Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/src/sparql/plan.rs

710 lines
23 KiB

use crate::model::NamedNode;
use crate::storage::numeric_encoder::EncodedTerm;
use oxrdf::Variable;
use spargebra::algebra::GraphPattern;
use std::cmp::max;
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BTreeSet};
use std::rc::Rc;
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum PlanNode {
StaticBindings {
tuples: Vec<EncodedTuple>,
},
Service {
service_name: PatternValue,
variables: Rc<Vec<Variable>>,
child: Box<Self>,
graph_pattern: Rc<GraphPattern>,
silent: bool,
},
QuadPattern {
subject: PatternValue,
predicate: PatternValue,
object: PatternValue,
graph_name: PatternValue,
},
PathPattern {
subject: PatternValue,
path: Rc<PlanPropertyPath>,
object: PatternValue,
graph_name: PatternValue,
},
/// Streams left and materializes right join
HashJoin {
left: Box<Self>,
right: Box<Self>,
},
/// Right nested in left loop
ForLoopJoin {
left: Box<Self>,
right: Box<Self>,
},
/// Streams left and materializes right anti join
AntiJoin {
left: Box<Self>,
right: Box<Self>,
},
Filter {
child: Box<Self>,
expression: Box<PlanExpression>,
},
Union {
children: Vec<Self>,
},
/// right nested in left loop
LeftJoin {
left: Box<Self>,
right: Box<Self>,
possible_problem_vars: Rc<Vec<usize>>, //Variables that should not be part of the entry of the left join
},
Extend {
child: Box<Self>,
position: usize,
expression: Box<PlanExpression>,
},
Sort {
child: Box<Self>,
by: Vec<Comparator>,
},
HashDeduplicate {
child: Box<Self>,
},
/// Removes duplicated consecutive elements
Reduced {
child: Box<Self>,
},
Skip {
child: Box<Self>,
count: usize,
},
Limit {
child: Box<Self>,
count: usize,
},
Project {
child: Box<Self>,
mapping: Rc<Vec<(usize, usize)>>, // pairs of (variable key in child, variable key in output)
},
Aggregate {
// By definition the group by key are the range 0..key_mapping.len()
child: Box<Self>,
key_mapping: Rc<Vec<(usize, usize)>>, // aggregate key pairs of (variable key in child, variable key in output)
aggregates: Rc<Vec<(PlanAggregation, usize)>>,
},
}
impl PlanNode {
/// Returns variables that might be bound in the result set
pub fn used_variables(&self) -> BTreeSet<usize> {
let mut set = BTreeSet::default();
self.lookup_used_variables(&mut |v| {
set.insert(v);
});
set
}
pub fn lookup_used_variables(&self, callback: &mut impl FnMut(usize)) {
match self {
PlanNode::StaticBindings { tuples } => {
for tuple in tuples {
for (key, value) in tuple.iter().enumerate() {
if value.is_some() {
callback(key);
}
}
}
}
PlanNode::QuadPattern {
subject,
predicate,
object,
graph_name,
} => {
if let PatternValue::Variable(var) = subject {
callback(*var);
}
if let PatternValue::Variable(var) = predicate {
callback(*var);
}
if let PatternValue::Variable(var) = object {
callback(*var);
}
if let PatternValue::Variable(var) = graph_name {
callback(*var);
}
}
PlanNode::PathPattern {
subject,
object,
graph_name,
..
