Fork of https://github.com/oxigraph/oxigraph.git for the purpose of NextGraph project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
oxigraph/lib/src/store/memory.rs

1419 lines
48 KiB

//! In-memory store.
use crate::error::{invalid_input_error, UnwrapInfallible};
use crate::io::{DatasetFormat, DatasetParser, GraphFormat, GraphParser};
use crate::model::*;
use crate::sparql::{EvaluationError, Query, QueryOptions, QueryResult, SimplePreparedQuery};
use crate::store::numeric_encoder::{
Decoder, ReadEncoder, StrContainer, StrEncodingAware, StrId, StrLookup, WriteEncoder,
};
use crate::store::{
dump_dataset, dump_graph, get_encoded_quad_pattern, load_dataset, load_graph,
ReadableEncodedStore, WritableEncodedStore,
};
use lasso::{LargeSpur, ThreadedRodeo};
use std::collections::hash_map::DefaultHasher;
use std::collections::{HashMap, HashSet};
use std::convert::{Infallible, TryInto};
use std::hash::{Hash, Hasher};
use std::io::{BufRead, Write};
use std::iter::FromIterator;
use std::sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::vec::IntoIter;
use std::{fmt, io};
/// In-memory store.
/// It encodes a [RDF dataset](https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-dataset) and allows to query and update it using SPARQL.
/// It is cheap to build using the [`MemoryStore::new()`](#method.new) method.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::model::*;
/// use oxigraph::sparql::{QueryResult, QueryOptions};
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let ex = NamedNode::new("http://example.com")?;
/// let quad = Quad::new(ex.clone(), ex.clone(), ex.clone(), None);
/// store.insert(quad.clone());
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(Some(ex.as_ref().into()), None, None, None).collect();
/// assert_eq!(vec![quad], results);
///
/// // SPARQL query
/// if let QueryResult::Solutions(mut solutions) = store.query("SELECT ?s WHERE { ?s ?p ?o }", QueryOptions::default())? {
/// assert_eq!(solutions.next().unwrap()?.get("s"), Some(&ex.into()));
/// }
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
#[derive(Clone)]
pub struct MemoryStore {
indexes: Arc<RwLock<MemoryStoreIndexes>>,
strings: Arc<ThreadedRodeo<LargeSpur>>,
}
type TripleMap<T> = HashMap<T, HashMap<T, HashSet<T>>>;
type QuadMap<T> = HashMap<T, TripleMap<T>>;
type EncodedTerm = crate::store::numeric_encoder::EncodedTerm<LargeSpur>;
type EncodedQuad = crate::store::numeric_encoder::EncodedQuad<LargeSpur>;
#[derive(Default)]
struct MemoryStoreIndexes {
spog: QuadMap<EncodedTerm>,
posg: QuadMap<EncodedTerm>,
ospg: QuadMap<EncodedTerm>,
gspo: QuadMap<EncodedTerm>,
gpos: QuadMap<EncodedTerm>,
gosp: QuadMap<EncodedTerm>,
default_spo: TripleMap<EncodedTerm>,
default_pos: TripleMap<EncodedTerm>,
default_osp: TripleMap<EncodedTerm>,
}
impl Default for MemoryStore {
fn default() -> Self {
Self::new()
}
}
impl MemoryStore {
/// Constructs a new [`MemoryStore`]()
pub fn new() -> Self {
Self {
indexes: Arc::new(RwLock::default()),
strings: Arc::new(ThreadedRodeo::new()),
}
}
/// Executes a [SPARQL 1.1 query](https://www.w3.org/TR/sparql11-query/).
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::model::*;
/// use oxigraph::sparql::{QueryResult, QueryOptions};
///
/// let store = MemoryStore::new();
///
/// // insertions
/// let ex = NamedNode::new("http://example.com")?;
/// store.insert(Quad::new(ex.clone(), ex.clone(), ex.clone(), None));
///
/// // SPARQL query
/// if let QueryResult::Solutions(mut solutions) = store.query("SELECT ?s WHERE { ?s ?p ?o }", QueryOptions::default())? {
/// assert_eq!(solutions.next().unwrap()?.get("s"), Some(&ex.into()));
/// }
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn query(
&self,
query: impl TryInto<Query, Error = impl Into<EvaluationError>>,
options: QueryOptions,
) -> Result<QueryResult, EvaluationError> {
self.prepare_query(query, options)?.exec()
}
/// Prepares a [SPARQL 1.1 query](https://www.w3.org/TR/sparql11-query/) and returns an object that could be used to execute it.
/// It is useful if you want to execute multiple times the same SPARQL query.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::model::*;
/// use oxigraph::sparql::{QueryResult, QueryOptions};
///
/// let store = MemoryStore::new();
///
/// // insertions
/// let ex = NamedNode::new("http://example.com")?;
/// store.insert(Quad::new(ex.clone(), ex.clone(), ex.clone(), None));
///
/// // SPARQL query
/// let prepared_query = store.prepare_query("SELECT ?s WHERE { ?s ?p ?o }", QueryOptions::default())?;
/// if let QueryResult::Solutions(mut solutions) = prepared_query.exec()? {
/// assert_eq!(solutions.next().unwrap()?.get("s"), Some(&ex.into()));
/// }
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn prepare_query(
&self,
query: impl TryInto<Query, Error = impl Into<EvaluationError>>,
options: QueryOptions,
) -> Result<MemoryPreparedQuery, EvaluationError> {
Ok(MemoryPreparedQuery(SimplePreparedQuery::new(
self.clone(),
query,
options,
)?))
