpression::DayTimeDurationCast,
variables,
graph_name,
"dayTimeDuration",
)?
} else if name == "http://www.w3.org/2001/XMLSchema#string" {
self.build_cast(
parameters,
PlanExpression::StringCast,
variables,
graph_name,
"string",
)?
} else {
return Err(Error::msg(format!(
"Not supported custom function {}",
expression
)));
}
}
},
Expression::Bound(v) => PlanExpression::Bound(variable_key(variables, v)),
Expression::Exists(n) => PlanExpression::Exists(Rc::new(
self.build_for_graph_pattern(n, variables, graph_name)?,
)),
})
}
fn build_cast(
&mut self,
parameters: &[Expression],
constructor: impl Fn(Box<PlanExpression>) -> PlanExpression,
variables: &mut Vec<Variable>,
graph_name: PatternValue,
name: &'static str,
) -> Result<PlanExpression> {
if parameters.len() == 1 {
Ok(constructor(Box::new(self.build_for_expression(
&parameters[0],
variables,
graph_name,
)?)))
} else {
Err(Error::msg(format!(
"The xsd:{} casting takes only one parameter",
name
)))
}
}
fn expression_list(
&mut self,
l: &[Expression],
variables: &mut Vec<Variable>,
graph_name: PatternValue,
) -> Result<Vec<PlanExpression>> {
l.iter()
.map(|e| self.build_for_expression(e, variables, graph_name))
.collect()
}
fn pattern_value_from_term_or_variable(
&mut self,
term_or_variable: &TermOrVariable,
variables: &mut Vec<Variable>,
) -> Result<PatternValue> {
Ok(match term_or_variable {
TermOrVariable::Variable(variable) => {
PatternValue::Variable(variable_key(variables, variable))
}
TermOrVariable::Term(Term::BlankNode(bnode)) => {
PatternValue::Variable(variable_key(variables, &Variable::new(bnode.as_str())))
//TODO: very bad hack to convert bnode to variable
}
TermOrVariable::Term(term) => {
PatternValue::Constant(self.encoder.encode_term(term).map_err(|e| e.into())?)
}
})
}
fn pattern_value_from_named_node_or_variable(
&mut self,
named_node_or_variable: &NamedNodeOrVariable,
variables: &mut Vec<Variable>,
) -> Result<PatternValue> {
Ok(match named_node_or_variable {
NamedNodeOrVariable::NamedNode(named_node) => PatternValue::Constant(
self.encoder
.encode_named_node(named_node)
.map_err(|e| e.into())?,
),
NamedNodeOrVariable::Variable(variable) => {
PatternValue::Variable(variable_key(variables, variable))
}
})
}
fn encode_bindings(
&mut self,
bindings: &StaticBindings,
variables: &mut Vec<Variable>,
) -> Result<Vec<EncodedTuple>> {
let bindings_variables_keys = bindings
.variables()
.iter()
.map(|v| variable_key(variables, v))
.collect::<Vec<_>>();
bindings
.values_iter()
.map(move |values| {
let mut result = EncodedTuple::with_capacity(variables.len());
for (key, value) in values.iter().enumerate() {
if let Some(term) = value {
result.set(
bindings_variables_keys[key],
self.encoder.encode_term(term).map_err(|e| e.into())?,
);
}
}
Ok(result)
})
.collect()
}
fn build_for_aggregate(
&mut self,
aggregate: &Aggregation,
variables: &mut Vec<Variable>,
graph_name: PatternValue,
) -> Result<PlanAggregation> {
Ok(match aggregate {
Aggregation::Count(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Count,
parameter: match e {
Some(e) => Some(self.build_for_expression(e, variables, graph_name)?),
None => None,
},
distinct: *distinct,
},
Aggregation::Sum(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Sum,
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
Aggregation::Min(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Min,
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
Aggregation::Max(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Max,
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
Aggregation::Avg(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Avg,
