Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/src/sparql/eval.rs

2737 lines
106 KiB

use crate::model::BlankNode;
use crate::model::Triple;
use crate::sparql::algebra::GraphPattern;
use crate::sparql::model::*;
use crate::sparql::plan::*;
use crate::sparql::ServiceHandler;
use crate::store::numeric_encoder::*;
use crate::store::StoreConnection;
use crate::Result;
use chrono::prelude::*;
use digest::Digest;
use failure::format_err;
use md5::Md5;
use num_traits::identities::Zero;
use num_traits::FromPrimitive;
use num_traits::One;
use num_traits::ToPrimitive;
use rand::random;
use regex::{Regex, RegexBuilder};
use rio_api::iri::Iri;
use rio_api::model as rio;
use rust_decimal::{Decimal, RoundingStrategy};
use sha1::Sha1;
use sha2::{Sha256, Sha384, Sha512};
use std::cmp::min;
use std::cmp::Ordering;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::convert::TryInto;
use std::fmt::Write;
use std::hash::Hash;
use std::iter::Iterator;
use std::iter::{empty, once};
use std::ops::Deref;
use std::str;
use std::sync::Mutex;
use uuid::Uuid;
const REGEX_SIZE_LIMIT: usize = 1_000_000;
type EncodedTuplesIterator<'a> = Box<dyn Iterator<Item = Result<EncodedTuple>> + 'a>;
pub struct SimpleEvaluator<S: StoreConnection> {
dataset: DatasetView<S>,
base_iri: Option<Iri<String>>,
bnodes_map: Mutex<BTreeMap<u128, u128>>,
now: DateTime<FixedOffset>,
service_handler: Box<dyn ServiceHandler>,
}
impl<'a, S: StoreConnection + 'a> SimpleEvaluator<S> {
pub fn new(
dataset: DatasetView<S>,
base_iri: Option<Iri<String>>,
service_handler: Box<dyn ServiceHandler>,
) -> Self {
Self {
dataset,
bnodes_map: Mutex::new(BTreeMap::default()),
base_iri,
now: Utc::now().with_timezone(&FixedOffset::east(0)),
service_handler,
}
}
pub fn evaluate_select_plan<'b>(
&'b self,
plan: &'b PlanNode,
variables: &[Variable],
) -> Result<QueryResult<'b>>
where
'a: 'b,
{
let iter = self.eval_plan(plan, vec![None; variables.len()]);
Ok(QueryResult::Bindings(
self.decode_bindings(iter, variables.to_vec()),
))
}
pub fn evaluate_ask_plan<'b>(&'b self, plan: &'b PlanNode) -> Result<QueryResult<'b>>
where
'a: 'b,
{
match self.eval_plan(plan, vec![]).next() {
Some(Ok(_)) => Ok(QueryResult::Boolean(true)),
Some(Err(error)) => Err(error),
None => Ok(QueryResult::Boolean(false)),
}
}
pub fn evaluate_construct_plan<'b>(
&'b self,
plan: &'b PlanNode,
construct: &'b [TripleTemplate],
) -> Result<QueryResult<'b>>
where
'a: 'b,
{
Ok(QueryResult::Graph(Box::new(ConstructIterator {
eval: self,
iter: self.eval_plan(plan, vec![]),
template: construct,
buffered_results: Vec::default(),
bnodes: Vec::default(),
})))
}
pub fn evaluate_describe_plan<'b>(&'b self, plan: &'b PlanNode) -> Result<QueryResult<'b>>
where
'a: 'b,
{
Ok(QueryResult::Graph(Box::new(DescribeIterator {
eval: self,
iter: self.eval_plan(plan, vec![]),
quads: Box::new(empty()),
})))
}
fn eval_plan<'b>(&'b self, node: &'b PlanNode, from: EncodedTuple) -> EncodedTuplesIterator<'b>
where
'a: 'b,
{
match node {
PlanNode::Init => Box::new(once(Ok(from))),
PlanNode::StaticBindings { tuples } => Box::new(tuples.iter().cloned().map(Ok)),
PlanNode::Service {
variables,
silent,
service_name,
graph_pattern,
..
} => match self.evaluate_service(service_name, graph_pattern, variables, from) {
Ok(result) => result,
Err(e) => {
if *silent {
Box::new(empty())
} else {
Box::new(once(Err(e)))
}
}
},
PlanNode::QuadPatternJoin {
child,
subject,
predicate,
object,
graph_name,
} => Box::new(self.eval_plan(&*child, from).flat_map_ok(move |tuple| {
let mut iter = self.dataset.quads_for_pattern(
get_pattern_value(&subject, &tuple),
get_pattern_value(&predicate, &tuple),
get_pattern_value(&object, &tuple),
get_pattern_value(&graph_name, &tuple),
);
if subject.is_var() && subject == predicate {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.subject == quad.predicate,
}))
}
if subject.is_var() && subject == object {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.subject == quad.object,
}))
}
if predicate.is_var() && predicate == object {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.predicate == quad.object,
}))
}
if graph_name.is_var() {
if graph_name == subject {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.graph_name == quad.subject,
}))
}
if graph_name == predicate {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.graph_name == quad.predicate,
}))
}
if graph_name == object {
iter = Box::new(iter.filter(|quad| match quad {
Err(_) => true,
Ok(quad) => quad.graph_name == quad.object,
}))
}
}
let iter: EncodedTuplesIterator<'_> = Box::new(iter.map(move |quad| {
let quad = quad?;
let mut new_tuple = tuple.clone();
put_pattern_value(&subject, quad.subject, &mut new_tuple);
put_pattern_value(&predicate, quad.predicate, &mut new_tuple);
put_pattern_value(&object, quad.object, &mut new_tuple);
put_pattern_value(&graph_name, quad.graph_name, &mut new_tuple);
Ok(new_tuple)
}));
iter
})),
PlanNode::PathPatternJoin {
child,
subject,
path,
object,
graph_name,
} => Box::new(self.eval_plan(&*child, from).flat_map_ok(move |tuple| {
let input_subject = get_pattern_value(&subject, &tuple);
let input_object = get_pattern_value(&object, &tuple);
let input_graph_name =
if let Some(graph_name) = get_pattern_value(&graph_name, &tuple) {
graph_name
} else {
return Box::new(once(Err(format_err!(
"Unknown graph name is not allowed when evaluating property path"
)))) as EncodedTuplesIterator<'_>;
};
match (input_subject, input_object) {
(Some(input_subject), Some(input_object)) => Box::new(
self.eval_path_from(path, input_subject, input_graph_name)
.filter_map(move |o| match o {
Ok(o) => {
if o == input_object {
Some(Ok(tuple.clone()))
} else {
None
}
}
Err(error) => Some(Err(error)),
}),
)
as EncodedTuplesIterator<'_>,
(Some(input_subject), None) => Box::new(
self.eval_path_from(path, input_subject, input_graph_name)
.map(move |o| {
let mut new_tuple = tuple.clone();
put_pattern_value(&object, o?, &mut new_tuple);
Ok(new_tuple)
}),
),
(None, Some(input_object)) => Box::new(
self.eval_path_to(path, input_object, input_graph_name)
.map(move |s| {
let mut new_tuple = tuple.clone();
put_pattern_value(&subject, s?, &mut new_tuple);
Ok(new_tuple)
}),
),
(None, None) => {
Box::new(self.eval_open_path(path, input_graph_name).map(move |so| {
let mut new_tuple = tuple.clone();
so.map(move |(s, o)| {
put_pattern_value(&subject, s, &mut new_tuple);
put_pattern_value(&object, o, &mut new_tuple);
new_tuple
})
}))
}
}
})),
PlanNode::Join { left, right } => {
//TODO: very dumb implementation
let mut errors = Vec::default();
let left_values = self
.eval_plan(&*left, from.clone())
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
})
.collect::<Vec<_>>();
Box::new(JoinIterator {
left: left_values,
right_iter: self.eval_plan(&*right, from),
buffered_results: errors,
})
}
PlanNode::AntiJoin { left, right } => {
//TODO: dumb implementation
let right: Vec<_> = self
.eval_plan(&*right, from.clone())
.filter_map(|result| result.ok())
.collect();
Box::new(AntiJoinIterator {
left_iter: self.eval_plan(&*left, from),
right,
})
}
PlanNode::LeftJoin {
left,
right,
possible_problem_vars,
} => {
let problem_vars = bind_variables_in_set(&from, &possible_problem_vars);
let mut filtered_from = from.clone();
unbind_variables(&mut filtered_from, &problem_vars);
let iter = LeftJoinIterator {
eval: self,
right_plan: &*right,
left_iter: self.eval_plan(&*left, filtered_from),
current_right: Box::new(empty()),
};
if problem_vars.is_empty() {
Box::new(iter)
} else {
Box::new(BadLeftJoinIterator {
input: from,
iter,
problem_vars,
})
}
}
PlanNode::Filter { child, expression } => {
let eval = self;
Box::new(self.eval_plan(&*child, from).filter(move |tuple| {
match tuple {
Ok(tuple) => eval
.eval_expression(&expression, tuple)
.and_then(|term| eval.to_bool(term))
.unwrap_or(false),
Err(_) => true,
}
}))
}
PlanNode::Union { children } => Box::new(UnionIterator {
eval: self,
plans: &children,
input: from,
current_iterator: Box::new(empty()),
current_plan: 0,
}),
PlanNode::Extend {
child,
position,
expression,
} => {
let eval = self;
Box::new(self.eval_plan(&*child, from).map(move |tuple| {
let mut tuple = tuple?;
if let Some(value) = eval.eval_expression(&expression, &tuple) {
put_value(*position, value, &mut tuple)
}
Ok(tuple)
}))
}
PlanNode::Sort { child, by } => {
let mut errors = Vec::default();
let mut values = self
.eval_plan(&*child, from)
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
})
.collect::<Vec<_>>();
values.sort_unstable_by(|a, b| {
for comp in by {
match comp {
Comparator::Asc(expression) => {
match self.cmp_according_to_expression(a, b, &expression) {
Ordering::Greater => return Ordering::Greater,
Ordering::Less => return Ordering::Less,
Ordering::Equal => (),
}
}
Comparator::Desc(expression) => {
match self.cmp_according_to_expression(a, b, &expression) {
Ordering::Greater => return Ordering::Less,
Ordering::Less => return Ordering::Greater,
Ordering::Equal => (),
}
}
}
}
Ordering::Equal
});
Box::new(errors.into_iter().chain(values.into_iter().map(Ok)))
}
PlanNode::HashDeduplicate { child } => {
Box::new(hash_deduplicate(self.eval_plan(&*child, from)))
}
PlanNode::Skip { child, count } => Box::new(self.eval_plan(&*child, from).skip(*count)),
PlanNode::Limit { child, count } => {
Box::new(self.eval_plan(&*child, from).take(*count))
}
PlanNode::Project { child, mapping } => {
//TODO: use from somewhere?