}
/// Retrieves quads with a filter on each quad component
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::model::*;
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let ex = NamedNode::new("http://example.com")?;
/// let quad = Quad::new(ex.clone(), ex.clone(), ex.clone(), None);
/// store.insert(quad.clone());
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(None, None, None, None).collect();
/// assert_eq!(vec![quad], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn quads_for_pattern(
&self,
subject: Option<NamedOrBlankNodeRef<'_>>,
predicate: Option<NamedNodeRef<'_>>,
object: Option<TermRef<'_>>,
graph_name: Option<GraphNameRef<'_>>,
) -> impl Iterator<Item = Quad> {
let quads = if let Some((subject, predicate, object, graph_name)) =
get_encoded_quad_pattern(self, subject, predicate, object, graph_name)
.unwrap_infallible()
{
self.encoded_quads_for_pattern_inner(subject, predicate, object, graph_name)
} else {
Vec::new()
};
let this = self.clone();
quads.into_iter().map(
move |quad| this.decode_quad(&quad).unwrap(), // Could not fail
)
}
/// Checks if this store contains a given quad
pub fn contains<'a>(&self, quad: impl Into<QuadRef<'a>>) -> bool {
self.get_encoded_quad(quad.into())
.unwrap_infallible()
.map_or(false, |q| self.contains_encoded(&q))
}
/// Returns the number of quads in the store
///
/// Warning: this function executes a full scan
pub fn len(&self) -> usize {
let indexes = self.indexes();
let default: usize = indexes
.default_spo
.values()
.map(|v| v.values().map(|v| v.len()).sum::<usize>())
.sum();
let named: usize = indexes
.spog
.values()
.map(|v| {
v.values()
.map(|v| v.values().map(|v| v.len()).sum::<usize>())
.sum::<usize>()
})
.sum();
default + named
}
/// Returns if the store is empty
pub fn is_empty(&self) -> bool {
let indexes = self.indexes();
indexes.default_spo.is_empty() && indexes.spog.is_empty()
}
/// Executes an ACID transaction.
///
/// The transaction is executed if the given closure returns `Ok`.
/// The transaction if rollbacked if the closure returns `Err`.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::model::*;
/// use std::convert::Infallible;
///
/// let store = MemoryStore::new();
///
/// let ex = NamedNode::new("http://example.com")?;
/// let quad = Quad::new(ex.clone(), ex.clone(), ex.clone(), None);
///
/// // transaction
/// store.transaction(|transaction| {
/// transaction.insert(quad.clone());
/// Ok(()) as Result<(),Infallible>
/// })?;
///
/// // quad filter
/// assert!(store.contains(&quad));
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
pub fn transaction<E>(
&self,
f: impl FnOnce(&mut MemoryTransaction) -> Result<(), E>,
) -> Result<(), E> {
let mut transaction = MemoryTransaction { ops: Vec::new() };
f(&mut transaction)?;
let mut this = self;
let mut indexes = self.indexes_mut();
for op in transaction.ops {
match op {
TransactionOp::Insert(quad) => {
let quad = this.encode_quad(quad.as_ref()).unwrap_infallible();
indexes.insert_encoded(&quad).unwrap_infallible()
}
TransactionOp::Delete(quad) => {
let quad = this.encode_quad(quad.as_ref()).unwrap_infallible();
indexes.remove_encoded(&quad).unwrap_infallible()
}
}
}
Ok(())
}
/// Loads a graph file (i.e. triples) into the store.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::io::GraphFormat;
/// use oxigraph::model::*;
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let file = b"<http://example.com> <http://example.com> <http://example.com> .";
/// store.load_graph(file.as_ref(), GraphFormat::NTriples, &GraphName::DefaultGraph, None)?;
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(None, None, None, None).collect();
/// let ex = NamedNode::new("http://example.com")?;
/// assert_eq!(vec![Quad::new(ex.clone(), ex.clone(), ex.clone(), None)], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
///
/// Warning: This functions saves the triples during the parsing.
/// If the parsing fails in the middle of the file, the triples read before stay in the store.
/// Use a (memory greedy) [transaction](#method.transaction) if you do not want that.
///
/// Errors related to parameter validation like the base IRI use the [`InvalidInput`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidInput) error kind.
/// Errors related to a bad syntax in the loaded file use the [`InvalidData`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidData) or [`UnexpectedEof`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.UnexpectedEof) error kinds.
pub fn load_graph<'a>(
&self,
reader: impl BufRead,
format: GraphFormat,
to_graph_name: impl Into<GraphNameRef<'a>>,
base_iri: Option<&str>,
) -> Result<(), io::Error> {
let mut store = self;
load_graph(&mut store, reader, format, to_graph_name.into(), base_iri)?;
Ok(())
}
/// Loads a dataset file (i.e. quads) into the store.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::io::DatasetFormat;
/// use oxigraph::model::*;
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let file = b"<http://example.com> <http://example.com> <http://example.com> <http://example.com> .";
/// store.load_dataset(file.as_ref(), DatasetFormat::NQuads, None)?;
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(None, None, None, None).collect();
/// let ex = NamedNode::new("http://example.com")?;
/// assert_eq!(vec![Quad::new(ex.clone(), ex.clone(), ex.clone(), Some(ex.into()))], results);
/// # Result::<_,Box<dyn std::error::Error>>::Ok(())
/// ```
///
/// Warning: This functions saves the quads during the parsing.
