Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/src/sparql/plan_builder.rs

1109 lines
49 KiB

use crate::model::Term as OxTerm;
use crate::sparql::dataset::DatasetView;
use crate::sparql::error::EvaluationError;
use crate::sparql::eval::compile_pattern;
use crate::sparql::plan::*;
use crate::storage::numeric_encoder::{EncodedTerm, EncodedTriple};
use oxrdf::vocab::xsd;
use oxrdf::{BlankNode, Term, TermRef, Triple};
use regex::Regex;
use spargebra::term::{GroundSubject, GroundTriple, TermPattern, TriplePattern};
use sparopt::algebra::*;
use sparopt::Optimizer;
use std::collections::HashMap;
use std::rc::Rc;
pub struct PlanBuilder<'a> {
dataset: &'a DatasetView,
custom_functions: &'a HashMap<NamedNode, Rc<dyn Fn(&[OxTerm]) -> Option<OxTerm>>>,
}
impl<'a> PlanBuilder<'a> {
pub fn build(
dataset: &'a DatasetView,
pattern: &spargebra::algebra::GraphPattern,
is_cardinality_meaningful: bool,
custom_functions: &'a HashMap<NamedNode, Rc<dyn Fn(&[OxTerm]) -> Option<OxTerm>>>,
without_optimizations: bool,
) -> Result<(PlanNode, Vec<Variable>), EvaluationError> {
let mut pattern = GraphPattern::from(pattern);
if !without_optimizations {
pattern = Optimizer::optimize_graph_pattern(pattern);
}
let mut variables = Vec::default();
let plan = PlanBuilder {
dataset,
custom_functions,
}
.build_for_graph_pattern(&pattern, &mut variables)?;
let plan = if !without_optimizations && !is_cardinality_meaningful {
// let's reduce downstream task.
// TODO: avoid if already REDUCED or DISTINCT
PlanNode::Reduced {
child: Rc::new(plan),
}
} else {
plan
};
Ok((plan, variables))
}
pub fn build_graph_template(
dataset: &'a DatasetView,
template: &[TriplePattern],
mut variables: Vec<Variable>,
custom_functions: &'a HashMap<NamedNode, Rc<dyn Fn(&[OxTerm]) -> Option<OxTerm>>>,
) -> Vec<TripleTemplate> {
PlanBuilder {
dataset,
custom_functions,
}
.build_for_graph_template(template, &mut variables)
}
fn build_for_graph_pattern(
&self,
pattern: &GraphPattern,
variables: &mut Vec<Variable>,
) -> Result<PlanNode, EvaluationError> {
Ok(match pattern {
GraphPattern::QuadPattern {
subject,
predicate,
object,
graph_name,
} => PlanNode::QuadPattern {
subject: self.pattern_value_from_ground_term_pattern(subject, variables),
predicate: self.pattern_value_from_named_node_or_variable(predicate, variables),
object: self.pattern_value_from_ground_term_pattern(object, variables),
graph_name: graph_name.as_ref().map_or(
PatternValue::Constant(PlanTerm {
encoded: EncodedTerm::DefaultGraph,
plain: PatternValueConstant::DefaultGraph,
}),
|g| self.pattern_value_from_named_node_or_variable(g, variables),
),
},
GraphPattern::Path {
subject,
path,
object,
graph_name,
} => PlanNode::PathPattern {
subject: self.pattern_value_from_ground_term_pattern(subject, variables),
path: Rc::new(self.build_for_path(path)),
object: self.pattern_value_from_ground_term_pattern(object, variables),
graph_name: graph_name.as_ref().map_or(
PatternValue::Constant(PlanTerm {
encoded: EncodedTerm::DefaultGraph,
plain: PatternValueConstant::DefaultGraph,
}),
|g| self.pattern_value_from_named_node_or_variable(g, variables),
),
},
GraphPattern::Join {
left,
right,
algorithm,
} => match algorithm {
JoinAlgorithm::HashBuildLeftProbeRight { keys } => PlanNode::HashJoin {
build_child: Rc::new(self.build_for_graph_pattern(left, variables)?),
probe_child: Rc::new(self.build_for_graph_pattern(right, variables)?),
keys: keys
.iter()
.map(|v| build_plan_variable(variables, v))
.collect(),
},
},
GraphPattern::LeftJoin {
left,
right,
expression,
algorithm,
} => match algorithm {
LeftJoinAlgorithm::HashBuildRightProbeLeft { keys } => PlanNode::HashLeftJoin {
left: Rc::new(self.build_for_graph_pattern(left, variables)?),
right: Rc::new(self.build_for_graph_pattern(right, variables)?),
expression: Box::new(self.build_for_expression(expression, variables)?),
keys: keys
.iter()
.map(|v| build_plan_variable(variables, v))
.collect(),
},
},
GraphPattern::Lateral { left, right } => {
if let GraphPattern::LeftJoin {
left: nested_left,
right: nested_right,
expression,
..