Box::new(
self.eval_plan(&*child, vec![None; mapping.len()])
.map(move |tuple| {
let tuple = tuple?;
let mut output_tuple = vec![None; from.len()];
for (input_key, output_key) in mapping.iter() {
if let Some(value) = tuple[*input_key] {
put_value(*output_key, value, &mut output_tuple)
}
}
Ok(output_tuple)
}),
)
}
PlanNode::Aggregate {
child,
key_mapping,
aggregates,
} => {
let tuple_size = from.len(); //TODO: not nice
let mut errors = Vec::default();
let mut accumulators_for_group =
HashMap::<Vec<Option<EncodedTerm>>, Vec<Box<dyn Accumulator>>>::default();
self.eval_plan(child, from)
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(error);
None
}
})
.for_each(|tuple| {
//TODO avoid copy for key?
let key = (0..key_mapping.len())
.map(|v| get_tuple_value(v, &tuple))
.collect();
let key_accumulators =
accumulators_for_group.entry(key).or_insert_with(|| {
aggregates
.iter()
.map(|(aggregate, _)| {
self.accumulator_for_aggregate(
&aggregate.function,
aggregate.distinct,
)
})
.collect::<Vec<_>>()
});
for (i, accumulator) in key_accumulators.iter_mut().enumerate() {
let (aggregate, _) = &aggregates[i];
accumulator.add(
aggregate
.parameter
.as_ref()
.and_then(|parameter| self.eval_expression(&parameter, &tuple)),
);
}
});
if accumulators_for_group.is_empty() {
// There is always at least one group
accumulators_for_group.insert(vec![None; key_mapping.len()], Vec::default());
}
Box::new(
errors
.into_iter()
.map(Err)
.chain(accumulators_for_group.into_iter().map(
move |(key, accumulators)| {
let mut result = vec![None; tuple_size];
for (from_position, to_position) in key_mapping.iter().enumerate() {
if let Some(value) = key[from_position] {
put_value(*to_position, value, &mut result);
}
}
for (i, accumulator) in accumulators.into_iter().enumerate() {
if let Some(value) = accumulator.state() {
put_value(aggregates[i].1, value, &mut result);
}
}
Ok(result)
},
)),
)
}
}
}
fn evaluate_service<'b>(
&'b self,
service_name: &PatternValue,
graph_pattern: &GraphPattern,
variables: &'b [Variable],
from: EncodedTuple,
) -> Result<EncodedTuplesIterator<'b>> {
let service_name =
self.dataset
.decode_named_node(get_pattern_value(service_name, &[]).ok_or_else(|| {
format_err!("The SERVICE handler name variable is not bound")
})?)?;
let service = self.service_handler.handle(&service_name).ok_or_else(|| {
format_err!(
"The handler supplied was unable to produce any result set for service {}",
service_name
)
})?;
Ok(Box::new(
self.encode_bindings(variables, service(graph_pattern.clone())?)
.flat_map(move |binding| {
binding
.map(|binding| combine_tuples(&binding, &from))
.transpose()
}),
))
}
fn accumulator_for_aggregate<'b>(
&'b self,
function: &'b PlanAggregationFunction,
distinct: bool,
) -> Box<dyn Accumulator + 'b> {
match function {
PlanAggregationFunction::Count => {
if distinct {
Box::new(DistinctAccumulator::new(CountAccumulator::default()))
} else {
Box::new(CountAccumulator::default())
}
}
PlanAggregationFunction::Sum => {
if distinct {
Box::new(DistinctAccumulator::new(SumAccumulator::default()))
} else {
Box::new(SumAccumulator::default())
}
}
PlanAggregationFunction::Min => Box::new(MinAccumulator::new(self)), // DISTINCT does not make sense with min
PlanAggregationFunction::Max => Box::new(MaxAccumulator::new(self)), // DISTINCT does not make sense with max
PlanAggregationFunction::Avg => {
if distinct {
Box::new(DistinctAccumulator::new(AvgAccumulator::default()))
} else {
Box::new(AvgAccumulator::default())
}
}
PlanAggregationFunction::Sample => Box::new(SampleAccumulator::default()), // DISTINCT does not make sense with sample
PlanAggregationFunction::GroupConcat { separator } => {
if distinct {
Box::new(DistinctAccumulator::new(GroupConcatAccumulator::new(
self, separator,
)))
} else {
Box::new(GroupConcatAccumulator::new(self, separator))
}
}
}
}
fn eval_path_from<'b>(
&'b self,
path: &'b PlanPropertyPath,
start: EncodedTerm,
graph_name: EncodedTerm,
) -> Box<dyn Iterator<Item = Result<EncodedTerm>> + 'b>
where
'a: 'b,
{
match path {
PlanPropertyPath::PredicatePath(p) => Box::new(
self.dataset
.quads_for_pattern(Some(start), Some(*p), None, Some(graph_name))
.map(|t| Ok(t?.object)),
),
PlanPropertyPath::InversePath(p) => self.eval_path_to(&p, start, graph_name),
PlanPropertyPath::SequencePath(a, b) => Box::new(
self.eval_path_from(&a, start, graph_name)
.flat_map_ok(move |middle| self.eval_path_from(&b, middle, graph_name)),
),
PlanPropertyPath::AlternativePath(a, b) => Box::new(
self.eval_path_from(&a, start, graph_name)
.chain(self.eval_path_from(&b, start, graph_name)),
),
PlanPropertyPath::ZeroOrMorePath(p) => {
Box::new(transitive_closure(Some(Ok(start)), move |e| {
self.eval_path_from(p, e, graph_name)
}))
}
PlanPropertyPath::OneOrMorePath(p) => Box::new(transitive_closure(
self.eval_path_from(p, start, graph_name),
move |e| self.eval_path_from(p, e, graph_name),
)),
PlanPropertyPath::ZeroOrOnePath(p) => Box::new(hash_deduplicate(
once(Ok(start)).chain(self.eval_path_from(&p, start, graph_name)),
)),
PlanPropertyPath::NegatedPropertySet(ps) => Box::new(
self.dataset
.quads_for_pattern(Some(start), None, None, Some(graph_name))
.filter(move |t| match t {
Ok(t) => !ps.contains(&t.predicate),
Err(_) => true,
})
.map(|t| Ok(t?.object)),
),
}
}
fn eval_path_to<'b>(
&'b self,
path: &'b PlanPropertyPath,
end: EncodedTerm,
graph_name: EncodedTerm,
) -> Box<dyn Iterator<Item = Result<EncodedTerm>> + 'b>
where
'a: 'b,
{
match path {
PlanPropertyPath::PredicatePath(p) => Box::new(
self.dataset
.quads_for_pattern(None, Some(*p), Some(end), Some(graph_name))
.map(|t| Ok(t?.subject)),
),
PlanPropertyPath::InversePath(p) => self.eval_path_from(&p, end, graph_name),
PlanPropertyPath::SequencePath(a, b) => Box::new(
self.eval_path_to(&b, end, graph_name)
.flat_map_ok(move |middle| self.eval_path_to(&a, middle, graph_name)),
),
PlanPropertyPath::AlternativePath(a, b) => Box::new(
self.eval_path_to(&a, end, graph_name)
.chain(self.eval_path_to(&b, end, graph_name)),
),
PlanPropertyPath::ZeroOrMorePath(p) => {
Box::new(transitive_closure(Some(Ok(end)), move |e| {
self.eval_path_to(p, e, graph_name)
}))
}
PlanPropertyPath::OneOrMorePath(p) => Box::new(transitive_closure(
self.eval_path_to(p, end, graph_name),
move |e| self.eval_path_to(p, e, graph_name),
)),
PlanPropertyPath::ZeroOrOnePath(p) => Box::new(hash_deduplicate(
once(Ok(end)).chain(self.eval_path_to(&p, end, graph_name)),
)),
PlanPropertyPath::NegatedPropertySet(ps) => Box::new(
self.dataset
.quads_for_pattern(None, None, Some(end), Some(graph_name))
.filter(move |t| match t {
Ok(t) => !ps.contains(&t.predicate),
Err(_) => true,
})
.map(|t| Ok(t?.subject)),
),
}
}
fn eval_open_path<'b>(
&'b self,
path: &'b PlanPropertyPath,
graph_name: EncodedTerm,
) -> Box<dyn Iterator<Item = Result<(EncodedTerm, EncodedTerm)>> + 'b>
where
'a: 'b,
{
match path {
PlanPropertyPath::PredicatePath(p) => Box::new(
self.dataset
.quads_for_pattern(None, Some(*p), None, Some(graph_name))
.map(|t| t.map(|t| (t.subject, t.object))),
),
PlanPropertyPath::InversePath(p) => Box::new(
self.eval_open_path(&p, graph_name)
.map(|t| t.map(|(s, o)| (o, s))),
),
PlanPropertyPath::SequencePath(a, b) => Box::new(
self.eval_open_path(&a, graph_name)
.flat_map_ok(move |(start, middle)| {
self.eval_path_from(&b, middle, graph_name)
.map(move |end| Ok((start, end?)))