} => {
if let PatternValue::Variable(var) = subject {
callback(*var);
}
if let PatternValue::Variable(var) = object {
callback(*var);
}
if let PatternValue::Variable(var) = graph_name {
callback(*var);
}
}
PlanNode::Filter { child, expression } => {
expression.lookup_used_variables(callback);
child.lookup_used_variables(callback);
}
PlanNode::Union { children } => {
for child in children.iter() {
child.lookup_used_variables(callback);
}
}
PlanNode::HashJoin { left, right }
| PlanNode::ForLoopJoin { left, right, .. }
| PlanNode::AntiJoin { left, right }
| PlanNode::LeftJoin { left, right, .. } => {
left.lookup_used_variables(callback);
right.lookup_used_variables(callback);
}
PlanNode::Extend {
child,
position,
expression,
} => {
callback(*position);
expression.lookup_used_variables(callback);
child.lookup_used_variables(callback);
}
PlanNode::Sort { child, .. }
| PlanNode::HashDeduplicate { child }
| PlanNode::Reduced { child }
| PlanNode::Skip { child, .. }
| PlanNode::Limit { child, .. } => child.lookup_used_variables(callback),
PlanNode::Service {
child,
service_name,
..
} => {
if let PatternValue::Variable(v) = service_name {
callback(*v);
}
child.lookup_used_variables(callback);
}
PlanNode::Project { mapping, child } => {
let child_bound = child.used_variables();
for (child_i, output_i) in mapping.iter() {
if child_bound.contains(child_i) {
callback(*output_i);
}
}
}
PlanNode::Aggregate {
key_mapping,
aggregates,
..
} => {
for (_, o) in key_mapping.iter() {
callback(*o);
}
for (_, var) in aggregates.iter() {
callback(*var);
}
}
}
}
/// Returns subset of the set of variables that are always bound in the result set
///
/// (subset because this function is not perfect yet)
pub fn always_bound_variables(&self) -> BTreeSet<usize> {
let mut set = BTreeSet::default();
self.lookup_always_bound_variables(&mut |v| {
set.insert(v);
});
set
}
pub fn lookup_always_bound_variables(&self, callback: &mut impl FnMut(usize)) {
match self {
PlanNode::StaticBindings { tuples } => {
let mut variables = BTreeMap::default(); // value true iff always bound
let max_tuple_length = tuples.iter().map(|t| t.capacity()).fold(0, max);
for tuple in tuples {
for key in 0..max_tuple_length {
match variables.entry(key) {
Entry::Vacant(e) => {
e.insert(tuple.contains(key));
}
Entry::Occupied(mut e) => {
if !tuple.contains(key) {
e.insert(false);
}
}
}
}
}
for (k, v) in variables {
if v {
callback(k);
}
}
}
PlanNode::QuadPattern {
subject,
predicate,
object,
graph_name,
} => {
if let PatternValue::Variable(var) = subject {
callback(*var);
}
if let PatternValue::Variable(var) = predicate {
callback(*var);
}
if let PatternValue::Variable(var) = object {
callback(*var);
}
if let PatternValue::Variable(var) = graph_name {
callback(*var);
}
}
PlanNode::PathPattern {
subject,
object,
graph_name,
..
} => {
if let PatternValue::Variable(var) = subject {
callback(*var);
}
if let PatternValue::Variable(var) = object {
callback(*var);
}
if let PatternValue::Variable(var) = graph_name {
callback(*var);
}
}
PlanNode::Filter { child, .. } => {
//TODO: have a look at the expression to know if it filters out unbound variables
child.lookup_always_bound_variables(callback);
}
PlanNode::Union { children } => {
if let Some(vars) = children
.iter()
.map(|c| c.always_bound_variables())
.reduce(|a, b| a.intersection(&b).copied().collect())
{
for v in vars {
callback(v);
}
}
}
PlanNode::HashJoin { left, right } | PlanNode::ForLoopJoin { left, right, .. } => {
left.lookup_always_bound_variables(callback);
right.lookup_always_bound_variables(callback);
}
PlanNode::AntiJoin { left, .. } | PlanNode::LeftJoin { left, .. } => {
left.lookup_always_bound_variables(callback);
}
PlanNode::Extend {
child,
position,
expression,
} => {
if matches!(expression.as_ref(), PlanExpression::Constant(_)) {
// TODO: more cases?