} = right.as_ref()
{
if nested_left.is_empty_singleton() {
// We are in a ForLoopLeftJoin
let right =
GraphPattern::filter(nested_right.as_ref().clone(), expression.clone());
PlanNode::ForLoopLeftJoin {
left: Rc::new(self.build_for_graph_pattern(left, variables)?),
right: Rc::new(self.build_for_graph_pattern(&right, variables)?),
}
} else {
PlanNode::ForLoopJoin {
left: Rc::new(self.build_for_graph_pattern(left, variables)?),
right: Rc::new(self.build_for_graph_pattern(right, variables)?),
}
}
} else {
PlanNode::ForLoopJoin {
left: Rc::new(self.build_for_graph_pattern(left, variables)?),
right: Rc::new(self.build_for_graph_pattern(right, variables)?),
}
}
}
GraphPattern::Filter { expression, inner } => PlanNode::Filter {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
expression: Box::new(self.build_for_expression(expression, variables)?),
},
GraphPattern::Union { inner } => PlanNode::Union {
children: inner
.iter()
.map(|p| Ok(Rc::new(self.build_for_graph_pattern(p, variables)?)))
.collect::<Result<_, EvaluationError>>()?,
},
GraphPattern::Extend {
inner,
variable,
expression,
} => PlanNode::Extend {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
variable: build_plan_variable(variables, variable),
expression: Box::new(self.build_for_expression(expression, variables)?),
},
GraphPattern::Minus {
left,
right,
algorithm,
} => match algorithm {
MinusAlgorithm::HashBuildRightProbeLeft { keys } => PlanNode::AntiJoin {
left: Rc::new(self.build_for_graph_pattern(left, variables)?),
right: Rc::new(self.build_for_graph_pattern(right, variables)?),
keys: keys
.iter()
.map(|v| build_plan_variable(variables, v))
.collect(),
},
},
GraphPattern::Service {
name,
inner,
silent,
} => {
// Child building should be at the begging in order for `variables` to be filled
let child = self.build_for_graph_pattern(inner, variables)?;
let service_name = self.pattern_value_from_named_node_or_variable(name, variables);
PlanNode::Service {
service_name,
variables: Rc::from(variables.as_slice()),
child: Rc::new(child),
graph_pattern: Rc::new(inner.as_ref().into()),
silent: *silent,
}
}
GraphPattern::Group {
inner,
variables: by,
aggregates,
} => PlanNode::Aggregate {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
key_variables: by
.iter()
.map(|k| build_plan_variable(variables, k))
.collect(),
aggregates: aggregates
.iter()
.map(|(v, a)| {
Ok((
self.build_for_aggregate(a, variables)?,
build_plan_variable(variables, v),
))
})
.collect::<Result<_, EvaluationError>>()?,
},
GraphPattern::Values {
variables: table_variables,
bindings,
} => {
let bindings_variables = table_variables
.iter()
.map(|v| build_plan_variable(variables, v))
.collect::<Vec<_>>();
let encoded_tuples = bindings
.iter()
.map(|row| {
let mut result = EncodedTuple::with_capacity(variables.len());
for (key, value) in row.iter().enumerate() {
if let Some(term) = value {
result.set(
bindings_variables[key].encoded,
match term {
GroundTerm::NamedNode(node) => self.build_term(node),
GroundTerm::Literal(literal) => self.build_term(literal),
GroundTerm::Triple(triple) => self.build_triple(triple),
},
);
}
}
result
})
.collect();
PlanNode::StaticBindings {
encoded_tuples,
variables: bindings_variables,
plain_bindings: bindings.clone(),
}
}
GraphPattern::OrderBy { inner, expression } => {
let condition: Result<Vec<_>, EvaluationError> = expression
.iter()
.map(|comp| match comp {
OrderExpression::Asc(e) => {
Ok(Comparator::Asc(self.build_for_expression(e, variables)?))