}),
),
PlanPropertyPath::AlternativePath(a, b) => Box::new(
self.eval_open_path(&a, graph_name)
.chain(self.eval_open_path(&b, graph_name)),
),
PlanPropertyPath::ZeroOrMorePath(p) => Box::new(transitive_closure(
self.get_subject_or_object_identity_pairs(graph_name), //TODO: avoid to inject everything
move |(start, middle)| {
self.eval_path_from(p, middle, graph_name)
.map(move |end| Ok((start, end?)))
},
)),
PlanPropertyPath::OneOrMorePath(p) => Box::new(transitive_closure(
self.eval_open_path(p, graph_name),
move |(start, middle)| {
self.eval_path_from(p, middle, graph_name)
.map(move |end| Ok((start, end?)))
},
)),
PlanPropertyPath::ZeroOrOnePath(p) => Box::new(hash_deduplicate(
self.get_subject_or_object_identity_pairs(graph_name)
.chain(self.eval_open_path(&p, graph_name)),
)),
PlanPropertyPath::NegatedPropertySet(ps) => Box::new(
self.dataset
.quads_for_pattern(None, None, None, Some(graph_name))
.filter(move |t| match t {
Ok(t) => !ps.contains(&t.predicate),
Err(_) => true,
})
.map(|t| t.map(|t| (t.subject, t.object))),
),
}
}
fn get_subject_or_object_identity_pairs<'b>(
&'b self,
graph_name: EncodedTerm,
) -> impl Iterator<Item = Result<(EncodedTerm, EncodedTerm)>> + 'b {
self.dataset
.quads_for_pattern(None, None, None, Some(graph_name))
.flat_map_ok(|t| once(Ok(t.subject)).chain(once(Ok(t.object))))
.map(|e| e.map(|e| (e, e)))
}
fn eval_expression<'b>(
&'b self,
expression: &PlanExpression,
tuple: &[Option<EncodedTerm>],
) -> Option<EncodedTerm> {
match expression {
PlanExpression::Constant(t) => Some(*t),
PlanExpression::Variable(v) => get_tuple_value(*v, tuple),
PlanExpression::Exists(node) => {
Some(self.eval_plan(node, tuple.to_vec()).next().is_some().into())
}
PlanExpression::Or(a, b) => {
match self.eval_expression(a, tuple).and_then(|v| self.to_bool(v)) {
Some(true) => Some(true.into()),
Some(false) => self.eval_expression(b, tuple),
None => {
if Some(true)
== self.eval_expression(b, tuple).and_then(|v| self.to_bool(v))
{
Some(true.into())
} else {
None
}
}
}
}
PlanExpression::And(a, b) => match self
.eval_expression(a, tuple)
.and_then(|v| self.to_bool(v))
{
Some(true) => self.eval_expression(b, tuple),
Some(false) => Some(false.into()),
None => {
if Some(false) == self.eval_expression(b, tuple).and_then(|v| self.to_bool(v)) {
Some(false.into())
} else {
None
}
}
},
PlanExpression::Equal(a, b) => {
let a = self.eval_expression(a, tuple)?;
let b = self.eval_expression(b, tuple)?;
self.equals(a, b).map(|v| v.into())
}
PlanExpression::NotEqual(a, b) => {
let a = self.eval_expression(a, tuple)?;
let b = self.eval_expression(b, tuple)?;
self.equals(a, b).map(|v| (!v).into())
}
PlanExpression::Greater(a, b) => Some(
(self.partial_cmp_literals(
self.eval_expression(a, tuple)?,
self.eval_expression(b, tuple)?,
)? == Ordering::Greater)
.into(),
),
PlanExpression::GreaterOrEq(a, b) => Some(
match self.partial_cmp_literals(
self.eval_expression(a, tuple)?,
self.eval_expression(b, tuple)?,
)? {
Ordering::Greater | Ordering::Equal => true,
Ordering::Less => false,
}
.into(),
),
PlanExpression::Lower(a, b) => Some(
(self.partial_cmp_literals(
self.eval_expression(a, tuple)?,
self.eval_expression(b, tuple)?,
)? == Ordering::Less)
.into(),
),
PlanExpression::LowerOrEq(a, b) => Some(
match self.partial_cmp_literals(
self.eval_expression(a, tuple)?,
self.eval_expression(b, tuple)?,
)? {
Ordering::Less | Ordering::Equal => true,
Ordering::Greater => false,
}
.into(),
),
PlanExpression::In(e, l) => {
let needed = self.eval_expression(e, tuple)?;
let mut error = false;
for possible in l {
if let Some(possible) = self.eval_expression(possible, tuple) {
if Some(true) == self.equals(needed, possible) {
return Some(true.into());
}
} else {
error = true;
}
}
if error {
None
} else {
Some(false.into())
}
}
PlanExpression::Add(a, b) => Some(match self.parse_numeric_operands(a, b, tuple)? {
NumericBinaryOperands::Float(v1, v2) => (v1 + v2).into(),
NumericBinaryOperands::Double(v1, v2) => (v1 + v2).into(),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_add(v2)?.into(),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_add(v2)?.into(),
}),
PlanExpression::Sub(a, b) => Some(match self.parse_numeric_operands(a, b, tuple)? {
NumericBinaryOperands::Float(v1, v2) => (v1 - v2).into(),
NumericBinaryOperands::Double(v1, v2) => (v1 - v2).into(),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_sub(v2)?.into(),
}),
PlanExpression::Mul(a, b) => Some(match self.parse_numeric_operands(a, b, tuple)? {
NumericBinaryOperands::Float(v1, v2) => (v1 * v2).into(),
NumericBinaryOperands::Double(v1, v2) => (v1 * v2).into(),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_mul(v2)?.into(),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_mul(v2)?.into(),
}),
PlanExpression::Div(a, b) => Some(match self.parse_numeric_operands(a, b, tuple)? {
NumericBinaryOperands::Float(v1, v2) => (v1 / v2).into(),
NumericBinaryOperands::Double(v1, v2) => (v1 / v2).into(),
NumericBinaryOperands::Integer(v1, v2) => Decimal::from_i128(v1)?
.checked_div(Decimal::from_i128(v2)?)?
.into(),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_div(v2)?.into(),
}),
PlanExpression::UnaryPlus(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some((*value).into()),
EncodedTerm::DoubleLiteral(value) => Some((*value).into()),
EncodedTerm::IntegerLiteral(value) => Some((value).into()),
EncodedTerm::DecimalLiteral(value) => Some((value).into()),
_ => None,
},
PlanExpression::UnaryMinus(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some((-*value).into()),
EncodedTerm::DoubleLiteral(value) => Some((-*value).into()),
EncodedTerm::IntegerLiteral(value) => Some((-value).into()),
EncodedTerm::DecimalLiteral(value) => Some((-value).into()),
_ => None,
},
PlanExpression::UnaryNot(e) => self
.to_bool(self.eval_expression(e, tuple)?)
.map(|v| (!v).into()),
PlanExpression::Str(e) => Some(EncodedTerm::StringLiteral {
value_id: self.to_string_id(self.eval_expression(e, tuple)?)?,
}),
PlanExpression::Lang(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::LangStringLiteral { language_id, .. } => {
Some(EncodedTerm::StringLiteral {
value_id: language_id,
})
}
e if e.is_literal() => Some(ENCODED_EMPTY_STRING_LITERAL),
_ => None,
},
PlanExpression::LangMatches(language_tag, language_range) => {
let language_tag =
self.to_simple_string(self.eval_expression(language_tag, tuple)?)?;
let language_range =
self.to_simple_string(self.eval_expression(language_range, tuple)?)?;
Some(
if &*language_range == "*" {
!language_tag.is_empty()
} else {
!ZipLongest::new(language_range.split('-'), language_tag.split('-')).any(
|parts| match parts {
(Some(range_subtag), Some(language_subtag)) => {
!range_subtag.eq_ignore_ascii_case(language_subtag)
}
(Some(_), None) => true,
(None, _) => false,
},
)
}
.into(),
)
}
PlanExpression::Datatype(e) => self.eval_expression(e, tuple)?.datatype(),
PlanExpression::Bound(v) => Some(has_tuple_value(*v, tuple).into()),
PlanExpression::IRI(e) => {
let iri_id = match self.eval_expression(e, tuple)? {
EncodedTerm::NamedNode { iri_id } => Some(iri_id),
EncodedTerm::StringLiteral { value_id } => Some(value_id),
_ => None,
}?;
let iri = self.dataset.get_str(iri_id).ok()??;
if let Some(base_iri) = &self.base_iri {
self.build_named_node(&base_iri.resolve(&iri).ok()?.into_inner())
} else {
Iri::parse(iri).ok()?;
Some(EncodedTerm::NamedNode { iri_id })
}
}
PlanExpression::BNode(id) => match id {
Some(id) => {
if let EncodedTerm::StringLiteral { value_id } =
self.eval_expression(id, tuple)?
{
Some(EncodedTerm::BlankNode {
id: *self
.bnodes_map
.lock()
.ok()?
.entry(value_id)
.or_insert_with(random::<u128>),
})
} else {
None
}
}
None => Some(EncodedTerm::BlankNode {
id: random::<u128>(),
}),
},
PlanExpression::Rand => Some(random::<f64>().into()),
PlanExpression::Abs(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.checked_abs()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.abs().into()),
EncodedTerm::FloatLiteral(value) => Some(value.abs().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.abs().into()),
_ => None,
},
PlanExpression::Ceil(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.ceil().into()),
EncodedTerm::FloatLiteral(value) => Some(value.ceil().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.ceil().into()),
_ => None,
},
PlanExpression::Floor(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.floor().into()),
EncodedTerm::FloatLiteral(value) => Some(value.floor().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.floor().into()),
_ => None,
},
PlanExpression::Round(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => Some(
value
.round_dp_with_strategy(0, RoundingStrategy::RoundHalfUp)
.into(),
),
EncodedTerm::FloatLiteral(value) => Some(value.round().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.round().into()),
_ => None,
},
PlanExpression::Concat(l) => {
let mut result = String::default();
let mut language = None;
for e in l {
let (value, e_language) =
self.to_string_and_language(self.eval_expression(e, tuple)?)?;
if let Some(lang) = language {
if lang != e_language {
language = Some(None)
}
} else {
language = Some(e_language)
}
result += &value
}
self.build_plain_literal(&result, language.and_then(|v| v))
}
PlanExpression::SubStr(source, starting_loc, length) => {
let (source, language) =
self.to_string_and_language(self.eval_expression(source, tuple)?)?;
let starting_location: usize = if let EncodedTerm::IntegerLiteral(v) =
self.eval_expression(starting_loc, tuple)?