/// If the parsing fails in the middle of the file, the quads read before stay in the store.
/// Use a (memory greedy) [transaction](#method.transaction) if you do not want that.
///
/// Errors related to parameter validation like the base IRI use the [`InvalidInput`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidInput) error kind.
/// Errors related to a bad syntax in the loaded file use the [`InvalidData`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidData) or [`UnexpectedEof`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.UnexpectedEof) error kinds.
pub fn load_dataset(
&self,
reader: impl BufRead,
format: DatasetFormat,
base_iri: Option<&str>,
) -> Result<(), io::Error> {
let mut store = self;
load_dataset(&mut store, reader, format, base_iri)?;
Ok(())
}
/// Adds a quad to this store.
#[allow(clippy::needless_pass_by_value)]
pub fn insert(&self, quad: Quad) {
let mut this = self;
let quad = this.encode_quad(quad.as_ref()).unwrap_infallible();
this.insert_encoded(&quad).unwrap_infallible();
}
/// Removes a quad from this store.
pub fn remove<'a>(&self, quad: impl Into<QuadRef<'a>>) {
if let Some(quad) = self.get_encoded_quad(quad.into()).unwrap_infallible() {
let mut this = self;
this.remove_encoded(&quad).unwrap_infallible();
}
}
/// Returns if the current dataset is [isomorphic](https://www.w3.org/TR/rdf11-concepts/#dfn-dataset-isomorphism) with another one.
///
/// It is implemented using the canonicalization approach presented in
/// [Canonical Forms for Isomorphic and Equivalent RDF Graphs: Algorithms for Leaning and Labelling Blank Nodes, Aidan Hogan, 2017](http://aidanhogan.com/docs/rdf-canonicalisation.pdf)
///
/// Warning: This implementation worst-case complexity is in O(b!) with b the number of blank node node in the input graphs.
pub fn is_isomorphic(&self, other: &Self) -> bool {
iso_canonicalize(self) == iso_canonicalize(other)
}
/// Dumps a store graph into a file.
///
/// Usage example:
/// ```
/// use oxigraph::{MemoryStore};
/// use oxigraph::io::GraphFormat;
/// use oxigraph::model::GraphName;
///
/// let file = "<http://example.com> <http://example.com> <http://example.com> .\n".as_bytes();
///
/// let store = MemoryStore::new();
/// store.load_graph(file, GraphFormat::NTriples, &GraphName::DefaultGraph, None)?;
///
/// let mut buffer = Vec::new();
/// store.dump_graph(&mut buffer, GraphFormat::NTriples, &GraphName::DefaultGraph)?;
/// assert_eq!(file, buffer.as_slice());
/// # std::io::Result::Ok(())
/// ```
///
/// Errors related to parameter validation like the base IRI use the [`InvalidInput`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidInput) error kind.
/// Errors related to a bad syntax in the loaded file use the [`InvalidData`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidData) or [`UnexpectedEof`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.UnexpectedEof) error kinds.
pub fn dump_graph<'a>(
&self,
writer: impl Write,
format: GraphFormat,
from_graph_name: impl Into<GraphNameRef<'a>>,
) -> Result<(), io::Error> {
dump_graph(
self.quads_for_pattern(None, None, None, Some(from_graph_name.into()))
.map(|q| Ok(q.into())),
writer,
format,
)
}
/// Dumps the store dataset into a file.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::io::DatasetFormat;
///
/// let file = "<http://example.com> <http://example.com> <http://example.com> <http://example.com> .\n".as_bytes();
///
/// let store = MemoryStore::new();
/// store.load_dataset(file, DatasetFormat::NQuads, None)?;
///
/// let mut buffer = Vec::new();
/// store.dump_dataset(&mut buffer, DatasetFormat::NQuads)?;
/// assert_eq!(file, buffer.as_slice());
/// # std::io::Result::Ok(())
/// ```
///
/// Errors related to parameter validation like the base IRI use the [`InvalidInput`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidInput) error kind.
/// Errors related to a bad syntax in the loaded file use the [`InvalidData`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.InvalidData) or [`UnexpectedEof`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.UnexpectedEof) error kinds.