}
OrderExpression::Desc(e) => {
Ok(Comparator::Desc(self.build_for_expression(e, variables)?))
}
})
.collect();
PlanNode::Sort {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
by: condition?,
}
}
GraphPattern::Project {
inner,
variables: projection,
} => {
let mut inner_variables = projection.clone();
PlanNode::Project {
child: Rc::new(self.build_for_graph_pattern(inner, &mut inner_variables)?),
mapping: projection
.iter()
.enumerate()
.map(|(new_variable, variable)| {
(
PlanVariable {
encoded: new_variable,
plain: variable.clone(),
},
build_plan_variable(variables, variable),
)
})
.collect(),
}
}
GraphPattern::Distinct { inner } => PlanNode::HashDeduplicate {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
},
GraphPattern::Reduced { inner } => PlanNode::Reduced {
child: Rc::new(self.build_for_graph_pattern(inner, variables)?),
},
GraphPattern::Slice {
inner,
start,
length,
} => {
let mut plan = self.build_for_graph_pattern(inner, variables)?;
if *start > 0 {
plan = PlanNode::Skip {
child: Rc::new(plan),
count: *start,
};
}
if let Some(length) = length {
plan = PlanNode::Limit {
child: Rc::new(plan),
count: *length,
};
}
plan
}
})
}
fn build_for_path(&self, path: &PropertyPathExpression) -> PlanPropertyPath {
match path {
PropertyPathExpression::NamedNode(p) => PlanPropertyPath::Path(PlanTerm {
encoded: self.build_term(p),
plain: p.clone(),
}),
PropertyPathExpression::Reverse(p) => {
PlanPropertyPath::Reverse(Rc::new(self.build_for_path(p)))
}
PropertyPathExpression::Alternative(a, b) => PlanPropertyPath::Alternative(
Rc::new(self.build_for_path(a)),
Rc::new(self.build_for_path(b)),
),
PropertyPathExpression::Sequence(a, b) => PlanPropertyPath::Sequence(
Rc::new(self.build_for_path(a)),
Rc::new(self.build_for_path(b)),
),
PropertyPathExpression::ZeroOrMore(p) => {
PlanPropertyPath::ZeroOrMore(Rc::new(self.build_for_path(p)))
}
PropertyPathExpression::OneOrMore(p) => {
PlanPropertyPath::OneOrMore(Rc::new(self.build_for_path(p)))
}
PropertyPathExpression::ZeroOrOne(p) => {
PlanPropertyPath::ZeroOrOne(Rc::new(self.build_for_path(p)))
}
PropertyPathExpression::NegatedPropertySet(p) => PlanPropertyPath::NegatedPropertySet(
p.iter()
.map(|p| PlanTerm {
encoded: self.build_term(p),
plain: p.clone(),
})
.collect(),
),
}
}
fn build_for_expression(
&self,
expression: &Expression,
variables: &mut Vec<Variable>,
) -> Result<PlanExpression, EvaluationError> {
Ok(match expression {
Expression::NamedNode(node) => PlanExpression::NamedNode(PlanTerm {
encoded: self.build_term(node),
plain: node.clone(),
}),
Expression::Literal(l) => PlanExpression::Literal(PlanTerm {
encoded: self.build_term(l),
plain: l.clone(),
}),
Expression::Variable(v) => PlanExpression::Variable(build_plan_variable(variables, v)),
Expression::Or(inner) => PlanExpression::Or(
inner
.iter()
.map(|e| self.build_for_expression(e, variables))
.collect::<Result<_, _>>()?,
),
Expression::And(inner) => PlanExpression::And(
inner
.iter()
.map(|e| self.build_for_expression(e, variables))
.collect::<Result<_, _>>()?,
),
Expression::Equal(a, b) => PlanExpression::Equal(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::SameTerm(a, b) => PlanExpression::SameTerm(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Greater(a, b) => PlanExpression::Greater(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::GreaterOrEqual(a, b) => PlanExpression::GreaterOrEqual(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Less(a, b) => PlanExpression::Less(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::LessOrEqual(a, b) => PlanExpression::LessOrEqual(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Add(a, b) => PlanExpression::Add(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Subtract(a, b) => PlanExpression::Subtract(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Multiply(a, b) => PlanExpression::Multiply(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::Divide(a, b) => PlanExpression::Divide(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
),
Expression::UnaryPlus(e) => {
PlanExpression::UnaryPlus(Box::new(self.build_for_expression(e, variables)?))