{
v.try_into().ok()?
} else {
return None;
};
let length: Option<usize> = if let Some(length) = length {
if let EncodedTerm::IntegerLiteral(v) = self.eval_expression(length, tuple)? {
Some(v.try_into().ok()?)
} else {
return None;
}
} else {
None
};
// We want to slice on char indices, not byte indices
let mut start_iter = source
.char_indices()
.skip(starting_location.checked_sub(1)?)
.peekable();
let result = if let Some((start_position, _)) = start_iter.peek().cloned() {
if let Some(length) = length {
let mut end_iter = start_iter.skip(length).peekable();
if let Some((end_position, _)) = end_iter.peek() {
&source[start_position..*end_position]
} else {
&source[start_position..]
}
} else {
&source[start_position..]
}
} else {
""
};
self.build_plain_literal(result, language)
}
PlanExpression::StrLen(arg) => Some(
(self
.to_string(self.eval_expression(arg, tuple)?)?
.chars()
.count() as i128)
.into(),
),
PlanExpression::Replace(arg, pattern, replacement, flags) => {
let regex = self.compile_pattern(
self.eval_expression(pattern, tuple)?,
if let Some(flags) = flags {
Some(self.eval_expression(flags, tuple)?)
} else {
None
},
)?;
let (text, language) =
self.to_string_and_language(self.eval_expression(arg, tuple)?)?;
let replacement =
self.to_simple_string(self.eval_expression(replacement, tuple)?)?;
self.build_plain_literal(&regex.replace_all(&text, &replacement as &str), language)
}
PlanExpression::UCase(e) => {
let (value, language) =
self.to_string_and_language(self.eval_expression(e, tuple)?)?;
self.build_plain_literal(&value.to_uppercase(), language)
}
PlanExpression::LCase(e) => {
let (value, language) =
self.to_string_and_language(self.eval_expression(e, tuple)?)?;
self.build_plain_literal(&value.to_lowercase(), language)
}
PlanExpression::StrStarts(arg1, arg2) => {
let (arg1, arg2, _) = self.to_argument_compatible_strings(
self.eval_expression(arg1, tuple)?,
self.eval_expression(arg2, tuple)?,
)?;
Some((&arg1).starts_with(&arg2 as &str).into())
}
PlanExpression::EncodeForURI(ltrl) => {
let ltlr = self.to_string(self.eval_expression(ltrl, tuple)?)?;
let mut result = Vec::with_capacity(ltlr.len());
for c in ltlr.bytes() {
match c {
b'A'..=b'Z' | b'a'..=b'z' | b'0'..=b'9' | b'-' | b'_' | b'.' | b'~' => {
result.push(c)
}
_ => {
result.push(b'%');
let hight = c / 16;
let low = c % 16;
result.push(if hight < 10 {
b'0' + hight
} else {
b'A' + (hight - 10)
});
result.push(if low < 10 {
b'0' + low
} else {
b'A' + (low - 10)
});
}
}
}
self.build_string_literal(str::from_utf8(&result).ok()?)
}
PlanExpression::StrEnds(arg1, arg2) => {
let (arg1, arg2, _) = self.to_argument_compatible_strings(
self.eval_expression(arg1, tuple)?,
self.eval_expression(arg2, tuple)?,
)?;
Some((&arg1).ends_with(&arg2 as &str).into())
}
PlanExpression::Contains(arg1, arg2) => {
let (arg1, arg2, _) = self.to_argument_compatible_strings(
self.eval_expression(arg1, tuple)?,
self.eval_expression(arg2, tuple)?,
)?;
Some((&arg1).contains(&arg2 as &str).into())
}
PlanExpression::StrBefore(arg1, arg2) => {
let (arg1, arg2, language) = self.to_argument_compatible_strings(
self.eval_expression(arg1, tuple)?,
self.eval_expression(arg2, tuple)?,
)?;
if let Some(position) = (&arg1).find(&arg2 as &str) {
self.build_plain_literal(&arg1[..position], language)
} else {
Some(ENCODED_EMPTY_STRING_LITERAL)
}
}
PlanExpression::StrAfter(arg1, arg2) => {
let (arg1, arg2, language) = self.to_argument_compatible_strings(
self.eval_expression(arg1, tuple)?,
self.eval_expression(arg2, tuple)?,
)?;
if let Some(position) = (&arg1).find(&arg2 as &str) {
self.build_plain_literal(&arg1[position + arg2.len()..], language)
} else {
Some(ENCODED_EMPTY_STRING_LITERAL)
}
}
PlanExpression::Year(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(date) => Some(date.year().into()),
EncodedTerm::NaiveDateLiteral(date) => Some(date.year().into()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.year().into()),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(date_time.year().into()),
_ => None,
},
PlanExpression::Month(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(date) => Some(date.year().into()),
EncodedTerm::NaiveDateLiteral(date) => Some(date.month().into()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.month().into()),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(date_time.month().into()),
_ => None,
},
PlanExpression::Day(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(date) => Some(date.year().into()),
EncodedTerm::NaiveDateLiteral(date) => Some(date.day().into()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.day().into()),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(date_time.day().into()),
_ => None,
},
PlanExpression::Hours(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::NaiveTimeLiteral(time) => Some(time.hour().into()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.hour().into()),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(date_time.hour().into()),
_ => None,
},
PlanExpression::Minutes(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::NaiveTimeLiteral(time) => Some(time.minute().into()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.minute().into()),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(date_time.minute().into()),
_ => None,
},
PlanExpression::Seconds(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::NaiveTimeLiteral(time) => Some(
(Decimal::new(time.nanosecond().into(), 9) + Decimal::from(time.second()))
.into(),
),
EncodedTerm::DateTimeLiteral(date_time) => Some(
(Decimal::new(date_time.nanosecond().into(), 9)
+ Decimal::from(date_time.second()))
.into(),
),
EncodedTerm::NaiveDateTimeLiteral(date_time) => Some(
(Decimal::new(date_time.nanosecond().into(), 9)
+ Decimal::from(date_time.second()))
.into(),
),
_ => None,
},
PlanExpression::Timezone(e) => {
let timezone = match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(date) => date.timezone(),
EncodedTerm::DateTimeLiteral(date_time) => date_time.timezone(),
_ => return None,
};
let mut result = String::with_capacity(9);
let mut shift = timezone.local_minus_utc();
if shift < 0 {
write!(&mut result, "-").ok()?;
shift = -shift
};
write!(&mut result, "PT").ok()?;
let hours = shift / 3600;
if hours > 0 {
write!(&mut result, "{}H", hours).ok()?;
}
let minutes = (shift / 60) % 60;
if minutes > 0 {
write!(&mut result, "{}M", minutes).ok()?;
}
let seconds = shift % 60;
if seconds > 0 || shift == 0 {
write!(&mut result, "{}S", seconds).ok()?;
}
Some(EncodedTerm::TypedLiteral {
value_id: self.build_string_id(&result)?,
datatype_id: self
.build_string_id("http://www.w3.org/2001/XMLSchema#dayTimeDuration")?,
})
}
PlanExpression::Tz(e) => {
let timezone = match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(date) => Some(date.timezone()),
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.timezone()),
EncodedTerm::NaiveDateLiteral(_)
| EncodedTerm::NaiveTimeLiteral(_)
| EncodedTerm::NaiveDateTimeLiteral(_) => None,
_ => return None,
};
Some(if let Some(timezone) = timezone {
EncodedTerm::StringLiteral {
value_id: if timezone.local_minus_utc() == 0 {
self.build_string_id("Z")?
} else {
self.build_string_id(&timezone.to_string())?
},
}
} else {
ENCODED_EMPTY_STRING_LITERAL
})
}
PlanExpression::Now => Some(self.now.into()),
PlanExpression::UUID => self.build_named_node(
Uuid::new_v4()
.to_urn()
.encode_lower(&mut Uuid::encode_buffer()),
),
PlanExpression::StrUUID => self.build_string_literal(
Uuid::new_v4()
.to_hyphenated()
.encode_lower(&mut Uuid::encode_buffer()),
),
PlanExpression::MD5(arg) => self.hash::<Md5>(arg, tuple),
PlanExpression::SHA1(arg) => self.hash::<Sha1>(arg, tuple),
PlanExpression::SHA256(arg) => self.hash::<Sha256>(arg, tuple),
PlanExpression::SHA384(arg) => self.hash::<Sha384>(arg, tuple),
PlanExpression::SHA512(arg) => self.hash::<Sha512>(arg, tuple),
PlanExpression::Coalesce(l) => {
for e in l {
if let Some(result) = self.eval_expression(e, tuple) {
return Some(result);
}
}
None
}
PlanExpression::If(a, b, c) => {
if self.to_bool(self.eval_expression(a, tuple)?)? {
self.eval_expression(b, tuple)
} else {
self.eval_expression(c, tuple)
}
}
PlanExpression::StrLang(lexical_form, lang_tag) => {
Some(EncodedTerm::LangStringLiteral {
value_id: self
.to_simple_string_id(self.eval_expression(lexical_form, tuple)?)?,
language_id: self
.to_simple_string_id(self.eval_expression(lang_tag, tuple)?)?,
})
}
PlanExpression::StrDT(lexical_form, datatype) => {
let value = self.to_simple_string(self.eval_expression(lexical_form, tuple)?)?;
let datatype = if let EncodedTerm::NamedNode { iri_id } =
self.eval_expression(datatype, tuple)?
{
self.dataset.get_str(iri_id).ok()?
