You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/merge_helper_test.cc

291 lines
11 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <algorithm>
#include <string>
#include <vector>
#include "db/merge_helper.h"
#include "rocksdb/comparator.h"
#include "util/coding.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "utilities/merge_operators.h"
namespace rocksdb {
class MergeHelperTest : public testing::Test {
public:
MergeHelperTest() { env_ = Env::Default(); }
~MergeHelperTest() override = default;
Status Run(SequenceNumber stop_before, bool at_bottom,
SequenceNumber latest_snapshot = 0) {
iter_.reset(new test::VectorIterator(ks_, vs_));
iter_->SeekToFirst();
merge_helper_.reset(new MergeHelper(env_, BytewiseComparator(),
merge_op_.get(), filter_.get(), nullptr,
false, latest_snapshot));
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
return merge_helper_->MergeUntil(iter_.get(), nullptr /* range_del_agg */,
stop_before, at_bottom);
}
void AddKeyVal(const std::string& user_key, const SequenceNumber& seq,
const ValueType& t, const std::string& val,
bool corrupt = false) {
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
InternalKey ikey(user_key, seq, t);
if (corrupt) {
test::CorruptKeyType(&ikey);
}
ks_.push_back(ikey.Encode().ToString());
vs_.push_back(val);
}
Env* env_;
std::unique_ptr<test::VectorIterator> iter_;
std::shared_ptr<MergeOperator> merge_op_;
std::unique_ptr<MergeHelper> merge_helper_;
std::vector<std::string> ks_;
std::vector<std::string> vs_;
std::unique_ptr<test::FilterNumber> filter_;
};
// If MergeHelper encounters a new key on the last level, we know that
// the key has no more history and it can merge keys.
TEST_F(MergeHelperTest, MergeAtBottomSuccess) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 20, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 10, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("b", 10, kTypeMerge, test::EncodeInt(4U)); // <- iter_ after merge
ASSERT_TRUE(Run(0, true).ok());
ASSERT_EQ(ks_[2], iter_->key());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 20, kTypeValue), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(4U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// Merging with a value results in a successful merge.
TEST_F(MergeHelperTest, MergeValue) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 40, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 20, kTypeValue, test::EncodeInt(4U)); // <- iter_ after merge
AddKeyVal("a", 10, kTypeMerge, test::EncodeInt(1U));
ASSERT_TRUE(Run(0, false).ok());
ASSERT_EQ(ks_[3], iter_->key());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 40, kTypeValue), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(8U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// Merging stops before a snapshot.
TEST_F(MergeHelperTest, SnapshotBeforeValue) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 50, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 40, kTypeMerge, test::EncodeInt(3U)); // <- iter_ after merge
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 20, kTypeValue, test::EncodeInt(4U));
AddKeyVal("a", 10, kTypeMerge, test::EncodeInt(1U));
ASSERT_TRUE(Run(31, true).IsMergeInProgress());
ASSERT_EQ(ks_[2], iter_->key());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 50, kTypeMerge), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(4U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// MergeHelper preserves the operand stack for merge operators that
// cannot do a partial merge.
TEST_F(MergeHelperTest, NoPartialMerge) {
merge_op_ = MergeOperators::CreateStringAppendTESTOperator();
AddKeyVal("a", 50, kTypeMerge, "v2");
AddKeyVal("a", 40, kTypeMerge, "v"); // <- iter_ after merge
AddKeyVal("a", 30, kTypeMerge, "v");
ASSERT_TRUE(Run(31, true).IsMergeInProgress());
ASSERT_EQ(ks_[2], iter_->key());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 40, kTypeMerge), merge_helper_->keys()[0]);
ASSERT_EQ("v", merge_helper_->values()[0]);
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 50, kTypeMerge), merge_helper_->keys()[1]);
ASSERT_EQ("v2", merge_helper_->values()[1]);
ASSERT_EQ(2U, merge_helper_->keys().size());
ASSERT_EQ(2U, merge_helper_->values().size());
}
// A single operand can not be merged.