pub fn dump_dataset(&self, writer: impl Write, format: DatasetFormat) -> Result<(), io::Error> {
dump_dataset(
self.quads_for_pattern(None, None, None, None).map(Ok),
writer,
format,
)
}
#[allow(clippy::expect_used)]
fn indexes(&self) -> RwLockReadGuard<'_, MemoryStoreIndexes> {
self.indexes
.read()
.expect("the Memory store mutex has been poisoned because of a panic")
}
#[allow(clippy::expect_used)]
fn indexes_mut(&self) -> RwLockWriteGuard<'_, MemoryStoreIndexes> {
self.indexes
.write()
.expect("the Memory store mutex has been poisoned because of a panic")
}
fn contains_encoded(&self, quad: &EncodedQuad) -> bool {
let indexes = self.indexes();
if quad.graph_name.is_default_graph() {
indexes.default_spo.get(&quad.subject).map_or(false, |po| {
po.get(&quad.predicate)
.map_or(false, |o| o.contains(&quad.object))
})
} else {
indexes.spog.get(&quad.subject).map_or(false, |pog| {
pog.get(&quad.predicate).map_or(false, |og| {
og.get(&quad.object)
.map_or(false, |g| g.contains(&quad.graph_name))
})
})
}
}
fn encoded_quads_for_pattern_inner(
&self,
subject: Option<EncodedTerm>,
predicate: Option<EncodedTerm>,
object: Option<EncodedTerm>,
graph_name: Option<EncodedTerm>,
) -> Vec<EncodedQuad> {
match subject {
Some(subject) => match predicate {
Some(predicate) => match object {
Some(object) => match graph_name {
Some(graph_name) => {
let quad = EncodedQuad::new(subject, predicate, object, graph_name);
if self.contains_encoded(&quad) {
vec![quad]
} else {
vec![]
}
}
None => self
.encoded_quads_for_subject_predicate_object(subject, predicate, object),
},
None => match graph_name {
Some(graph_name) => self.encoded_quads_for_subject_predicate_graph(
subject, predicate, graph_name,
),
None => self.encoded_quads_for_subject_predicate(subject, predicate),
},
},
None => match object {
Some(object) => match graph_name {
Some(graph_name) => {
self.encoded_quads_for_subject_object_graph(subject, object, graph_name)
}
None => self.encoded_quads_for_subject_object(subject, object),
},
None => match graph_name {
Some(graph_name) => {
self.encoded_quads_for_subject_graph(subject, graph_name)
}
None => self.encoded_quads_for_subject(subject),
},
},
},
None => match predicate {
Some(predicate) => match object {
Some(object) => match graph_name {
Some(graph_name) => self.encoded_quads_for_predicate_object_graph(
predicate, object, graph_name,
),
None => self.encoded_quads_for_predicate_object(predicate, object),
},
None => match graph_name {
Some(graph_name) => {
self.encoded_quads_for_predicate_graph(predicate, graph_name)
}
None => self.encoded_quads_for_predicate(predicate),
},
},
None => match object {
Some(object) => match graph_name {
Some(graph_name) => self.encoded_quads_for_object_graph(object, graph_name),
None => self.encoded_quads_for_object(object),
},
None => match graph_name {
Some(graph_name) => self.encoded_quads_for_graph(graph_name),
None => self.encoded_quads(),
},
},
},
}
}
fn encoded_quads(&self) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = triple_map_flatten(&indexes.default_spo)
.map(|(s, p, o)| EncodedQuad::new(s, p, o, EncodedTerm::DefaultGraph));
let named =
quad_map_flatten(&indexes.gspo).map(|(g, s, p, o)| EncodedQuad::new(s, p, o, g));
default.chain(named).collect()
}
fn encoded_quads_for_subject(&self, subject: EncodedTerm) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_pair_map_flatten(indexes.default_spo.get(&subject))
.map(|(p, o)| EncodedQuad::new(subject, p, o, EncodedTerm::DefaultGraph));
let named = option_triple_map_flatten(indexes.spog.get(&subject))
.map(|(p, o, g)| EncodedQuad::new(subject, p, o, g));
default.chain(named).collect()
}
fn encoded_quads_for_subject_predicate(
&self,
subject: EncodedTerm,
predicate: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_set_flatten(
indexes
.default_spo
.get(&subject)
.and_then(|po| po.get(&predicate)),
)
.map(|o| EncodedQuad::new(subject, predicate, o, EncodedTerm::DefaultGraph));
let named = option_pair_map_flatten(
indexes
.spog
.get(&subject)
.and_then(|pog| pog.get(&predicate)),
)
.map(|(o, g)| EncodedQuad::new(subject, predicate, o, g));
default.chain(named).collect()
}
fn encoded_quads_for_subject_predicate_object(
&self,
subject: EncodedTerm,
predicate: EncodedTerm,
object: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = indexes
.default_spo
.get(&subject)
.and_then(|po| po.get(&predicate))
.and_then(|o| o.get(&object))
.map(|_| EncodedQuad::new(subject, predicate, object, EncodedTerm::DefaultGraph))
.into_iter();
let named = option_set_flatten(
indexes
.spog
.get(&subject)
.and_then(|pog| pog.get(&predicate))
.and_then(|og| og.get(&object)),
)
.map(|g| EncodedQuad::new(subject, predicate, object, g));
default.chain(named).collect()
}
fn encoded_quads_for_subject_object(
&self,
subject: EncodedTerm,
object: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_set_flatten(
indexes
.default_osp
.get(&object)
.and_then(|sp| sp.get(&subject)),
)
.map(|p| EncodedQuad::new(subject, p, object, EncodedTerm::DefaultGraph));