} else {
None
}?;
self.dataset
.encoder()
.encode_rio_literal(rio::Literal::Typed {
value: &value,
datatype: rio::NamedNode { iri: &datatype },
})
.ok()
}
PlanExpression::SameTerm(a, b) => {
Some((self.eval_expression(a, tuple)? == self.eval_expression(b, tuple)?).into())
}
PlanExpression::IsIRI(e) => {
Some(self.eval_expression(e, tuple)?.is_named_node().into())
}
PlanExpression::IsBlank(e) => {
Some(self.eval_expression(e, tuple)?.is_blank_node().into())
}
PlanExpression::IsLiteral(e) => {
Some(self.eval_expression(e, tuple)?.is_literal().into())
}
PlanExpression::IsNumeric(e) => Some(
match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(_)
| EncodedTerm::DoubleLiteral(_)
| EncodedTerm::IntegerLiteral(_)
| EncodedTerm::DecimalLiteral(_) => true,
_ => false,
}
.into(),
),
PlanExpression::Regex(text, pattern, flags) => {
let regex = self.compile_pattern(
self.eval_expression(pattern, tuple)?,
if let Some(flags) = flags {
Some(self.eval_expression(flags, tuple)?)
} else {
None
},
)?;
let text = self.to_string(self.eval_expression(text, tuple)?)?;
Some(regex.is_match(&text).into())
}
PlanExpression::BooleanCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::BooleanLiteral(value) => Some(value.into()),
EncodedTerm::StringLiteral { value_id } => {
parse_boolean_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::DoubleCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some(value.to_f64()?.into()),
EncodedTerm::DoubleLiteral(value) => Some(value.to_f64()?.into()),
EncodedTerm::IntegerLiteral(value) => Some(value.to_f64()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.to_f64()?.into()),
EncodedTerm::BooleanLiteral(value) => {
Some(if value { 1. as f64 } else { 0. }.into())
}
EncodedTerm::StringLiteral { value_id } => {
parse_double_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::FloatCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some(value.to_f32()?.into()),
EncodedTerm::DoubleLiteral(value) => Some(value.to_f32()?.into()),
EncodedTerm::IntegerLiteral(value) => Some(value.to_f32()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.to_f32()?.into()),
EncodedTerm::BooleanLiteral(value) => {
Some(if value { 1. as f32 } else { 0. }.into())
}
EncodedTerm::StringLiteral { value_id } => {
parse_float_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::IntegerCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some(value.to_i128()?.into()),
EncodedTerm::DoubleLiteral(value) => Some(value.to_i128()?.into()),
EncodedTerm::IntegerLiteral(value) => Some(value.to_i128()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.to_i128()?.into()),
EncodedTerm::BooleanLiteral(value) => Some(if value { 1 } else { 0 }.into()),
EncodedTerm::StringLiteral { value_id } => {
parse_integer_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::DecimalCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::FloatLiteral(value) => Some(Decimal::from_f32(*value)?.into()),
EncodedTerm::DoubleLiteral(value) => Some(Decimal::from_f64(*value)?.into()),
EncodedTerm::IntegerLiteral(value) => Some(Decimal::from_i128(value)?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.into()),
EncodedTerm::BooleanLiteral(value) => Some(
if value {
Decimal::one()
} else {
Decimal::zero()
}
.into(),
),
EncodedTerm::StringLiteral { value_id } => {
parse_decimal_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::DateCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::DateLiteral(value) => Some(value.into()),
EncodedTerm::NaiveDateLiteral(value) => Some(value.into()),
EncodedTerm::DateTimeLiteral(value) => Some(value.date().into()),
EncodedTerm::NaiveDateTimeLiteral(value) => Some(value.date().into()),
EncodedTerm::StringLiteral { value_id } => {
parse_date_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::TimeCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::NaiveTimeLiteral(value) => Some(value.into()),
EncodedTerm::DateTimeLiteral(value) => Some(value.time().into()),
EncodedTerm::NaiveDateTimeLiteral(value) => Some(value.time().into()),
EncodedTerm::StringLiteral { value_id } => {
parse_time_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::DateTimeCast(e) => match self.eval_expression(e, tuple)? {
EncodedTerm::DateTimeLiteral(value) => Some(value.into()),
EncodedTerm::NaiveDateTimeLiteral(value) => Some(value.into()),
EncodedTerm::StringLiteral { value_id } => {
parse_date_time_str(&*self.dataset.get_str(value_id).ok()??)
}
_ => None,
},
PlanExpression::StringCast(e) => Some(EncodedTerm::StringLiteral {
value_id: self.to_string_id(self.eval_expression(e, tuple)?)?,
}),
}
}
fn to_bool(&self, term: EncodedTerm) -> Option<bool> {
match term {
EncodedTerm::BooleanLiteral(value) => Some(value),
EncodedTerm::StringLiteral { .. } => Some(term != ENCODED_EMPTY_STRING_LITERAL),
EncodedTerm::FloatLiteral(value) => Some(!value.is_zero()),
EncodedTerm::DoubleLiteral(value) => Some(!value.is_zero()),
EncodedTerm::IntegerLiteral(value) => Some(!value.is_zero()),
EncodedTerm::DecimalLiteral(value) => Some(!value.is_zero()),
_ => None,
}
}
fn to_string_id(&self, term: EncodedTerm) -> Option<u128> {
match term {
EncodedTerm::DefaultGraph => None,
EncodedTerm::NamedNode { iri_id } => Some(iri_id),
EncodedTerm::BlankNode { .. } => None,
EncodedTerm::StringLiteral { value_id }
| EncodedTerm::LangStringLiteral { value_id, .. }
| EncodedTerm::TypedLiteral { value_id, .. } => Some(value_id),
EncodedTerm::BooleanLiteral(value) => {
self.build_string_id(if value { "true" } else { "false" })
}
EncodedTerm::FloatLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::DoubleLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::IntegerLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::DecimalLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::DateLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::NaiveDateLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::NaiveTimeLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::DateTimeLiteral(value) => self.build_string_id(&value.to_string()),
EncodedTerm::NaiveDateTimeLiteral(value) => self.build_string_id(&value.to_string()),
}
}
fn to_simple_string(
&self,
term: EncodedTerm,
) -> Option<<DatasetView<S> as StrLookup>::StrType> {
if let EncodedTerm::StringLiteral { value_id } = term {
self.dataset.get_str(value_id).ok()?
} else {
None
}
}
fn to_simple_string_id(&self, term: EncodedTerm) -> Option<u128> {
if let EncodedTerm::StringLiteral { value_id } = term {
Some(value_id)
} else {
None
}
}
fn to_string(&self, term: EncodedTerm) -> Option<<DatasetView<S> as StrLookup>::StrType> {
match term {
EncodedTerm::StringLiteral { value_id }
| EncodedTerm::LangStringLiteral { value_id, .. } => {
self.dataset.get_str(value_id).ok()?
}
_ => None,
}
}
fn to_string_and_language(
&self,
term: EncodedTerm,
) -> Option<(<DatasetView<S> as StrLookup>::StrType, Option<u128>)> {
match term {
EncodedTerm::StringLiteral { value_id } => {
Some((self.dataset.get_str(value_id).ok()??, None))
}
EncodedTerm::LangStringLiteral {
value_id,
language_id,
} => Some((self.dataset.get_str(value_id).ok()??, Some(language_id))),
_ => None,
}
}
fn build_named_node(&self, iri: &str) -> Option<EncodedTerm> {
Some(EncodedTerm::NamedNode {
iri_id: self.build_string_id(iri)?,
})
}
fn build_string_literal(&self, value: &str) -> Option<EncodedTerm> {
Some(EncodedTerm::StringLiteral {
value_id: self.build_string_id(value)?,
})
}
fn build_lang_string_literal(&self, value: &str, language_id: u128) -> Option<EncodedTerm> {
Some(EncodedTerm::LangStringLiteral {
value_id: self.build_string_id(value)?,
language_id,
})
}
fn build_plain_literal(&self, value: &str, language: Option<u128>) -> Option<EncodedTerm> {
if let Some(language_id) = language {
self.build_lang_string_literal(value, language_id)
} else {
self.build_string_literal(value)
}
}
fn build_string_id(&self, value: &str) -> Option<u128> {
let value_id = get_str_id(value);
self.dataset.encoder().insert_str(value_id, value).ok()?;
Some(value_id)
}
fn to_argument_compatible_strings(
&self,
arg1: EncodedTerm,
arg2: EncodedTerm,
) -> Option<(
<DatasetView<S> as StrLookup>::StrType,
<DatasetView<S> as StrLookup>::StrType,
Option<u128>,
)> {
let (value1, language1) = self.to_string_and_language(arg1)?;
let (value2, language2) = self.to_string_and_language(arg2)?;
if language2.is_none() || language1 == language2 {
Some((value1, value2, language1))
} else {
None
}
}
fn compile_pattern(&self, pattern: EncodedTerm, flags: Option<EncodedTerm>) -> Option<Regex> {
// TODO Avoid to compile the regex each time
let pattern = self.to_simple_string(pattern)?;
let mut regex_builder = RegexBuilder::new(&pattern);
regex_builder.size_limit(REGEX_SIZE_LIMIT);
if let Some(flags) = flags {
let flags = self.to_simple_string(flags)?;
for flag in flags.chars() {
match flag {
's' => {
regex_builder.dot_matches_new_line(true);
}
'm' => {
regex_builder.multi_line(true);
}
'i' => {
regex_builder.case_insensitive(true);
}
'x' => {
regex_builder.ignore_whitespace(true);
}
'q' => (), //TODO: implement
_ => (),
}
}
}
regex_builder.build().ok()
}
fn parse_numeric_operands<'b>(
&'b self,
e1: &PlanExpression,
e2: &PlanExpression,
tuple: &[Option<EncodedTerm>],
) -> Option<NumericBinaryOperands> {
NumericBinaryOperands::new(
self.eval_expression(&e1, tuple)?,
self.eval_expression(&e2, tuple)?,
)
}
fn decode_bindings<'b>(
&'b self,
iter: EncodedTuplesIterator<'b>,
variables: Vec<Variable>,
) -> BindingsIterator<'b>
where
'a: 'b,
{
let eval = self;
let tuple_size = variables.len();
BindingsIterator::new(
variables,
Box::new(iter.map(move |values| {
let mut result = vec![None; tuple_size];
for (i, value) in values?.into_iter().enumerate() {
if let Some(term) = value {
result[i] = Some(eval.dataset.decode_term(term)?)