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
Aggregation::Sample(e, distinct) => PlanAggregation {
function: PlanAggregationFunction::Sample,
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
Aggregation::GroupConcat(e, distinct, separator) => PlanAggregation {
function: PlanAggregationFunction::GroupConcat {
separator: Rc::new(separator.clone().unwrap_or_else(|| " ".to_string())),
},
parameter: Some(self.build_for_expression(e, variables, graph_name)?),
distinct: *distinct,
},
})
}
fn build_for_graph_template(
&mut self,
template: &[TriplePattern],
variables: &mut Vec<Variable>,
) -> Result<Vec<TripleTemplate>> {
let mut bnodes = Vec::default();
template
.iter()
.map(|triple| {
Ok(TripleTemplate {
subject: self.template_value_from_term_or_variable(
&triple.subject,
variables,
&mut bnodes,
)?,
predicate: self
.template_value_from_named_node_or_variable(&triple.predicate, variables)?,
object: self.template_value_from_term_or_variable(
&triple.object,
variables,
&mut bnodes,
)?,
})
})
.collect()
}
fn template_value_from_term_or_variable(
&mut self,
term_or_variable: &TermOrVariable,
variables: &mut Vec<Variable>,
bnodes: &mut Vec<BlankNode>,
) -> Result<TripleTemplateValue> {
Ok(match term_or_variable {
TermOrVariable::Variable(variable) => {
TripleTemplateValue::Variable(variable_key(variables, variable))
}
TermOrVariable::Term(Term::BlankNode(bnode)) => {
TripleTemplateValue::BlankNode(bnode_key(bnodes, bnode))
}
TermOrVariable::Term(term) => {
TripleTemplateValue::Constant(self.encoder.encode_term(term).map_err(|e| e.into())?)
}
})
}
fn template_value_from_named_node_or_variable(
&mut self,
named_node_or_variable: &NamedNodeOrVariable,
variables: &mut Vec<Variable>,
) -> Result<TripleTemplateValue> {
Ok(match named_node_or_variable {
NamedNodeOrVariable::Variable(variable) => {
TripleTemplateValue::Variable(variable_key(variables, variable))
}
NamedNodeOrVariable::NamedNode(term) => TripleTemplateValue::Constant(
self.encoder.encode_named_node(term).map_err(|e| e.into())?,
),
})
}
fn convert_pattern_value_id(
&self,
from_value: PatternValue,
from: &[Variable],
to: &mut Vec<Variable>,
) -> PatternValue {
match from_value {
PatternValue::Constant(v) => PatternValue::Constant(v),
PatternValue::Variable(from_id) => {
PatternValue::Variable(self.convert_variable_id(from_id, from, to))
}
}
}
fn convert_variable_id(
&self,
from_id: usize,
from: &[Variable],
to: &mut Vec<Variable>,
) -> usize {
if let Some(to_id) = to.iter().enumerate().find_map(|(to_id, var)| {
if *var == from[from_id] {
Some(to_id)
} else {
None
}
}) {
to_id
} else {
to.push(Variable::new_random());
to.len() - 1
}
}
fn add_left_join_problematic_variables(&self, node: &PlanNode, set: &mut BTreeSet<usize>) {
match node {
PlanNode::Init
| PlanNode::StaticBindings { .. }
| PlanNode::QuadPatternJoin { .. }
| PlanNode::PathPatternJoin { .. } => (),
PlanNode::Filter { child, expression } => {
expression.add_maybe_bound_variables(set); //TODO: only if it is not already bound
self.add_left_join_problematic_variables(&*child, set);
}
PlanNode::Union { children } => {
for child in children.iter() {
self.add_left_join_problematic_variables(child, set);
}
}
PlanNode::Join { left, right, .. } => {
self.add_left_join_problematic_variables(&*left, set);
self.add_left_join_problematic_variables(&*right, set);
}
PlanNode::AntiJoin { left, .. } => {
self.add_left_join_problematic_variables(&*left, set);
}
PlanNode::LeftJoin { left, right, .. } => {
self.add_left_join_problematic_variables(&*left, set);
right.add_maybe_bound_variables(set);
}
PlanNode::Extend {
child, expression, ..