TEST_F(MergeHelperTest, SingleOperand) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 50, kTypeMerge, test::EncodeInt(1U));
ASSERT_TRUE(Run(31, false).IsMergeInProgress());
ASSERT_FALSE(iter_->Valid());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 50, kTypeMerge), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(1U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// Merging with a deletion turns the deletion into a value
TEST_F(MergeHelperTest, MergeDeletion) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 20, kTypeDeletion, "");
ASSERT_TRUE(Run(15, false).ok());
ASSERT_FALSE(iter_->Valid());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 30, kTypeValue), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(3U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// The merge helper stops upon encountering a corrupt key
TEST_F(MergeHelperTest, CorruptKey) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 25, kTypeMerge, test::EncodeInt(1U));
// Corrupt key
AddKeyVal("a", 20, kTypeDeletion, "", true); // <- iter_ after merge
ASSERT_TRUE(Run(15, false).IsMergeInProgress());
ASSERT_EQ(ks_[2], iter_->key());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
9 years ago
ASSERT_EQ(test::KeyStr("a", 30, kTypeMerge), merge_helper_->keys()[0]);
ASSERT_EQ(test::EncodeInt(4U), merge_helper_->values()[0]);
ASSERT_EQ(1U, merge_helper_->keys().size());
ASSERT_EQ(1U, merge_helper_->values().size());
}
// The compaction filter is called on every merge operand
TEST_F(MergeHelperTest, FilterMergeOperands) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
filter_.reset(new test::FilterNumber(5U));
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 29, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("a", 28, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 27, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 26, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("a", 25, kTypeValue, test::EncodeInt(1U));
ASSERT_TRUE(Run(15, false).ok());
ASSERT_FALSE(iter_->Valid());
MergeOutputIterator merge_output_iter(merge_helper_.get());
merge_output_iter.SeekToFirst();
ASSERT_EQ(test::KeyStr("a", 30, kTypeValue),
merge_output_iter.key().ToString());
ASSERT_EQ(test::EncodeInt(8U), merge_output_iter.value().ToString());
merge_output_iter.Next();
ASSERT_FALSE(merge_output_iter.Valid());
}
TEST_F(MergeHelperTest, FilterAllMergeOperands) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
filter_.reset(new test::FilterNumber(5U));
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 29, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 28, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 27, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 26, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 25, kTypeMerge, test::EncodeInt(5U));
// filtered out all
ASSERT_TRUE(Run(15, false).ok());
ASSERT_FALSE(iter_->Valid());
MergeOutputIterator merge_output_iter(merge_helper_.get());
merge_output_iter.SeekToFirst();
ASSERT_FALSE(merge_output_iter.Valid());
// we have one operand that will survive because it's a delete
AddKeyVal("a", 24, kTypeDeletion, test::EncodeInt(5U));
AddKeyVal("b", 23, kTypeValue, test::EncodeInt(5U));
ASSERT_TRUE(Run(15, true).ok());
merge_output_iter = MergeOutputIterator(merge_helper_.get());
ASSERT_TRUE(iter_->Valid());
merge_output_iter.SeekToFirst();
ASSERT_FALSE(merge_output_iter.Valid());
// when all merge operands are filtered out, we leave the iterator pointing to
// the Put/Delete that survived
ASSERT_EQ(test::KeyStr("a", 24, kTypeDeletion), iter_->key().ToString());
ASSERT_EQ(test::EncodeInt(5U), iter_->value().ToString());
}
// Make sure that merge operands are filtered at the beginning
TEST_F(MergeHelperTest, FilterFirstMergeOperand) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
filter_.reset(new test::FilterNumber(5U));
AddKeyVal("a", 31, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("a", 29, kTypeMerge, test::EncodeInt(2U));
AddKeyVal("a", 28, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 27, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 26, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("a", 25, kTypeMerge, test::EncodeInt(5U)); // Filtered
AddKeyVal("b", 24, kTypeValue, test::EncodeInt(5U)); // next user key
ASSERT_OK(Run(15, true));
ASSERT_TRUE(iter_->Valid());
MergeOutputIterator merge_output_iter(merge_helper_.get());
merge_output_iter.SeekToFirst();
// sequence number is 29 here, because the first merge operand got filtered
// out
ASSERT_EQ(test::KeyStr("a", 29, kTypeValue),
merge_output_iter.key().ToString());
ASSERT_EQ(test::EncodeInt(6U), merge_output_iter.value().ToString());
merge_output_iter.Next();
ASSERT_FALSE(merge_output_iter.Valid());
// make sure that we're passing user keys into the filter
ASSERT_EQ("a", filter_->last_merge_operand_key());
}
// Make sure that merge operands are not filtered out if there's a snapshot
// pointing at them
TEST_F(MergeHelperTest, DontFilterMergeOperandsBeforeSnapshotTest) {
merge_op_ = MergeOperators::CreateUInt64AddOperator();
filter_.reset(new test::FilterNumber(5U));
AddKeyVal("a", 31, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 30, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 29, kTypeMerge, test::EncodeInt(2U));
AddKeyVal("a", 28, kTypeMerge, test::EncodeInt(1U));
AddKeyVal("a", 27, kTypeMerge, test::EncodeInt(3U));
AddKeyVal("a", 26, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("a", 25, kTypeMerge, test::EncodeInt(5U));
AddKeyVal("b", 24, kTypeValue, test::EncodeInt(5U));
ASSERT_OK(Run(15, true, 32));
ASSERT_TRUE(iter_->Valid());
MergeOutputIterator merge_output_iter(merge_helper_.get());
merge_output_iter.SeekToFirst();
ASSERT_EQ(test::KeyStr("a", 31, kTypeValue),
merge_output_iter.key().ToString());
ASSERT_EQ(test::EncodeInt(26U), merge_output_iter.value().ToString());
merge_output_iter.Next();
ASSERT_FALSE(merge_output_iter.Valid());
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}