let named =
option_pair_map_flatten(indexes.ospg.get(&object).and_then(|spg| spg.get(&subject)))
.map(|(p, g)| EncodedQuad::new(subject, p, object, g));
default.chain(named).collect()
}
fn encoded_quads_for_predicate(&self, predicate: EncodedTerm) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_pair_map_flatten(indexes.default_pos.get(&predicate))
.map(|(o, s)| EncodedQuad::new(s, predicate, o, EncodedTerm::DefaultGraph));
let named = option_triple_map_flatten(indexes.posg.get(&predicate))
.map(|(o, s, g)| EncodedQuad::new(s, predicate, o, g));
default.chain(named).collect()
}
fn encoded_quads_for_predicate_object(
&self,
predicate: EncodedTerm,
object: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_set_flatten(
indexes
.default_pos
.get(&predicate)
.and_then(|os| os.get(&object)),
)
.map(|s| EncodedQuad::new(s, predicate, object, EncodedTerm::DefaultGraph));
let named = option_pair_map_flatten(
indexes
.posg
.get(&predicate)
.and_then(|osg| osg.get(&object)),
)
.map(|(s, g)| EncodedQuad::new(s, predicate, object, g));
default.chain(named).collect()
}
fn encoded_quads_for_object(&self, object: EncodedTerm) -> Vec<EncodedQuad> {
let indexes = self.indexes();
let default = option_pair_map_flatten(indexes.default_osp.get(&object))
.map(|(s, p)| EncodedQuad::new(s, p, object, EncodedTerm::DefaultGraph));
let named = option_triple_map_flatten(indexes.ospg.get(&object))
.map(|(s, p, g)| EncodedQuad::new(s, p, object, g));
default.chain(named).collect()
}
fn encoded_quads_for_graph(&self, graph_name: EncodedTerm) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_triple_map_flatten(if graph_name.is_default_graph() {
Some(&indexes.default_spo)
} else {
indexes.gspo.get(&graph_name)
})
.map(|(s, p, o)| EncodedQuad::new(s, p, o, graph_name))
.collect()
}
fn encoded_quads_for_subject_graph(
&self,
subject: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_pair_map_flatten(if graph_name.is_default_graph() {
indexes.default_spo.get(&subject)
} else {
indexes
.gspo
.get(&graph_name)
.and_then(|spo| spo.get(&subject))
})
.map(|(p, o)| EncodedQuad::new(subject, p, o, graph_name))
.collect()
}
fn encoded_quads_for_subject_predicate_graph(
&self,
subject: EncodedTerm,
predicate: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_set_flatten(
if graph_name.is_default_graph() {
indexes.default_spo.get(&subject)
} else {
indexes
.gspo
.get(&graph_name)
.and_then(|spo| spo.get(&subject))
}
.and_then(|po| po.get(&predicate)),
)
.map(|o| EncodedQuad::new(subject, predicate, o, graph_name))
.collect()
}
fn encoded_quads_for_subject_object_graph(
&self,
subject: EncodedTerm,
object: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_set_flatten(
if graph_name.is_default_graph() {
indexes.default_osp.get(&object)
} else {
indexes
.gosp
.get(&graph_name)
.and_then(|osp| osp.get(&object))
}
.and_then(|sp| sp.get(&subject)),
)
.map(|p| EncodedQuad::new(subject, p, object, graph_name))
.collect()
}
fn encoded_quads_for_predicate_graph(
&self,
predicate: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_pair_map_flatten(if graph_name.is_default_graph() {
indexes.default_pos.get(&predicate)
} else {
indexes
.gpos
.get(&graph_name)
.and_then(|pos| pos.get(&predicate))
})
.map(|(o, s)| EncodedQuad::new(s, predicate, o, graph_name))
.collect()
}
fn encoded_quads_for_predicate_object_graph(
&self,
predicate: EncodedTerm,
object: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_set_flatten(
if graph_name.is_default_graph() {
indexes.default_pos.get(&predicate)
} else {
indexes
.gpos
.get(&graph_name)
.and_then(|pos| pos.get(&predicate))
}
.and_then(|os| os.get(&object)),
)
.map(|s| EncodedQuad::new(s, predicate, object, graph_name))
.collect()
}
fn encoded_quads_for_object_graph(
&self,
object: EncodedTerm,
graph_name: EncodedTerm,
) -> Vec<EncodedQuad> {
let indexes = self.indexes();
option_pair_map_flatten(if graph_name.is_default_graph() {
indexes.default_osp.get(&object)
} else {
indexes
.gosp
.get(&graph_name)
.and_then(|osp| osp.get(&object))
})
.map(|(s, p)| EncodedQuad::new(s, p, object, graph_name))
.collect()
}
}
impl StrEncodingAware for MemoryStore {
type Error = Infallible;
type StrId = LargeSpur;
}
impl StrLookup for MemoryStore {
fn get_str(&self, id: LargeSpur) -> Result<Option<String>, Infallible> {
//TODO: avoid copy by adding a lifetime limit to get_str
Ok(self.strings.try_resolve(&id).map(|e| e.to_owned()))
}
fn get_str_id(&self, value: &str) -> Result<Option<LargeSpur>, Infallible> {
Ok(self.strings.get(value))
}
}
impl<'a> StrContainer for &'a MemoryStore {
fn insert_str(&mut self, value: &str) -> Result<LargeSpur, Infallible> {
Ok(self.strings.get_or_intern(value))
}
}
impl<'a> ReadableEncodedStore for MemoryStore {
type QuadsIter = EncodedQuadsIter;
fn encoded_quads_for_pattern(
&self,
subject: Option<EncodedTerm>,
predicate: Option<EncodedTerm>,
object: Option<EncodedTerm>,
graph_name: Option<EncodedTerm>,
) -> EncodedQuadsIter {
