|
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
//
|
|
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
|
|
|
|
#include "rocksdb/cache.h"
|
|
|
|
|
|
|
|
#include <forward_list>
|
|
|
|
#include <functional>
|
|
|
|
#include <iostream>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "cache/fast_lru_cache.h"
|
|
|
|
#include "cache/lru_cache.h"
|
|
|
|
#include "port/stack_trace.h"
|
|
|
|
#include "test_util/testharness.h"
|
|
|
|
#include "util/coding.h"
|
|
|
|
#include "util/string_util.h"
|
|
|
|
|
|
|
|
// FastLRUCache and HyperClockCache only support 16-byte keys, so some of
|
|
|
|
// the tests originally wrote for LRUCache do not work on the other caches.
|
|
|
|
// Those tests were adapted to use 16-byte keys. We kept the original ones.
|
|
|
|
// TODO: Remove the original tests if they ever become unused.
|
|
|
|
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Conversions between numeric keys/values and the types expected by Cache.
|
|
|
|
std::string EncodeKey16Bytes(int k) {
|
|
|
|
std::string result;
|
|
|
|
PutFixed32(&result, k);
|
|
|
|
result.append(std::string(12, 'a')); // Because we need a 16B output, we
|
|
|
|
// add a 12-byte padding.
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int DecodeKey16Bytes(const Slice& k) {
|
|
|
|
assert(k.size() == 16);
|
|
|
|
return DecodeFixed32(k.data()); // Decodes only the first 4 bytes of k.
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string EncodeKey32Bits(int k) {
|
|
|
|
std::string result;
|
|
|
|
PutFixed32(&result, k);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int DecodeKey32Bits(const Slice& k) {
|
|
|
|
assert(k.size() == 4);
|
|
|
|
return DecodeFixed32(k.data());
|
|
|
|
}
|
|
|
|
|
|
|
|
void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); }
|
|
|
|
|
|
|
|
int DecodeValue(void* v) {
|
|
|
|
return static_cast<int>(reinterpret_cast<uintptr_t>(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
void DumbDeleter(const Slice& /*key*/, void* /*value*/) {}
|
|
|
|
|
|
|
|
void EraseDeleter1(const Slice& /*key*/, void* value) {
|
|
|
|
Cache* cache = reinterpret_cast<Cache*>(value);
|
|
|
|
cache->Erase("foo");
|
|
|
|
}
|
|
|
|
|
|
|
|
void EraseDeleter2(const Slice& /*key*/, void* value) {
|
|
|
|
Cache* cache = reinterpret_cast<Cache*>(value);
|
|
|
|
cache->Erase(EncodeKey16Bytes(1234));
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::string kLRU = "lru";
|
|
|
|
const std::string kHyperClock = "hyper_clock";
|
|
|
|
const std::string kFast = "fast";
|
|
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
class CacheTest : public testing::TestWithParam<std::string> {
|
|
|
|
public:
|
|
|
|
static CacheTest* current_;
|
|
|
|
static std::string type_;
|
|
|
|
|
|
|
|
static void Deleter(const Slice& key, void* v) {
|
|
|
|
if (type_ == kFast || type_ == kHyperClock) {
|
|
|
|
current_->deleted_keys_.push_back(DecodeKey16Bytes(key));
|
|
|
|
} else {
|
|
|
|
current_->deleted_keys_.push_back(DecodeKey32Bits(key));
|
|
|
|
}
|
|
|
|
current_->deleted_values_.push_back(DecodeValue(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static const int kCacheSize = 1000;
|
|
|
|
static const int kNumShardBits = 4;
|
|
|
|
|
|
|
|
static const int kCacheSize2 = 100;
|
|
|
|
static const int kNumShardBits2 = 2;
|
|
|
|
|
|
|
|
std::vector<int> deleted_keys_;
|
|
|
|
std::vector<int> deleted_values_;
|
|
|
|
std::shared_ptr<Cache> cache_;
|
|
|
|
std::shared_ptr<Cache> cache2_;
|
|
|
|
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
size_t estimated_value_size_ = 1;
|
|
|
|
|
|
|
|
CacheTest()
|
|
|
|
: cache_(NewCache(kCacheSize, kNumShardBits, false)),
|
|
|
|
cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) {
|
|
|
|
current_ = this;
|
|
|
|
type_ = GetParam();
|
|
|
|
}
|
|
|
|
|
|
|
|
~CacheTest() override {}
|
|
|
|
|
|
|
|
std::shared_ptr<Cache> NewCache(size_t capacity) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kLRU) {
|
|
|
|
return NewLRUCache(capacity);
|
|
|
|
}
|
|
|
|
if (type == kHyperClock) {
|
|
|
|
return HyperClockCacheOptions(
|
|
|
|
capacity, estimated_value_size_ /*estimated_value_size*/)
|
|
|
|
.MakeSharedCache();
|
|
|
|
}
|
|
|
|
if (type == kFast) {
|
|
|
|
return NewFastLRUCache(
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
capacity, estimated_value_size_, -1 /*num_shard_bits*/,