callback(*position);
}
child.lookup_always_bound_variables(callback);
}
PlanNode::Sort { child, .. }
| PlanNode::HashDeduplicate { child }
| PlanNode::Reduced { child }
| PlanNode::Skip { child, .. }
| PlanNode::Limit { child, .. } => child.lookup_always_bound_variables(callback),
PlanNode::Service { child, silent, .. } => {
if *silent {
// none, might return a null tuple
} else {
child.lookup_always_bound_variables(callback)
}
}
PlanNode::Project { mapping, child } => {
let child_bound = child.always_bound_variables();
for (child_i, output_i) in mapping.iter() {
if child_bound.contains(child_i) {
callback(*output_i);
}
}
}
PlanNode::Aggregate { .. } => {
//TODO
}
}
}
pub fn is_variable_bound(&self, variable: usize) -> bool {
let mut found = false;
self.lookup_always_bound_variables(&mut |v| {
if v == variable {
found = true;
}
});
found
}
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum PatternValue {
Constant(EncodedTerm),
Variable(usize),
Triple(Box<TriplePatternValue>),
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct TriplePatternValue {
pub subject: PatternValue,
pub predicate: PatternValue,
pub object: PatternValue,
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum PlanExpression {
Constant(EncodedTerm),
Variable(usize),
Exists(Rc<PlanNode>),
Or(Box<Self>, Box<Self>),
And(Box<Self>, Box<Self>),
Equal(Box<Self>, Box<Self>),
Greater(Box<Self>, Box<Self>),
GreaterOrEqual(Box<Self>, Box<Self>),
Less(Box<Self>, Box<Self>),
LessOrEqual(Box<Self>, Box<Self>),
Add(Box<Self>, Box<Self>),
Subtract(Box<Self>, Box<Self>),
Multiply(Box<Self>, Box<Self>),
Divide(Box<Self>, Box<Self>),
UnaryPlus(Box<Self>),
UnaryMinus(Box<Self>),
Not(Box<Self>),
Str(Box<Self>),
Lang(Box<Self>),
LangMatches(Box<Self>, Box<Self>),
Datatype(Box<Self>),
Bound(usize),
Iri(Box<Self>),
BNode(Option<Box<Self>>),
Rand,
Abs(Box<Self>),
Ceil(Box<Self>),
Floor(Box<Self>),
Round(Box<Self>),
Concat(Vec<Self>),
SubStr(Box<Self>, Box<Self>, Option<Box<Self>>),
StrLen(Box<Self>),
Replace(Box<Self>, Box<Self>, Box<Self>, Option<Box<Self>>),
UCase(Box<Self>),
LCase(Box<Self>),
EncodeForUri(Box<Self>),
Contains(Box<Self>, Box<Self>),
StrStarts(Box<Self>, Box<Self>),
StrEnds(Box<Self>, Box<Self>),
StrBefore(Box<Self>, Box<Self>),
StrAfter(Box<Self>, Box<Self>),
Year(Box<Self>),
Month(Box<Self>),
Day(Box<Self>),
Hours(Box<Self>),
Minutes(Box<Self>),
Seconds(Box<Self>),
Timezone(Box<Self>),
Tz(Box<Self>),
Now,
Uuid,
StrUuid,
Md5(Box<Self>),
Sha1(Box<Self>),
Sha256(Box<Self>),
Sha384(Box<Self>),
Sha512(Box<Self>),
Coalesce(Vec<Self>),
If(Box<Self>, Box<Self>, Box<Self>),
StrLang(Box<Self>, Box<Self>),
StrDt(Box<Self>, Box<Self>),
SameTerm(Box<Self>, Box<Self>),
IsIri(Box<Self>),
IsBlank(Box<Self>),
IsLiteral(Box<Self>),
IsNumeric(Box<Self>),
Regex(Box<Self>, Box<Self>, Option<Box<Self>>),
Triple(Box<Self>, Box<Self>, Box<Self>),
Subject(Box<Self>),
Predicate(Box<Self>),
Object(Box<Self>),
IsTriple(Box<Self>),
BooleanCast(Box<Self>),
DoubleCast(Box<Self>),
FloatCast(Box<Self>),
DecimalCast(Box<Self>),
IntegerCast(Box<Self>),
DateCast(Box<Self>),
TimeCast(Box<Self>),
DateTimeCast(Box<Self>),
DurationCast(Box<Self>),