EncodedQuadsIter {
iter: self
.encoded_quads_for_pattern_inner(subject, predicate, object, graph_name)
.into_iter(),
}
}
}
impl<'a> WritableEncodedStore for &'a MemoryStore {
fn insert_encoded(&mut self, quad: &EncodedQuad) -> Result<(), Infallible> {
self.indexes_mut().insert_encoded(quad)
}
fn remove_encoded(&mut self, quad: &EncodedQuad) -> Result<(), Infallible> {
self.indexes_mut().remove_encoded(quad)
}
}
impl StrEncodingAware for MemoryStoreIndexes {
type Error = Infallible;
type StrId = LargeSpur;
}
impl WritableEncodedStore for MemoryStoreIndexes {
fn insert_encoded(&mut self, quad: &EncodedQuad) -> Result<(), Infallible> {
if quad.graph_name.is_default_graph() {
insert_into_triple_map(
&mut self.default_spo,
quad.subject,
quad.predicate,
quad.object,
);
insert_into_triple_map(
&mut self.default_pos,
quad.predicate,
quad.object,
quad.subject,
);
insert_into_triple_map(
&mut self.default_osp,
quad.object,
quad.subject,
quad.predicate,
);
} else {
insert_into_quad_map(
&mut self.gspo,
quad.graph_name,
quad.subject,
quad.predicate,
quad.object,
);
insert_into_quad_map(
&mut self.gpos,
quad.graph_name,
quad.predicate,
quad.object,
quad.subject,
);
insert_into_quad_map(
&mut self.gosp,
quad.graph_name,
quad.object,
quad.subject,
quad.predicate,
);
insert_into_quad_map(
&mut self.spog,
quad.subject,
quad.predicate,
quad.object,
quad.graph_name,
);
insert_into_quad_map(
&mut self.posg,
quad.predicate,
quad.object,
quad.subject,
quad.graph_name,
);
insert_into_quad_map(
&mut self.ospg,
quad.object,
quad.subject,
quad.predicate,
quad.graph_name,
);
}
Ok(())
}
fn remove_encoded(&mut self, quad: &EncodedQuad) -> Result<(), Infallible> {
if quad.graph_name.is_default_graph() {
remove_from_triple_map(
&mut self.default_spo,
&quad.subject,
&quad.predicate,
&quad.object,
);
remove_from_triple_map(
&mut self.default_pos,
&quad.predicate,
&quad.object,
&quad.subject,
);
remove_from_triple_map(
&mut self.default_osp,
&quad.object,
&quad.subject,
&quad.predicate,
);
} else {
remove_from_quad_map(
&mut self.gspo,
&quad.graph_name,
&quad.subject,
&quad.predicate,
&quad.object,
);
remove_from_quad_map(
&mut self.gpos,
&quad.graph_name,
&quad.predicate,
&quad.object,
&quad.subject,
);
remove_from_quad_map(
&mut self.gosp,
&quad.graph_name,
&quad.object,
&quad.subject,
&quad.predicate,
);
remove_from_quad_map(
&mut self.spog,
&quad.subject,
&quad.predicate,
&quad.object,
&quad.graph_name,
);
remove_from_quad_map(
&mut self.posg,
&quad.predicate,
&quad.object,
&quad.subject,
&quad.graph_name,
);
remove_from_quad_map(
&mut self.ospg,
&quad.object,
&quad.subject,
&quad.predicate,
&quad.graph_name,
);
}
Ok(())
}
}
fn insert_into_triple_map<T: Eq + Hash>(map: &mut TripleMap<T>, e1: T, e2: T, e3: T) {
map.entry(e1).or_default().entry(e2).or_default().insert(e3);
}
fn insert_into_quad_map<T: Eq + Hash>(map: &mut QuadMap<T>, e1: T, e2: T, e3: T, e4: T) {
insert_into_triple_map(map.entry(e1).or_default(), e2, e3, e4);
}
fn remove_from_triple_map<T: Eq + Hash>(map1: &mut TripleMap<T>, e1: &T, e2: &T, e3: &T) {
let mut map2empty = false;
if let Some(map2) = map1.get_mut(e1) {
let mut set3empty = false;
if let Some(set3) = map2.get_mut(e2) {
set3.remove(e3);
set3empty = set3.is_empty();
}
if set3empty {
map2.remove(e2);
}
map2empty = map2.is_empty();
}
if map2empty {
map1.remove(e1);
}
}
fn remove_from_quad_map<T: Eq + Hash>(quad_map: &mut QuadMap<T>, e1: &T, e2: &T, e3: &T, e4: &T) {
let mut triple_map_empty = false;
if let Some(triple_map) = quad_map.get_mut(e1) {
remove_from_triple_map(triple_map, e2, e3, e4);
triple_map_empty = triple_map.is_empty();
}
if triple_map_empty {
quad_map.remove(e1);
}
}
fn option_set_flatten<'a, T: Clone>(i: Option<&'a HashSet<T>>) -> impl Iterator<Item = T> + 'a {
i.into_iter().flat_map(|s| s.iter().cloned())
}
fn option_pair_map_flatten<'a, T: Copy>(
i: Option<&'a HashMap<T, HashSet<T>>>,
) -> impl Iterator<Item = (T, T)> + 'a {
i.into_iter().flat_map(|kv| {
kv.iter().flat_map(|(k, vs)| {
let k = *k;
vs.iter().map(move |v| (k, *v))
})
})
}
fn triple_map_flatten<'a, T: Copy>(spo: &'a TripleMap<T>) -> impl Iterator<Item = (T, T, T)> + 'a {
spo.iter().flat_map(|(s, po)| {
let s = *s;
po.iter().flat_map(move |(p, os)| {
let p = *p;
os.iter().map(move |o| (s, p, *o))
})
})
}
fn option_triple_map_flatten<'a, T: Copy>(
i: Option<&'a TripleMap<T>>,
) -> impl Iterator<Item = (T, T, T)> + 'a {
i.into_iter().flat_map(|spo| {
spo.iter().flat_map(|(s, po)| {
let s = *s;
po.iter().flat_map(move |(p, os)| {
let p = *p;
os.iter().map(move |o| (s, p, *o))
})
})
})
}
fn quad_map_flatten<'a, T: Copy>(gspo: &'a QuadMap<T>) -> impl Iterator<Item = (T, T, T, T)> + 'a {
gspo.iter().flat_map(|(g, spo)| {
let g = *g;
spo.iter().flat_map(move |(s, po)| {
let s = *s;
po.iter().flat_map(move |(p, os)| {
let p = *p;
os.iter().map(move |o| (g, s, p, *o))
})
})
})
}
/// A prepared [SPARQL query](https://www.w3.org/TR/sparql11-query/) for the [`MemoryStore`](struct.MemoryStore.html).