}
Expression::UnaryMinus(e) => {
PlanExpression::UnaryMinus(Box::new(self.build_for_expression(e, variables)?))
}
Expression::Not(e) => {
PlanExpression::Not(Box::new(self.build_for_expression(e, variables)?))
}
Expression::FunctionCall(function, parameters) => match function {
Function::Str => PlanExpression::Str(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Lang => PlanExpression::Lang(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::LangMatches => PlanExpression::LangMatches(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::Datatype => PlanExpression::Datatype(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Iri => PlanExpression::Iri(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::BNode => PlanExpression::BNode(match parameters.get(0) {
Some(e) => Some(Box::new(self.build_for_expression(e, variables)?)),
None => None,
}),
Function::Rand => PlanExpression::Rand,
Function::Abs => PlanExpression::Abs(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Ceil => PlanExpression::Ceil(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Floor => PlanExpression::Floor(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Round => PlanExpression::Round(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Concat => {
PlanExpression::Concat(self.expression_list(parameters, variables)?)
}
Function::SubStr => PlanExpression::SubStr(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
match parameters.get(2) {
Some(flags) => Some(Box::new(self.build_for_expression(flags, variables)?)),
None => None,
},
),
Function::StrLen => PlanExpression::StrLen(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Replace => {
if let Some(static_regex) =
compile_static_pattern_if_exists(&parameters[1], parameters.get(3))
{
PlanExpression::StaticReplace(
Box::new(self.build_for_expression(&parameters[0], variables)?),
static_regex,
Box::new(self.build_for_expression(&parameters[2], variables)?),
)
} else {
PlanExpression::DynamicReplace(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
Box::new(self.build_for_expression(&parameters[2], variables)?),
match parameters.get(3) {
Some(flags) => {
Some(Box::new(self.build_for_expression(flags, variables)?))
}
None => None,
},
)
}
}
Function::UCase => PlanExpression::UCase(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::LCase => PlanExpression::LCase(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::EncodeForUri => PlanExpression::EncodeForUri(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Contains => PlanExpression::Contains(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::StrStarts => PlanExpression::StrStarts(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::StrEnds => PlanExpression::StrEnds(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::StrBefore => PlanExpression::StrBefore(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::StrAfter => PlanExpression::StrAfter(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::Year => PlanExpression::Year(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Month => PlanExpression::Month(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Day => PlanExpression::Day(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Hours => PlanExpression::Hours(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Minutes => PlanExpression::Minutes(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Seconds => PlanExpression::Seconds(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Timezone => PlanExpression::Timezone(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Tz => PlanExpression::Tz(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Now => PlanExpression::Now,
Function::Uuid => PlanExpression::Uuid,
Function::StrUuid => PlanExpression::StrUuid,
Function::Md5 => PlanExpression::Md5(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Sha1 => PlanExpression::Sha1(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Sha256 => PlanExpression::Sha256(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Sha384 => PlanExpression::Sha384(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Sha512 => PlanExpression::Sha512(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::StrLang => PlanExpression::StrLang(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::StrDt => PlanExpression::StrDt(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::IsIri => PlanExpression::IsIri(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::IsBlank => PlanExpression::IsBlank(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::IsLiteral => PlanExpression::IsLiteral(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::IsNumeric => PlanExpression::IsNumeric(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Regex => {
if let Some(static_regex) =
compile_static_pattern_if_exists(&parameters[1], parameters.get(2))
{
PlanExpression::StaticRegex(
Box::new(self.build_for_expression(&parameters[0], variables)?),
static_regex,
)
} else {
PlanExpression::DynamicRegex(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
match parameters.get(2) {
Some(flags) => {
Some(Box::new(self.build_for_expression(flags, variables)?))
}
None => None,
},
)
}
}
Function::Triple => PlanExpression::Triple(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
Box::new(self.build_for_expression(&parameters[2], variables)?),
),
Function::Subject => PlanExpression::Subject(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Predicate => PlanExpression::Predicate(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Object => PlanExpression::Object(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::IsTriple => PlanExpression::IsTriple(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)),
Function::Adjust => PlanExpression::Adjust(
Box::new(self.build_for_expression(&parameters[0], variables)?),
Box::new(self.build_for_expression(&parameters[1], variables)?),
),
Function::Custom(name) => {
if self.custom_functions.contains_key(name) {
PlanExpression::CustomFunction(
name.clone(),
parameters
.iter()
.map(|p| self.build_for_expression(p, variables))
.collect::<Result<Vec<_>, EvaluationError>>()?,
)
} else if name.as_ref() == xsd::BOOLEAN {
self.build_cast(
parameters,
PlanExpression::BooleanCast,
variables,
"boolean",
)?