YearMonthDurationCast(Box<Self>),
DayTimeDurationCast(Box<Self>),
StringCast(Box<Self>),
CustomFunction(NamedNode, Vec<Self>),
}
impl PlanExpression {
pub fn lookup_used_variables(&self, callback: &mut impl FnMut(usize)) {
match self {
PlanExpression::Variable(v) | PlanExpression::Bound(v) => {
callback(*v);
}
PlanExpression::Constant(_)
| PlanExpression::Rand
| PlanExpression::Now
| PlanExpression::Uuid
| PlanExpression::StrUuid
| PlanExpression::BNode(None) => (),
PlanExpression::UnaryPlus(e)
| PlanExpression::UnaryMinus(e)
| PlanExpression::Not(e)
| PlanExpression::BNode(Some(e))
| PlanExpression::Str(e)
| PlanExpression::Lang(e)
| PlanExpression::Datatype(e)
| PlanExpression::Iri(e)
| PlanExpression::Abs(e)
| PlanExpression::Ceil(e)
| PlanExpression::Floor(e)
| PlanExpression::Round(e)
| PlanExpression::UCase(e)
| PlanExpression::LCase(e)
| PlanExpression::StrLen(e)
| PlanExpression::EncodeForUri(e)
| PlanExpression::Year(e)
| PlanExpression::Month(e)
| PlanExpression::Day(e)
| PlanExpression::Hours(e)
| PlanExpression::Minutes(e)
| PlanExpression::Seconds(e)
| PlanExpression::Timezone(e)
| PlanExpression::Tz(e)
| PlanExpression::Md5(e)
| PlanExpression::Sha1(e)
| PlanExpression::Sha256(e)
| PlanExpression::Sha384(e)
| PlanExpression::Sha512(e)
| PlanExpression::IsIri(e)
| PlanExpression::IsBlank(e)
| PlanExpression::IsLiteral(e)
| PlanExpression::IsNumeric(e)
| PlanExpression::IsTriple(e)
| PlanExpression::Subject(e)
| PlanExpression::Predicate(e)
| PlanExpression::Object(e)
| PlanExpression::BooleanCast(e)
| PlanExpression::DoubleCast(e)
| PlanExpression::FloatCast(e)
| PlanExpression::DecimalCast(e)
| PlanExpression::IntegerCast(e)
| PlanExpression::DateCast(e)
| PlanExpression::TimeCast(e)
| PlanExpression::DateTimeCast(e)
| PlanExpression::DurationCast(e)
| PlanExpression::YearMonthDurationCast(e)
| PlanExpression::DayTimeDurationCast(e)
| PlanExpression::StringCast(e) => e.lookup_used_variables(callback),
PlanExpression::Or(a, b)
| PlanExpression::And(a, b)
| PlanExpression::Equal(a, b)
| PlanExpression::Greater(a, b)
| PlanExpression::GreaterOrEqual(a, b)
| PlanExpression::Less(a, b)
| PlanExpression::LessOrEqual(a, b)
| PlanExpression::Add(a, b)
| PlanExpression::Subtract(a, b)
| PlanExpression::Multiply(a, b)
| PlanExpression::Divide(a, b)
| PlanExpression::LangMatches(a, b)
| PlanExpression::Contains(a, b)
| PlanExpression::StrStarts(a, b)
| PlanExpression::StrEnds(a, b)
| PlanExpression::StrBefore(a, b)
| PlanExpression::StrAfter(a, b)
| PlanExpression::StrLang(a, b)
| PlanExpression::StrDt(a, b)
| PlanExpression::SameTerm(a, b)
| PlanExpression::SubStr(a, b, None)
| PlanExpression::Regex(a, b, None) => {
a.lookup_used_variables(callback);
b.lookup_used_variables(callback);
}
PlanExpression::If(a, b, c)
| PlanExpression::SubStr(a, b, Some(c))
| PlanExpression::Regex(a, b, Some(c))
| PlanExpression::Replace(a, b, c, None)
| PlanExpression::Triple(a, b, c) => {
a.lookup_used_variables(callback);
b.lookup_used_variables(callback);
c.lookup_used_variables(callback);
}
PlanExpression::Replace(a, b, c, Some(d)) => {
a.lookup_used_variables(callback);
b.lookup_used_variables(callback);