}
}
Ok(result)
})),
)
}
// this is used to encode results froma BindingIterator into an EncodedTuplesIterator. This happens when SERVICE clauses are evaluated
fn encode_bindings<'b>(
&'b self,
variables: &'b [Variable],
iter: BindingsIterator<'b>,
) -> EncodedTuplesIterator<'b>
where
'a: 'b,
{
let (binding_variables, iter) = BindingsIterator::destruct(iter);
let mut combined_variables = variables.to_vec();
for v in binding_variables.clone() {
if !combined_variables.contains(&v) {
combined_variables.resize(combined_variables.len() + 1, v);
}
}
Box::new(iter.map(move |terms| {
let mut encoder = self.dataset.encoder();
let mut encoded_terms = vec![None; combined_variables.len()];
for (i, term_option) in terms?.into_iter().enumerate() {
match term_option {
None => (),
Some(term) => {
if let Ok(encoded) = encoder.encode_term(&term) {
let variable = binding_variables[i].clone();
put_variable_value(
&variable,
&combined_variables,
encoded,
&mut encoded_terms,
)
}
}
}
}
Ok(encoded_terms)
}))
}
#[allow(clippy::float_cmp)]
fn equals(&self, a: EncodedTerm, b: EncodedTerm) -> Option<bool> {
match a {
EncodedTerm::DefaultGraph
| EncodedTerm::NamedNode { .. }
| EncodedTerm::BlankNode { .. }
| EncodedTerm::LangStringLiteral { .. } => Some(a == b),
EncodedTerm::StringLiteral { value_id: a } => match b {
EncodedTerm::StringLiteral { value_id: b } => Some(a == b),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::BooleanLiteral(a) => match b {
EncodedTerm::BooleanLiteral(b) => Some(a == b),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::FloatLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(a == b),
EncodedTerm::DoubleLiteral(b) => Some(a.to_f64()? == *b),
EncodedTerm::IntegerLiteral(b) => Some(*a == b.to_f32()?),
EncodedTerm::DecimalLiteral(b) => Some(*a == b.to_f32()?),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::DoubleLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(*a == b.to_f64()?),
EncodedTerm::DoubleLiteral(b) => Some(a == b),
EncodedTerm::IntegerLiteral(b) => Some(*a == b.to_f64()?),
EncodedTerm::DecimalLiteral(b) => Some(*a == b.to_f64()?),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::IntegerLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(a.to_f32()? == *b),
EncodedTerm::DoubleLiteral(b) => Some(a.to_f64()? == *b),
EncodedTerm::IntegerLiteral(b) => Some(a == b),
EncodedTerm::DecimalLiteral(b) => Some(Decimal::from_i128(a)? == b),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::DecimalLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(a.to_f32()? == *b),
EncodedTerm::DoubleLiteral(b) => Some(a.to_f64()? == *b),
EncodedTerm::IntegerLiteral(b) => Some(a == Decimal::from_i128(b)?),
EncodedTerm::DecimalLiteral(b) => Some(a == b),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::TypedLiteral { .. } => match b {
EncodedTerm::TypedLiteral { .. } if a == b => Some(true),
EncodedTerm::NamedNode { .. }
| EncodedTerm::BlankNode { .. }
| EncodedTerm::LangStringLiteral { .. } => Some(false),
_ => None,
},
EncodedTerm::DateLiteral(a) => match b {
EncodedTerm::DateLiteral(b) => Some(a == b),
EncodedTerm::NaiveDateLiteral(b) => {
if a.naive_utc() == b {
None
} else {
Some(false)
}
}
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::NaiveDateLiteral(a) => match b {
EncodedTerm::NaiveDateLiteral(b) => Some(a == b),
EncodedTerm::DateLiteral(b) => {
if a == b.naive_utc() {
None
} else {
Some(false)
}
}
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::NaiveTimeLiteral(a) => match b {
EncodedTerm::NaiveTimeLiteral(b) => Some(a == b),
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::DateTimeLiteral(a) => match b {
EncodedTerm::DateTimeLiteral(b) => Some(a == b),
EncodedTerm::NaiveDateTimeLiteral(b) => {
if a.naive_utc() == b {
None
} else {
Some(false)
}
}
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::NaiveDateTimeLiteral(a) => match b {
EncodedTerm::NaiveDateTimeLiteral(b) => Some(a == b),
EncodedTerm::DateTimeLiteral(b) => {
if a == b.naive_utc() {
None
} else {
Some(false)
}
}
EncodedTerm::TypedLiteral { .. } => None,
_ => Some(false),
},
}
}
fn cmp_according_to_expression<'b>(
&'b self,
tuple_a: &[Option<EncodedTerm>],
tuple_b: &[Option<EncodedTerm>],
expression: &PlanExpression,
) -> Ordering {
self.cmp_terms(
self.eval_expression(expression, tuple_a),
self.eval_expression(expression, tuple_b),
)
}
fn cmp_terms(&self, a: Option<EncodedTerm>, b: Option<EncodedTerm>) -> Ordering {
match (a, b) {
(Some(a), Some(b)) => match a {
EncodedTerm::BlankNode { id: a } => {
if let EncodedTerm::BlankNode { id: b } = b {
a.cmp(&b)
} else {
Ordering::Less
}
}
EncodedTerm::NamedNode { iri_id: a } => match b {
EncodedTerm::NamedNode { iri_id: b } => {
self.compare_str_ids(a, b).unwrap_or(Ordering::Equal)
}
EncodedTerm::BlankNode { .. } => Ordering::Greater,
_ => Ordering::Less,
},
a => match b {
EncodedTerm::NamedNode { .. } | EncodedTerm::BlankNode { .. } => {
Ordering::Greater
}
b => self.partial_cmp_literals(a, b).unwrap_or(Ordering::Equal),
},
},
(Some(_), None) => Ordering::Greater,
(None, Some(_)) => Ordering::Less,
(None, None) => Ordering::Equal,
}
}
fn partial_cmp_literals(&self, a: EncodedTerm, b: EncodedTerm) -> Option<Ordering> {
match a {
EncodedTerm::StringLiteral { value_id: a } => {
if let EncodedTerm::StringLiteral { value_id: b } = b {
self.compare_str_ids(a, b)
} else {
None
}
}
EncodedTerm::FloatLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => (*a).partial_cmp(&*b),
EncodedTerm::DoubleLiteral(b) => a.to_f64()?.partial_cmp(&*b),
EncodedTerm::IntegerLiteral(b) => (*a).partial_cmp(&b.to_f32()?),
EncodedTerm::DecimalLiteral(b) => (*a).partial_cmp(&b.to_f32()?),
_ => None,
},
EncodedTerm::DoubleLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => (*a).partial_cmp(&b.to_f64()?),
EncodedTerm::DoubleLiteral(b) => (*a).partial_cmp(&*b),
EncodedTerm::IntegerLiteral(b) => (*a).partial_cmp(&b.to_f64()?),
EncodedTerm::DecimalLiteral(b) => (*a).partial_cmp(&b.to_f64()?),
_ => None,
},
EncodedTerm::IntegerLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => a.to_f32()?.partial_cmp(&*b),
EncodedTerm::DoubleLiteral(b) => a.to_f64()?.partial_cmp(&*b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(&b),
EncodedTerm::DecimalLiteral(b) => Decimal::from_i128(a)?.partial_cmp(&b),
_ => None,
},
EncodedTerm::DecimalLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => a.to_f32()?.partial_cmp(&*b),
EncodedTerm::DoubleLiteral(b) => a.to_f64()?.partial_cmp(&*b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(&Decimal::from_i128(b)?),
EncodedTerm::DecimalLiteral(b) => a.partial_cmp(&b),
_ => None,
},
EncodedTerm::DateLiteral(a) => match b {
EncodedTerm::DateLiteral(ref b) => a.partial_cmp(b),
EncodedTerm::NaiveDateLiteral(ref b) => a.naive_utc().partial_cmp(b), //TODO: check edges
_ => None,
},
EncodedTerm::NaiveDateLiteral(a) => match b {
EncodedTerm::NaiveDateLiteral(ref b) => a.partial_cmp(b),
EncodedTerm::DateLiteral(ref b) => a.partial_cmp(&b.naive_utc()), //TODO: check edges
_ => None,
},
EncodedTerm::NaiveTimeLiteral(a) => {
if let EncodedTerm::NaiveTimeLiteral(ref b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::DateTimeLiteral(a) => match b {
EncodedTerm::DateTimeLiteral(ref b) => a.partial_cmp(b),
EncodedTerm::NaiveDateTimeLiteral(ref b) => a.naive_utc().partial_cmp(b), //TODO: check edges
_ => None,
},
EncodedTerm::NaiveDateTimeLiteral(a) => match b {
EncodedTerm::NaiveDateTimeLiteral(ref b) => a.partial_cmp(b),
EncodedTerm::DateTimeLiteral(ref b) => a.partial_cmp(&b.naive_utc()), //TODO: check edges
_ => None,
},
_ => None,
}
}
fn compare_str_ids(&self, a: u128, b: u128) -> Option<Ordering> {
Some(
self.dataset
.get_str(a)
.ok()??