pub struct MemoryPreparedQuery(SimplePreparedQuery<MemoryStore>);
impl MemoryPreparedQuery {
/// Evaluates the query and returns its results
pub fn exec(&self) -> Result<QueryResult, EvaluationError> {
self.0.exec()
}
}
/// Allows to insert and delete quads during an ACID transaction with the [`MemoryStore`](struct.MemoryStore.html).
pub struct MemoryTransaction {
ops: Vec<TransactionOp>,
}
enum TransactionOp {
Insert(Quad),
Delete(Quad),
}
impl MemoryTransaction {
/// Loads a graph file (i.e. triples) into the store during the transaction.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::io::GraphFormat;
/// use oxigraph::model::*;
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let file = b"<http://example.com> <http://example.com> <http://example.com> .";
/// store.transaction(|transaction| {
/// transaction.load_graph(file.as_ref(), GraphFormat::NTriples, &GraphName::DefaultGraph, None)
/// })?;
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(None, None, None, None).collect();
/// let ex = NamedNode::new("http://example.com").unwrap();
/// assert_eq!(vec![Quad::new(ex.clone(), ex.clone(), ex.clone(), None)], results);
/// # Result::<_, oxigraph::sparql::EvaluationError>::Ok(())
/// ```
///
/// If the file parsing fails in the middle of the file, the triples read before are still
/// considered by the transaction. Rollback the transaction by making the transaction closure
/// return an error if you don't want that.
pub fn load_graph<'a>(
&mut self,
reader: impl BufRead,
format: GraphFormat,
to_graph_name: impl Into<GraphNameRef<'a>>,
base_iri: Option<&str>,
) -> Result<(), io::Error> {
let to_graph_name = to_graph_name.into();
let mut parser = GraphParser::from_format(format);
if let Some(base_iri) = base_iri {
parser = parser
.with_base_iri(base_iri)
.map_err(invalid_input_error)?;
}
for triple in parser.read_triples(reader)? {
self.ops
.push(TransactionOp::Insert(triple?.in_graph(to_graph_name)));
}
Ok(())
}
/// Loads a dataset file (i.e. quads) into the store during the transaction.
///
/// Usage example:
/// ```
/// use oxigraph::MemoryStore;
/// use oxigraph::io::DatasetFormat;
/// use oxigraph::model::*;
///
/// let store = MemoryStore::new();
///
/// // insertion
/// let file = b"<http://example.com> <http://example.com> <http://example.com> <http://example.com> .";
/// store.load_dataset(file.as_ref(), DatasetFormat::NQuads, None)?;
///
/// // quad filter
/// let results: Vec<Quad> = store.quads_for_pattern(None, None, None, None).collect();
/// let ex = NamedNode::new("http://example.com").unwrap();
/// assert_eq!(vec![Quad::new(ex.clone(), ex.clone(), ex.clone(), Some(ex.into()))], results);
/// # Result::<_, oxigraph::sparql::EvaluationError>::Ok(())
/// ```
///
/// If the file parsing fails in the middle of the file, the quads read before are still
/// considered by the transaction. Rollback the transaction by making the transaction closure
/// return an error if you don't want that.
pub fn load_dataset(
&mut self,
reader: impl BufRead,
format: DatasetFormat,
base_iri: Option<&str>,
) -> Result<(), io::Error> {
let mut parser = DatasetParser::from_format(format);
if let Some(base_iri) = base_iri {
parser = parser
.with_base_iri(base_iri)
.map_err(invalid_input_error)?;
}
for quad in parser.read_quads(reader)? {
self.ops.push(TransactionOp::Insert(quad?));
}
Ok(())
}
/// Adds a quad to this store during the transaction.
#[allow(clippy::needless_pass_by_value)]
pub fn insert(&mut self, quad: Quad) {
self.ops.push(TransactionOp::Insert(quad))
}
/// Removes a quad from this store during the transaction.