} else if name.as_ref() == xsd::DOUBLE {
self.build_cast(
parameters,
PlanExpression::DoubleCast,
variables,
"double",
)?
} else if name.as_ref() == xsd::FLOAT {
self.build_cast(parameters, PlanExpression::FloatCast, variables, "float")?
} else if name.as_ref() == xsd::DECIMAL {
self.build_cast(
parameters,
PlanExpression::DecimalCast,
variables,
"decimal",
)?
} else if name.as_ref() == xsd::INTEGER {
self.build_cast(
parameters,
PlanExpression::IntegerCast,
variables,
"integer",
)?
} else if name.as_ref() == xsd::DATE {
self.build_cast(parameters, PlanExpression::DateCast, variables, "date")?
} else if name.as_ref() == xsd::TIME {
self.build_cast(parameters, PlanExpression::TimeCast, variables, "time")?
} else if name.as_ref() == xsd::DATE_TIME {
self.build_cast(
parameters,
PlanExpression::DateTimeCast,
variables,
"dateTime",
)?
} else if name.as_ref() == xsd::DURATION {
self.build_cast(
parameters,
PlanExpression::DurationCast,
variables,
"duration",
)?
} else if name.as_ref() == xsd::YEAR_MONTH_DURATION {
self.build_cast(
parameters,
PlanExpression::YearMonthDurationCast,
variables,
"yearMonthDuration",
)?
} else if name.as_ref() == xsd::DAY_TIME_DURATION {
self.build_cast(
parameters,
PlanExpression::DayTimeDurationCast,
variables,
"dayTimeDuration",
)?
} else if name.as_ref() == xsd::STRING {
self.build_cast(
parameters,
PlanExpression::StringCast,
variables,
"string",
)?
} else {
return Err(EvaluationError::msg(format!(
"Not supported custom function {name}"
)));
}
}
},
Expression::Bound(v) => PlanExpression::Bound(build_plan_variable(variables, v)),
Expression::If(a, b, c) => PlanExpression::If(
Box::new(self.build_for_expression(a, variables)?),
Box::new(self.build_for_expression(b, variables)?),
Box::new(self.build_for_expression(c, variables)?),
),
Expression::Exists(n) => {
let mut variables = variables.clone(); // Do not expose the exists variables outside
PlanExpression::Exists(Rc::new(self.build_for_graph_pattern(n, &mut variables)?))
}
Expression::Coalesce(parameters) => {
PlanExpression::Coalesce(self.expression_list(parameters, variables)?)
}
})
}
fn build_cast(
&self,
parameters: &[Expression],
constructor: impl Fn(Box<PlanExpression>) -> PlanExpression,
variables: &mut Vec<Variable>,
name: &'static str,
) -> Result<PlanExpression, EvaluationError> {
if parameters.len() == 1 {
Ok(constructor(Box::new(
self.build_for_expression(&parameters[0], variables)?,
)))
} else {
Err(EvaluationError::msg(format!(
"The xsd:{name} casting takes only one parameter"
)))
}
}
fn expression_list(
&self,
l: &[Expression],
variables: &mut Vec<Variable>,
) -> Result<Vec<PlanExpression>, EvaluationError> {
l.iter()
.map(|e| self.build_for_expression(e, variables))
.collect()
}
fn pattern_value_from_ground_term_pattern(
&self,
term_pattern: &GroundTermPattern,
variables: &mut Vec<Variable>,
) -> PatternValue {
match term_pattern {
GroundTermPattern::Variable(variable) => {
PatternValue::Variable(build_plan_variable(variables, variable))
}
GroundTermPattern::NamedNode(node) => PatternValue::Constant(PlanTerm {
encoded: self.build_term(node),
plain: PatternValueConstant::NamedNode(node.clone()),
}),
GroundTermPattern::Literal(literal) => PatternValue::Constant(PlanTerm {
encoded: self.build_term(literal),
plain: PatternValueConstant::Literal(literal.clone()),
}),
GroundTermPattern::Triple(triple) => {
match (
self.pattern_value_from_ground_term_pattern(&triple.subject, variables),
self.pattern_value_from_named_node_or_variable(&triple.predicate, variables),
self.pattern_value_from_ground_term_pattern(&triple.object, variables),
) {
(
PatternValue::Constant(PlanTerm {
encoded: encoded_subject,
plain: plain_subject,
}),
PatternValue::Constant(PlanTerm {
encoded: encoded_predicate,
plain: plain_predicate,
}),