} => {
expression.add_maybe_bound_variables(set); //TODO: only if it is not already bound
self.add_left_join_problematic_variables(&*child, set);
self.add_left_join_problematic_variables(&*child, set);
}
PlanNode::Service { child, .. }
| PlanNode::Sort { child, .. }
| PlanNode::HashDeduplicate { child }
| PlanNode::Skip { child, .. }
| PlanNode::Limit { child, .. } => {
self.add_left_join_problematic_variables(&*child, set)
}
PlanNode::Project { mapping, child } => {
let mut child_bound = BTreeSet::new();
self.add_left_join_problematic_variables(&*child, &mut child_bound);
for (child_i, output_i) in mapping.iter() {
if child_bound.contains(child_i) {
set.insert(*output_i);
}
}
}
PlanNode::Aggregate {
key_mapping,
aggregates,
..
} => {
set.extend(key_mapping.iter().map(|(_, o)| o));
//TODO: This is too harsh
for (_, var) in aggregates.iter() {
set.insert(*var);
}
}
}
}
}
fn variable_key(variables: &mut Vec<Variable>, variable: &Variable) -> usize {
match slice_key(variables, variable) {
Some(key) => key,
None => {
variables.push(variable.clone());
variables.len() - 1
}
}
}
fn bnode_key(blank_nodes: &mut Vec<BlankNode>, blank_node: &BlankNode) -> usize {
match slice_key(blank_nodes, blank_node) {
Some(key) => key,
None => {
blank_nodes.push(blank_node.clone());
blank_nodes.len() - 1
}
}
}
fn slice_key<T: Eq>(slice: &[T], element: &T) -> Option<usize> {
for (i, item) in slice.iter().enumerate() {
if item == element {
return Some(i);
}
}
None
}
fn sort_bgp(p: &[TripleOrPathPattern]) -> Vec<&TripleOrPathPattern> {
let mut assigned_variables = HashSet::default();
let mut assigned_blank_nodes = HashSet::default();
let mut new_p: Vec<_> = p.iter().collect();
for i in 0..new_p.len() {
(&mut new_p[i..]).sort_by(|p1, p2| {
count_pattern_binds(p2, &assigned_variables, &assigned_blank_nodes).cmp(
&count_pattern_binds(p1, &assigned_variables, &assigned_blank_nodes),
)
});
add_pattern_variables(new_p[i], &mut assigned_variables, &mut assigned_blank_nodes);
}
new_p
}
fn count_pattern_binds(
pattern: &TripleOrPathPattern,
assigned_variables: &HashSet<&Variable>,
assigned_blank_nodes: &HashSet<&BlankNode>,
) -> u8 {
let mut count = 12;
if let TermOrVariable::Variable(v) = pattern.subject() {
if !assigned_variables.contains(v) {
count -= 4;
}
} else if let TermOrVariable::Term(Term::BlankNode(bnode)) = pattern.subject() {
if !assigned_blank_nodes.contains(bnode) {
count -= 4;
}
} else {
count -= 1;
}
if let TripleOrPathPattern::Triple(t) = pattern {
if let NamedNodeOrVariable::Variable(v) = &t.predicate {
if !assigned_variables.contains(v) {
count -= 4;
}
} else {
count -= 1;
}
} else {
count -= 3;
}
if let TermOrVariable::Variable(v) = pattern.object() {
if !assigned_variables.contains(v) {
count -= 4;
}
} else if let TermOrVariable::Term(Term::BlankNode(bnode)) = pattern.object() {
if !assigned_blank_nodes.contains(bnode) {
count -= 4;
}
} else {
count -= 1;
}
count
}
fn add_pattern_variables<'a>(
pattern: &'a TripleOrPathPattern,
variables: &mut HashSet<&'a Variable>,
blank_nodes: &mut HashSet<&'a BlankNode>,
) {
if let TermOrVariable::Variable(v) = pattern.subject() {
variables.insert(v);
} else if let TermOrVariable::Term(Term::BlankNode(bnode)) = pattern.subject() {
blank_nodes.insert(bnode);
}
if let TripleOrPathPattern::Triple(t) = pattern {
if let NamedNodeOrVariable::Variable(v) = &t.predicate {
variables.insert(v);
}
}
if let TermOrVariable::Variable(v) = pattern.object() {
variables.insert(v);
} else if let TermOrVariable::Term(Term::BlankNode(bnode)) = pattern.object() {
blank_nodes.insert(bnode);
}
}