pub fn remove(&mut self, quad: Quad) {
self.ops.push(TransactionOp::Delete(quad))
}
}
impl PartialEq for MemoryStore {
fn eq(&self, other: &Self) -> bool {
self.indexes().spog == other.indexes().spog
}
}
impl Eq for MemoryStore {}
impl FromIterator<Quad> for MemoryStore {
fn from_iter<I: IntoIterator<Item = Quad>>(iter: I) -> Self {
let mut store = MemoryStore::new();
store.extend(iter);
store
}
}
impl Extend<Quad> for MemoryStore {
fn extend<T: IntoIterator<Item = Quad>>(&mut self, iter: T) {
for quad in iter {
self.insert(quad);
}
}
}
impl fmt::Display for MemoryStore {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for t in self.quads_for_pattern(None, None, None, None) {
writeln!(f, "{}", t)?;
}
Ok(())
}
}
pub(crate) struct EncodedQuadsIter {
iter: IntoIter<EncodedQuad>,
}
impl Iterator for EncodedQuadsIter {
type Item = Result<EncodedQuad, Infallible>;
fn next(&mut self) -> Option<Result<EncodedQuad, Infallible>> {
self.iter.next().map(Ok)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<Acc, G>(self, init: Acc, mut g: G) -> Acc
where
G: FnMut(Acc, Self::Item) -> Acc,
{
self.iter.fold(init, |acc, elt| g(acc, Ok(elt)))
}
}
impl StrId for LargeSpur {}
// Isomorphism implementation
fn iso_canonicalize(g: &MemoryStore) -> Vec<String> {
let bnodes = bnodes(g);
let (hash, partition) = hash_bnodes(g, bnodes.into_iter().map(|bnode| (bnode, 0)).collect());
distinguish(g, &hash, &partition)
}
fn distinguish(
g: &MemoryStore,
hash: &HashMap<EncodedTerm, u64>,
partition: &[(u64, Vec<EncodedTerm>)],
) -> Vec<String> {
let b_prime = partition
.iter()
.find_map(|(_, b)| if b.len() > 1 { Some(b) } else { None });
if let Some(b_prime) = b_prime {
b_prime
.iter()
.map(|b| {
let mut hash_prime = hash.clone();
hash_prime.insert(*b, hash_tuple((hash_prime[b], 22)));
let (hash_prime_prime, partition_prime) = hash_bnodes(g, hash_prime);
distinguish(g, &hash_prime_prime, &partition_prime)
})
.fold(None, |a, b| {
Some(if let Some(a) = a {
if a <= b {
a
} else {
b
}
} else {
b
})
})
.unwrap_or_else(Vec::new)
} else {
label(g, hash)
}
}
fn hash_bnodes(
g: &MemoryStore,
mut hashes: HashMap<EncodedTerm, u64>,
) -> (HashMap<EncodedTerm, u64>, Vec<(u64, Vec<EncodedTerm>)>) {
let mut to_hash = Vec::new();
let mut partition: HashMap<u64, Vec<EncodedTerm>> = HashMap::new();
let mut partition_len = 0;
loop {
//TODO: improve termination
let mut new_hashes = HashMap::new();
for (bnode, old_hash) in &hashes {
for q in g.encoded_quads_for_subject(*bnode) {
to_hash.push((
hash_term(q.predicate, &hashes, g),
hash_term(q.object, &hashes, g),
hash_term(q.graph_name, &hashes, g),
0,
));
}
for q in g.encoded_quads_for_object(*bnode) {
to_hash.push((
hash_term(q.subject, &hashes, g),
hash_term(q.predicate, &hashes, g),
hash_term(q.graph_name, &hashes, g),
1,
));
}
for q in g.encoded_quads_for_graph(*bnode) {
to_hash.push((
hash_term(q.subject, &hashes, g),
hash_term(q.predicate, &hashes, g),
hash_term(q.object, &hashes, g),
2,
));
}
to_hash.sort();
let hash = hash_tuple((old_hash, &to_hash));
to_hash.clear();
new_hashes.insert(*bnode, hash);
partition.entry(hash).or_default().push(*bnode);
}
if partition.len() == partition_len {
let mut partition: Vec<_> = partition.into_iter().collect();
partition.sort_by(|(h1, b1), (h2, b2)| (b1.len(), h1).cmp(&(b2.len(), h2)));
return (hashes, partition);
}
hashes = new_hashes;
partition_len = partition.len();
partition.clear();
}
}
fn bnodes(g: &MemoryStore) -> HashSet<EncodedTerm> {
let mut bnodes = HashSet::new();
for q in g.encoded_quads() {
if q.subject.is_blank_node() {
bnodes.insert(q.subject);
}
if q.object.is_blank_node() {
bnodes.insert(q.object);
}
if q.graph_name.is_blank_node() {
bnodes.insert(q.graph_name);
}
}
bnodes
}
fn label(g: &MemoryStore, hashes: &HashMap<EncodedTerm, u64>) -> Vec<String> {
//TODO: better representation?
let mut data: Vec<_> = g
.encoded_quads()
.into_iter()
.map(|q| {
g.decode_quad(&EncodedQuad {
subject: map_term(q.subject, hashes),
predicate: map_term(q.predicate, hashes),
object: map_term(q.object, hashes),
graph_name: map_term(q.graph_name, hashes),
})
.unwrap()
.to_string()
})
.collect();
data.sort();
data
}
fn map_term(term: EncodedTerm, bnodes_hash: &HashMap<EncodedTerm, u64>) -> EncodedTerm {
if term.is_blank_node() {
EncodedTerm::NumericalBlankNode {
id: (*bnodes_hash.get(&term).unwrap()).into(),
}
} else {
term
}
}
fn hash_term(term: EncodedTerm, bnodes_hash: &HashMap<EncodedTerm, u64>, g: &MemoryStore) -> u64 {
if term.is_blank_node() {
*bnodes_hash.get(&term).unwrap()
} else if let Ok(term) = g.decode_term(term) {
hash_tuple(term)
} else {
0
}
}
fn hash_tuple(v: impl Hash) -> u64 {
let mut hasher = DefaultHasher::new();
v.hash(&mut hasher);
hasher.finish()
}