PatternValue::Constant(PlanTerm {
encoded: encoded_object,
plain: plain_object,
}),
) => PatternValue::Constant(PlanTerm {
encoded: EncodedTriple {
subject: encoded_subject,
predicate: encoded_predicate,
object: encoded_object,
}
.into(),
plain: PatternValueConstant::Triple(Box::new(Triple {
subject: match plain_subject {
PatternValueConstant::NamedNode(s) => s.into(),
PatternValueConstant::Triple(s) => s.into(),
PatternValueConstant::Literal(_)
| PatternValueConstant::DefaultGraph => unreachable!(),
},
predicate: match plain_predicate {
PatternValueConstant::NamedNode(s) => s,
PatternValueConstant::Literal(_)
| PatternValueConstant::Triple(_)
| PatternValueConstant::DefaultGraph => unreachable!(),
},
object: match plain_object {
PatternValueConstant::NamedNode(s) => s.into(),
PatternValueConstant::Literal(s) => s.into(),
PatternValueConstant::Triple(s) => s.into(),
PatternValueConstant::DefaultGraph => unreachable!(),
},
})),
}),
(subject, predicate, object) => {
PatternValue::TriplePattern(Box::new(TriplePatternValue {
subject,
predicate,
object,
}))
}
}
}
}
}
fn pattern_value_from_named_node_or_variable(
&self,
named_node_or_variable: &NamedNodePattern,
variables: &mut Vec<Variable>,
) -> PatternValue {
match named_node_or_variable {
NamedNodePattern::NamedNode(named_node) => PatternValue::Constant(PlanTerm {
encoded: self.build_term(named_node),
plain: PatternValueConstant::NamedNode(named_node.clone()),
}),
NamedNodePattern::Variable(variable) => {
PatternValue::Variable(build_plan_variable(variables, variable))
}
}
}
fn build_for_aggregate(
&self,
aggregate: &AggregateExpression,
variables: &mut Vec<Variable>,
) -> Result<PlanAggregation, EvaluationError> {
match aggregate {
AggregateExpression::Count { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Count,
parameter: match expr {
Some(expr) => Some(self.build_for_expression(expr, variables)?),
None => None,
},
distinct: *distinct,
}),
AggregateExpression::Sum { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Sum,
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::Min { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Min,
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::Max { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Max,
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::Avg { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Avg,
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::Sample { expr, distinct } => Ok(PlanAggregation {
function: PlanAggregationFunction::Sample,
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::GroupConcat {
expr,
distinct,
separator,
} => Ok(PlanAggregation {
function: PlanAggregationFunction::GroupConcat {
separator: Rc::from(separator.as_deref().unwrap_or(" ")),
},
parameter: Some(self.build_for_expression(expr, variables)?),
distinct: *distinct,
}),
AggregateExpression::Custom { .. } => Err(EvaluationError::msg(
"Custom aggregation functions are not supported yet",
)),
}
}
fn build_for_graph_template(
&self,
template: &[TriplePattern],
variables: &mut Vec<Variable>,
) -> Vec<TripleTemplate> {
let mut bnodes = Vec::default();
template
.iter()
.map(|triple| TripleTemplate {
subject: self.template_value_from_term_or_variable(
&triple.subject,
variables,
&mut bnodes,
),
predicate: self
.template_value_from_named_node_or_variable(&triple.predicate, variables),
object: self.template_value_from_term_or_variable(
&triple.object,
variables,
&mut bnodes,
),
})
.collect()
}
fn template_value_from_term_or_variable(
&self,
term_or_variable: &TermPattern,
variables: &mut Vec<Variable>,
bnodes: &mut Vec<BlankNode>,
) -> TripleTemplateValue {
match term_or_variable {
TermPattern::Variable(variable) => {
TripleTemplateValue::Variable(build_plan_variable(variables, variable))
}