.cmp(&self.dataset.get_str(b).ok()??),
)
}
fn hash<'b, H: Digest>(
&'b self,
arg: &PlanExpression,
tuple: &[Option<EncodedTerm>],
) -> Option<EncodedTerm> {
let input = self.to_simple_string(self.eval_expression(arg, tuple)?)?;
let hash = hex::encode(H::new().chain(&input as &str).result());
self.build_string_literal(&hash)
}
}
pub enum StringOrStoreString<S: Deref<Target = str> + ToString + Into<String>> {
String(String),
Store(S),
}
impl<S: Deref<Target = str> + ToString + Into<String>> Deref for StringOrStoreString<S> {
type Target = str;
fn deref(&self) -> &str {
match self {
StringOrStoreString::String(s) => &*s,
StringOrStoreString::Store(s) => &*s,
}
}
}
impl<S: Deref<Target = str> + ToString + Into<String>> ToString for StringOrStoreString<S> {
fn to_string(&self) -> String {
match self {
StringOrStoreString::String(s) => s.to_string(),
StringOrStoreString::Store(s) => s.to_string(),
}
}
}
impl<S: Deref<Target = str> + ToString + Into<String>> From<StringOrStoreString<S>> for String {
fn from(string: StringOrStoreString<S>) -> Self {
match string {
StringOrStoreString::String(s) => s,
StringOrStoreString::Store(s) => s.into(),
}
}
}
enum NumericBinaryOperands {
Float(f32, f32),
Double(f64, f64),
Integer(i128, i128),
Decimal(Decimal, Decimal),
}
impl NumericBinaryOperands {
fn new(a: EncodedTerm, b: EncodedTerm) -> Option<Self> {
match (a, b) {
(EncodedTerm::FloatLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(NumericBinaryOperands::Float(*v1, v2.to_f32()?))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(NumericBinaryOperands::Double(v1.to_f64()?, *v2))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(NumericBinaryOperands::Float(*v1, v2.to_f32()?))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(NumericBinaryOperands::Float(*v1, v2.to_f32()?))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(NumericBinaryOperands::Double(*v1, v2.to_f64()?))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(NumericBinaryOperands::Double(*v1, *v2))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(NumericBinaryOperands::Double(*v1, v2.to_f64()?))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(NumericBinaryOperands::Double(*v1, v2.to_f64()?))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(NumericBinaryOperands::Float(v1.to_f32()?, *v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(NumericBinaryOperands::Double(v1.to_f64()?, *v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(NumericBinaryOperands::Integer(v1, v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(NumericBinaryOperands::Decimal(Decimal::from_i128(v1)?, v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(NumericBinaryOperands::Float(v1.to_f32()?, *v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(NumericBinaryOperands::Double(v1.to_f64()?, *v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(NumericBinaryOperands::Decimal(v1, Decimal::from_i128(v2)?))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(NumericBinaryOperands::Decimal(v1, v2))
}
_ => None,
}
}
}
fn get_tuple_value(variable: usize, tuple: &[Option<EncodedTerm>]) -> Option<EncodedTerm> {
if variable < tuple.len() {
tuple[variable]
} else {
None
}
}
fn has_tuple_value(variable: usize, tuple: &[Option<EncodedTerm>]) -> bool {
if variable < tuple.len() {
tuple[variable].is_some()
} else {
false
}
}
fn get_pattern_value(
selector: &PatternValue,
tuple: &[Option<EncodedTerm>],
) -> Option<EncodedTerm> {
match selector {
PatternValue::Constant(term) => Some(*term),
PatternValue::Variable(v) => get_tuple_value(*v, tuple),
}
}
fn put_pattern_value(selector: &PatternValue, value: EncodedTerm, tuple: &mut EncodedTuple) {
match selector {
PatternValue::Constant(_) => (),
PatternValue::Variable(v) => put_value(*v, value, tuple),
}
}
fn put_variable_value(
selector: &Variable,
variables: &[Variable],
value: EncodedTerm,
tuple: &mut EncodedTuple,
) {
for (i, v) in variables.iter().enumerate() {
if selector == v {
put_value(i, value, tuple);
break;
}
}
}
fn put_value(position: usize, value: EncodedTerm, tuple: &mut EncodedTuple) {
if position < tuple.len() {
tuple[position] = Some(value)
} else {
if position > tuple.len() {
tuple.resize(position, None);
}
tuple.push(Some(value))
}
}
fn bind_variables_in_set(binding: &[Option<EncodedTerm>], set: &[usize]) -> Vec<usize> {
set.iter()
.cloned()
.filter(|key| *key < binding.len() && binding[*key].is_some())
.collect()
}
fn unbind_variables(binding: &mut [Option<EncodedTerm>], variables: &[usize]) {
for var in variables {
if *var < binding.len() {
binding[*var] = None
}
}
}
fn combine_tuples(a: &[Option<EncodedTerm>], b: &[Option<EncodedTerm>]) -> Option<EncodedTuple> {
if a.len() < b.len() {
let mut result = b.to_owned();
for (key, a_value) in a.iter().enumerate() {
if let Some(a_value) = a_value {
match b[key] {
Some(ref b_value) => {
if a_value != b_value {
return None;
}
}
None => result[key] = Some(*a_value),
}
}
}
Some(result)
} else {
let mut result = a.to_owned();
for (key, b_value) in b.iter().enumerate() {
if let Some(b_value) = b_value {
match a[key] {
Some(ref a_value) => {
if a_value != b_value {
return None;
}
}
None => result[key] = Some(*b_value),
}
}
}
Some(result)
}
}
fn are_tuples_compatible_and_not_disjointed(
a: &[Option<EncodedTerm>],
b: &[Option<EncodedTerm>],
) -> bool {
let mut found_intersection = false;
for i in 0..min(a.len(), b.len()) {
if let (Some(a_value), Some(b_value)) = (a[i], b[i]) {
if a_value != b_value {
return false;
}
found_intersection = true;
}
}
found_intersection
}
struct JoinIterator<'a> {
left: Vec<EncodedTuple>,
right_iter: EncodedTuplesIterator<'a>,
buffered_results: Vec<Result<EncodedTuple>>,
}
impl<'a> Iterator for JoinIterator<'a> {
type Item = Result<EncodedTuple>;
fn next(&mut self) -> Option<Result<EncodedTuple>> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
let right_tuple = match self.right_iter.next()? {
Ok(right_tuple) => right_tuple,
Err(error) => return Some(Err(error)),
};
for left_tuple in &self.left {
if let Some(result_tuple) = combine_tuples(left_tuple, &right_tuple) {
self.buffered_results.push(Ok(result_tuple))
}
}
}
}
}
struct AntiJoinIterator<'a> {
left_iter: EncodedTuplesIterator<'a>,
right: Vec<EncodedTuple>,
}
impl<'a> Iterator for AntiJoinIterator<'a> {
type Item = Result<EncodedTuple>;
fn next(&mut self) -> Option<Result<EncodedTuple>> {
loop {
match self.left_iter.next()? {
Ok(left_tuple) => {
let exists_compatible_right = self.right.iter().any(|right_tuple| {
are_tuples_compatible_and_not_disjointed(&left_tuple, right_tuple)
});
if !exists_compatible_right {
return Some(Ok(left_tuple));
}
}
Err(error) => return Some(Err(error)),
}
}
}
}
struct LeftJoinIterator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
right_plan: &'a PlanNode,
left_iter: EncodedTuplesIterator<'a>,
current_right: EncodedTuplesIterator<'a>,
}
impl<'a, S: StoreConnection> Iterator for LeftJoinIterator<'a, S> {
type Item = Result<EncodedTuple>;
fn next(&mut self) -> Option<Result<EncodedTuple>> {
if let Some(tuple) = self.current_right.next() {
return Some(tuple);
}
match self.left_iter.next()? {
Ok(left_tuple) => {
self.current_right = self.eval.eval_plan(self.right_plan, left_tuple.clone());
if let Some(right_tuple) = self.current_right.next() {
Some(right_tuple)
} else {
Some(Ok(left_tuple))
}
}
Err(error) => Some(Err(error)),
}
}
}
struct BadLeftJoinIterator<'a, S: StoreConnection> {
input: EncodedTuple,
iter: LeftJoinIterator<'a, S>,
problem_vars: Vec<usize>,
}
impl<'a, S: StoreConnection> Iterator for BadLeftJoinIterator<'a, S> {
type Item = Result<EncodedTuple>;
fn next(&mut self) -> Option<Result<EncodedTuple>> {
loop {
match self.iter.next()? {
Ok(mut tuple) => {
let mut conflict = false;
for problem_var in &self.problem_vars {
if let Some(input_value) = self.input[*problem_var] {
if let Some(result_value) = get_tuple_value(*problem_var, &tuple) {
if input_value != result_value {
conflict = true;
continue; //Binding conflict
}
} else {
put_value(*problem_var, input_value, &mut tuple);
}
}
}
if !conflict {
return Some(Ok(tuple));
}
}
Err(error) => return Some(Err(error)),
}
}
}
}
struct UnionIterator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
plans: &'a [PlanNode],
input: EncodedTuple,
current_iterator: EncodedTuplesIterator<'a>,
current_plan: usize,
}
impl<'a, S: StoreConnection> Iterator for UnionIterator<'a, S> {
type Item = Result<EncodedTuple>;
fn next(&mut self) -> Option<Result<EncodedTuple>> {
loop {
if let Some(tuple) = self.current_iterator.next() {
return Some(tuple);
}
if self.current_plan >= self.plans.len() {
return None;
}
self.current_iterator = self
.eval
.eval_plan(&self.plans[self.current_plan], self.input.clone());
self.current_plan += 1;
}
}
}
struct ConstructIterator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
iter: EncodedTuplesIterator<'a>,
template: &'a [TripleTemplate],
buffered_results: Vec<Result<Triple>>,
bnodes: Vec<BlankNode>,
}
impl<'a, S: StoreConnection + 'a> Iterator for ConstructIterator<'a, S> {
type Item = Result<Triple>;
fn next(&mut self) -> Option<Result<Triple>> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
{
let tuple = match self.iter.next()? {
Ok(tuple) => tuple,
Err(error) => return Some(Err(error)),
};
for template in self.template {