c.lookup_used_variables(callback);
d.lookup_used_variables(callback);
}
PlanExpression::Concat(es)
| PlanExpression::Coalesce(es)
| PlanExpression::CustomFunction(_, es) => {
for e in es {
e.lookup_used_variables(callback);
}
}
PlanExpression::Exists(e) => {
e.lookup_used_variables(callback);
}
}
}
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct PlanAggregation {
pub function: PlanAggregationFunction,
pub parameter: Option<PlanExpression>,
pub distinct: bool,
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum PlanAggregationFunction {
Count,
Sum,
Min,
Max,
Avg,
Sample,
GroupConcat { separator: Rc<String> },
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum PlanPropertyPath {
Path(EncodedTerm),
Reverse(Rc<Self>),
Sequence(Rc<Self>, Rc<Self>),
Alternative(Rc<Self>, Rc<Self>),
ZeroOrMore(Rc<Self>),
OneOrMore(Rc<Self>),
ZeroOrOne(Rc<Self>),
NegatedPropertySet(Rc<Vec<EncodedTerm>>),
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum Comparator {
Asc(PlanExpression),
Desc(PlanExpression),
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct TripleTemplate {
pub subject: TripleTemplateValue,
pub predicate: TripleTemplateValue,
pub object: TripleTemplateValue,
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub enum TripleTemplateValue {
Constant(EncodedTerm),
BlankNode(usize),
Variable(usize),
Triple(Box<TripleTemplate>),
}
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct EncodedTuple {
inner: Vec<Option<EncodedTerm>>,
}
impl EncodedTuple {
pub fn with_capacity(capacity: usize) -> Self {
Self {
inner: Vec::with_capacity(capacity),
}
}
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
pub fn contains(&self, index: usize) -> bool {
self.inner.get(index).map_or(false, Option::is_some)
}
pub fn get(&self, index: usize) -> Option<&EncodedTerm> {
self.inner.get(index).unwrap_or(&None).as_ref()
}
pub fn iter(&self) -> impl Iterator<Item = Option<EncodedTerm>> + '_ {
self.inner.iter().cloned()
}
pub fn set(&mut self, index: usize, value: EncodedTerm) {
if self.inner.len() <= index {
self.inner.resize(index + 1, None);
}
self.inner[index] = Some(value);
}
pub fn unset(&mut self, index: usize) {
if let Some(v) = self.inner.get_mut(index) {
*v = None;
}
}
pub fn combine_with(&self, other: &Self) -> Option<Self> {
if self.inner.len() < other.inner.len() {
let mut result = other.inner.clone();
for (key, self_value) in self.inner.iter().enumerate() {
if let Some(self_value) = self_value {
match &other.inner[key] {
Some(other_value) => {
if self_value != other_value {
return None;
}
}
None => result[key] = Some(self_value.clone()),
}
}
}
Some(Self { inner: result })
} else {
let mut result = self.inner.clone();
for (key, other_value) in other.inner.iter().enumerate() {
if let Some(other_value) = other_value {
match &self.inner[key] {
Some(self_value) => {
if self_value != other_value {
return None;
}
}
None => result[key] = Some(other_value.clone()),
}
}
}
Some(Self { inner: result })
}
}
}
impl IntoIterator for EncodedTuple {
type Item = Option<EncodedTerm>;
type IntoIter = std::vec::IntoIter<Option<EncodedTerm>>;
fn into_iter(self) -> Self::IntoIter {
self.inner.into_iter()
}
}