TermPattern::NamedNode(node) => TripleTemplateValue::Constant(PlanTerm {
encoded: self.build_term(node),
plain: node.clone().into(),
}),
TermPattern::BlankNode(bnode) => TripleTemplateValue::BlankNode(PlanVariable {
encoded: bnode_key(bnodes, bnode),
plain: bnode.clone(),
}),
TermPattern::Literal(literal) => TripleTemplateValue::Constant(PlanTerm {
encoded: self.build_term(literal),
plain: literal.clone().into(),
}),
TermPattern::Triple(triple) => match (
self.template_value_from_term_or_variable(&triple.subject, variables, bnodes),
self.template_value_from_named_node_or_variable(&triple.predicate, variables),
self.template_value_from_term_or_variable(&triple.object, variables, bnodes),
) {
(
TripleTemplateValue::Constant(subject),
TripleTemplateValue::Constant(predicate),
TripleTemplateValue::Constant(object),
) => TripleTemplateValue::Constant(PlanTerm {
encoded: EncodedTriple {
subject: subject.encoded,
predicate: predicate.encoded,
object: object.encoded,
}
.into(),
plain: Triple {
subject: match subject.plain {
Term::NamedNode(node) => node.into(),
Term::BlankNode(node) => node.into(),
Term::Literal(_) => unreachable!(),
Term::Triple(node) => node.into(),
},
predicate: match predicate.plain {
Term::NamedNode(node) => node,
Term::BlankNode(_) | Term::Literal(_) | Term::Triple(_) => {
unreachable!()
}
},
object: object.plain,
}
.into(),
}),
(subject, predicate, object) => {
TripleTemplateValue::Triple(Box::new(TripleTemplate {
subject,
predicate,
object,
}))
}
},
}
}
fn template_value_from_named_node_or_variable(
&self,
named_node_or_variable: &NamedNodePattern,
variables: &mut Vec<Variable>,
) -> TripleTemplateValue {
match named_node_or_variable {
NamedNodePattern::Variable(variable) => {
TripleTemplateValue::Variable(build_plan_variable(variables, variable))
}
NamedNodePattern::NamedNode(term) => TripleTemplateValue::Constant(PlanTerm {
encoded: self.build_term(term),
plain: term.clone().into(),
}),
}
}
fn build_term<'b>(&self, term: impl Into<TermRef<'b>>) -> EncodedTerm {
self.dataset.encode_term(term)
}
fn build_triple(&self, triple: &GroundTriple) -> EncodedTerm {
EncodedTriple::new(
match &triple.subject {
GroundSubject::NamedNode(node) => self.build_term(node),
GroundSubject::Triple(triple) => self.build_triple(triple),
},
self.build_term(&triple.predicate),
match &triple.object {
GroundTerm::NamedNode(node) => self.build_term(node),
GroundTerm::Literal(literal) => self.build_term(literal),
GroundTerm::Triple(triple) => self.build_triple(triple),
},
)
.into()
}
}
fn build_plan_variable(variables: &mut Vec<Variable>, variable: &Variable) -> PlanVariable {
let encoded = if let Some(key) = slice_key(variables, variable) {
key
} else {
variables.push(variable.clone());
variables.len() - 1
};
PlanVariable {
plain: variable.clone(),
encoded,
}
}
fn bnode_key(blank_nodes: &mut Vec<BlankNode>, blank_node: &BlankNode) -> usize {
if let Some(key) = slice_key(blank_nodes, blank_node) {
key
} else {
blank_nodes.push(blank_node.clone());
blank_nodes.len() - 1
}
}
fn slice_key<T: Eq>(slice: &[T], element: &T) -> Option<usize> {
for (i, item) in slice.iter().enumerate() {
if item == element {
return Some(i);
}
}
None
}
fn compile_static_pattern_if_exists(
pattern: &Expression,
options: Option<&Expression>,
) -> Option<Regex> {
let static_pattern = if let Expression::Literal(pattern) = pattern {
(pattern.datatype() == xsd::STRING).then(|| pattern.value())
} else {
None
};
let static_options = if let Some(options) = options {
if let Expression::Literal(options) = options {
(options.datatype() == xsd::STRING).then(|| Some(options.value()))
} else {
None
}
} else {
Some(None)
};
if let (Some(static_pattern), Some(static_options)) = (static_pattern, static_options) {
compile_pattern(static_pattern, static_options)
} else {
None
}
}