if let (Some(subject), Some(predicate), Some(object)) = (
get_triple_template_value(&template.subject, &tuple, &mut self.bnodes),
get_triple_template_value(&template.predicate, &tuple, &mut self.bnodes),
get_triple_template_value(&template.object, &tuple, &mut self.bnodes),
) {
self.buffered_results.push(decode_triple(
&self.eval.dataset,
subject,
predicate,
object,
));
}
}
self.bnodes.clear(); //We do not reuse old bnodes
}
}
}
}
fn get_triple_template_value(
selector: &TripleTemplateValue,
tuple: &[Option<EncodedTerm>],
bnodes: &mut Vec<BlankNode>,
) -> Option<EncodedTerm> {
match selector {
TripleTemplateValue::Constant(term) => Some(*term),
TripleTemplateValue::Variable(v) => get_tuple_value(*v, tuple),
TripleTemplateValue::BlankNode(id) => {
if *id >= tuple.len() {
bnodes.resize_with(*id, BlankNode::default)
}
tuple[*id]
}
}
}
fn decode_triple(
decoder: &impl Decoder,
subject: EncodedTerm,
predicate: EncodedTerm,
object: EncodedTerm,
) -> Result<Triple> {
Ok(Triple::new(
decoder.decode_named_or_blank_node(subject)?,
decoder.decode_named_node(predicate)?,
decoder.decode_term(object)?,
))
}
struct DescribeIterator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
iter: EncodedTuplesIterator<'a>,
quads: Box<dyn Iterator<Item = Result<EncodedQuad>> + 'a>,
}
impl<'a, S: StoreConnection + 'a> Iterator for DescribeIterator<'a, S> {
type Item = Result<Triple>;
fn next(&mut self) -> Option<Result<Triple>> {
loop {
if let Some(quad) = self.quads.next() {
return Some(match quad {
Ok(quad) => self
.eval
.dataset
.decode_quad(&quad)
.map(|q| q.into_triple()),
Err(error) => Err(error),
});
}
let tuple = match self.iter.next()? {
Ok(tuple) => tuple,
Err(error) => return Some(Err(error)),
};
for subject in tuple {
if let Some(subject) = subject {
self.quads =
self.eval
.dataset
.quads_for_pattern(Some(subject), None, None, None);
}
}
}
}
}
struct ZipLongest<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> {
a: I1,
b: I2,
}
impl<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> ZipLongest<T1, T2, I1, I2> {
fn new(a: I1, b: I2) -> Self {
Self { a, b }
}
}
impl<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> Iterator
for ZipLongest<T1, T2, I1, I2>
{
type Item = (Option<T1>, Option<T2>);
fn next(&mut self) -> Option<(Option<T1>, Option<T2>)> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
r => Some(r),
}
}
}
fn transitive_closure<'a, T: 'a + Copy + Eq + Hash, NI: Iterator<Item = Result<T>> + 'a>(
start: impl IntoIterator<Item = Result<T>>,
next: impl Fn(T) -> NI,
) -> impl Iterator<Item = Result<T>> + 'a {
//TODO: optimize
let mut all = HashSet::<T>::default();
let mut errors = Vec::default();
let mut current = start
.into_iter()
.filter_map(|e| match e {
Ok(e) => {
all.insert(e);
Some(e)
}
Err(error) => {
errors.push(error);
None
}
})
.collect::<Vec<_>>();
while !current.is_empty() {
current = current
.into_iter()
.flat_map(|e| next(e))
.filter_map(|e| match e {
Ok(e) => {
if all.contains(&e) {
None
} else {
all.insert(e);
Some(e)
}
}
Err(error) => {
errors.push(error);
None
}
})
.collect();
}
errors.into_iter().map(Err).chain(all.into_iter().map(Ok))
}
fn hash_deduplicate<T: Eq + Hash + Clone>(
iter: impl Iterator<Item = Result<T>>,
) -> impl Iterator<Item = Result<T>> {
let mut already_seen = HashSet::with_capacity(iter.size_hint().0);
iter.filter(move |e| {
if let Ok(e) = e {
if already_seen.contains(e) {
false
} else {
already_seen.insert(e.clone());
true
}
} else {
true
}
})
}
trait ResultIterator<T>: Iterator<Item = Result<T>> + Sized {
fn flat_map_ok<O, F: FnMut(T) -> U, U: IntoIterator<Item = Result<O>>>(
self,
f: F,
) -> FlatMapOk<T, O, Self, F, U>;
}
impl<T, I: Iterator<Item = Result<T>> + Sized> ResultIterator<T> for I {
fn flat_map_ok<O, F: FnMut(T) -> U, U: IntoIterator<Item = Result<O>>>(
self,
f: F,
) -> FlatMapOk<T, O, Self, F, U> {
FlatMapOk {
inner: self,
f,
current: None,
}
}
}
struct FlatMapOk<
T,
O,
I: Iterator<Item = Result<T>>,
F: FnMut(T) -> U,
U: IntoIterator<Item = Result<O>>,
> {
inner: I,
f: F,
current: Option<U::IntoIter>,
}
impl<T, O, I: Iterator<Item = Result<T>>, F: FnMut(T) -> U, U: IntoIterator<Item = Result<O>>>
Iterator for FlatMapOk<T, O, I, F, U>
{
type Item = Result<O>;
fn next(&mut self) -> Option<Result<O>> {
loop {
if let Some(current) = &mut self.current {
if let Some(next) = current.next() {
return Some(next);
}
}
self.current = None;
match self.inner.next()? {
Ok(e) => self.current = Some((self.f)(e).into_iter()),
Err(error) => return Some(Err(error)),
}
}
}
}
trait Accumulator {
fn add(&mut self, element: Option<EncodedTerm>);
fn state(&self) -> Option<EncodedTerm>;
}
#[derive(Default, Debug)]
struct DistinctAccumulator<T: Accumulator> {
seen: HashSet<Option<EncodedTerm>>,
inner: T,
}
impl<T: Accumulator> DistinctAccumulator<T> {
fn new(inner: T) -> Self {
Self {
seen: HashSet::default(),
inner,
}
}
}
impl<T: Accumulator> Accumulator for DistinctAccumulator<T> {
fn add(&mut self, element: Option<EncodedTerm>) {
if self.seen.insert(element) {
self.inner.add(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.inner.state()
}
}
#[derive(Default, Debug)]
struct CountAccumulator {
count: u64,
}
impl Accumulator for CountAccumulator {
fn add(&mut self, _element: Option<EncodedTerm>) {
self.count += 1;
}
fn state(&self) -> Option<EncodedTerm> {
Some(self.count.into())
}
}
#[derive(Debug)]
struct SumAccumulator {
sum: Option<EncodedTerm>,
}
impl Default for SumAccumulator {
fn default() -> Self {
Self {
sum: Some(0.into()),
}
}
}
impl Accumulator for SumAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(sum) = self.sum {
if let Some(operands) = element.and_then(|e| NumericBinaryOperands::new(sum, e)) {
//TODO: unify with addition?
self.sum = match operands {
NumericBinaryOperands::Float(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_add(v2).map(|v| v.into()),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_add(v2).map(|v| v.into()),
};
} else {
self.sum = None;
}
}
}
fn state(&self) -> Option<EncodedTerm> {
self.sum
}
}
#[derive(Debug, Default)]
struct AvgAccumulator {
sum: SumAccumulator,
count: CountAccumulator,
}
impl Accumulator for AvgAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
self.sum.add(element);
self.count.add(element);
}
fn state(&self) -> Option<EncodedTerm> {
let sum = self.sum.state()?;
let count = self.count.state()?;
if count == EncodedTerm::from(0) {
Some(0.into())
} else {
//TODO: deduplicate?
match NumericBinaryOperands::new(sum, count)? {
NumericBinaryOperands::Float(v1, v2) => Some((v1 / v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 / v2).into()),
NumericBinaryOperands::Integer(v1, v2) => Decimal::from_i128(v1)?
.checked_div(Decimal::from_i128(v2)?)
.map(|v| v.into()),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_div(v2).map(|v| v.into()),
}
}
}
}
struct MinAccumulator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
min: Option<Option<EncodedTerm>>,
}
impl<'a, S: StoreConnection + 'a> MinAccumulator<'a, S> {
fn new(eval: &'a SimpleEvaluator<S>) -> Self {
Self { eval, min: None }
}
}
impl<'a, S: StoreConnection + 'a> Accumulator for MinAccumulator<'a, S> {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(min) = self.min {
if self.eval.cmp_terms(element, min) == Ordering::Less {
self.min = Some(element)
}
} else {
self.min = Some(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.min.and_then(|v| v)
}
}
struct MaxAccumulator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
max: Option<Option<EncodedTerm>>,
}
impl<'a, S: StoreConnection + 'a> MaxAccumulator<'a, S> {
fn new(eval: &'a SimpleEvaluator<S>) -> Self {
Self { eval, max: None }
}
}
impl<'a, S: StoreConnection + 'a> Accumulator for MaxAccumulator<'a, S> {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(max) = self.max {
if self.eval.cmp_terms(element, max) == Ordering::Greater {
self.max = Some(element)
}
} else {
self.max = Some(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.max.and_then(|v| v)
}
}
#[derive(Default, Debug)]
struct SampleAccumulator {
value: Option<EncodedTerm>,
}
impl Accumulator for SampleAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if element.is_some() {
self.value = element
}
}
fn state(&self) -> Option<EncodedTerm> {
self.value
}
}
struct GroupConcatAccumulator<'a, S: StoreConnection + 'a> {
eval: &'a SimpleEvaluator<S>,
concat: Option<String>,
language: Option<Option<u128>>,
separator: &'a str,
}
impl<'a, S: StoreConnection + 'a> GroupConcatAccumulator<'a, S> {
fn new(eval: &'a SimpleEvaluator<S>, separator: &'a str) -> Self {
Self {
eval,
concat: Some("".to_owned()),
language: None,
separator,
}
}
}
impl<'a, S: StoreConnection + 'a> Accumulator for GroupConcatAccumulator<'a, S> {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(concat) = self.concat.as_mut() {
let element = if let Some(element) = element {
self.eval.to_string_and_language(element)
} else {
None
};
if let Some((value, e_language)) = element {
if let Some(lang) = self.language {
if lang != e_language {
self.language = Some(None)
}
concat.push_str(self.separator);
} else {
self.language = Some(e_language)
}
concat.push_str(&value);
} else {
self.concat = None;
}
}
}
fn state(&self) -> Option<EncodedTerm> {
self.concat.as_ref().and_then(|result| {
self.eval
.build_plain_literal(result, self.language.and_then(|v| v))
})
}
}