|
|
|
|
false /*strict_capacity_limit*/, kDefaultCacheMetadataChargePolicy);
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<Cache> NewCache(
|
|
|
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
|
|
CacheMetadataChargePolicy charge_policy = kDontChargeCacheMetadata) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kLRU) {
|
|
|
|
LRUCacheOptions co;
|
|
|
|
co.capacity = capacity;
|
|
|
|
co.num_shard_bits = num_shard_bits;
|
|
|
|
co.strict_capacity_limit = strict_capacity_limit;
|
|
|
|
co.high_pri_pool_ratio = 0;
|
|
|
|
co.metadata_charge_policy = charge_policy;
|
|
|
|
return NewLRUCache(co);
|
|
|
|
}
|
|
|
|
if (type == kHyperClock) {
|
|
|
|
return HyperClockCacheOptions(capacity, 1 /*estimated_value_size*/,
|
|
|
|
num_shard_bits, strict_capacity_limit,
|
|
|
|
nullptr /*allocator*/, charge_policy)
|
|
|
|
.MakeSharedCache();
|
|
|
|
}
|
|
|
|
if (type == kFast) {
|
|
|
|
return NewFastLRUCache(capacity, 1 /*estimated_value_size*/,
|
|
|
|
num_shard_bits, strict_capacity_limit,
|
|
|
|
charge_policy);
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These functions encode/decode keys in tests cases that use
|
|
|
|
// int keys.
|
|
|
|
// Currently, HyperClockCache requires keys to be 16B long, whereas
|
|
|
|
// LRUCache doesn't, so the encoding depends on the cache type.
|
|
|
|
std::string EncodeKey(int k) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kFast || type == kHyperClock) {
|
|
|
|
return EncodeKey16Bytes(k);
|
|
|
|
} else {
|
|
|
|
return EncodeKey32Bits(k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int DecodeKey(const Slice& k) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kFast || type == kHyperClock) {
|
|
|
|
return DecodeKey16Bytes(k);
|
|
|
|
} else {
|
|
|
|
return DecodeKey32Bits(k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int Lookup(std::shared_ptr<Cache> cache, int key) {
|
|
|
|
Cache::Handle* handle = cache->Lookup(EncodeKey(key));
|
|
|
|
const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
|
|
|
|
if (handle != nullptr) {
|
|
|
|
cache->Release(handle);
|
|
|
|
}
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Insert(std::shared_ptr<Cache> cache, int key, int value,
|
|
|
|
int charge = 1) {
|
|
|
|
EXPECT_OK(cache->Insert(EncodeKey(key), EncodeValue(value), charge,
|
|
|
|
&CacheTest::Deleter));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Erase(std::shared_ptr<Cache> cache, int key) {
|
|
|
|
cache->Erase(EncodeKey(key));
|
|
|
|
}
|
|
|
|
|
|
|
|
int Lookup(int key) {
|
|
|
|
return Lookup(cache_, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Insert(int key, int value, int charge = 1) {
|
|
|
|
Insert(cache_, key, value, charge);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Erase(int key) {
|
|
|
|
Erase(cache_, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
int Lookup2(int key) {
|
|
|
|
return Lookup(cache2_, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Insert2(int key, int value, int charge = 1) {
|
|
|
|
Insert(cache2_, key, value, charge);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Erase2(int key) {
|
|
|
|
Erase(cache2_, key);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
CacheTest* CacheTest::current_;
|
|
|
|
std::string CacheTest::type_;
|
|
|
|
|
|
|
|
class LRUCacheTest : public CacheTest {};
|
|
|
|
|
|
|
|
TEST_P(CacheTest, UsageTest) {
|
|
|
|
auto type = GetParam();
|
|
|
|
|
|
|
|
// cache is std::shared_ptr and will be automatically cleaned up.
|
|
|
|
const size_t kCapacity = 100000;
|
|
|
|
auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata);
|
|
|
|
auto precise_cache = NewCache(kCapacity, 0, false, kFullChargeCacheMetadata);
|
|
|
|
ASSERT_EQ(0, cache->GetUsage());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
size_t baseline_meta_usage = precise_cache->GetUsage();
|
|
|
|
if (type != kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(0, baseline_meta_usage);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t usage = 0;
|
|
|
|
char value[10] = "abcdef";
|
|
|
|
// make sure everything will be cached
|
|
|
|
for (int i = 1; i < 100; ++i) {
|
|
|
|
std::string key;
|
|
|
|
if (type == kLRU) {
|
|
|
|
key = std::string(i, 'a');
|
|
|
|
} else {
|
|
|
|
key = EncodeKey(i);
|
|
|
|
}
|
|
|
|
auto kv_size = key.size() + 5;
|
|
|
|
ASSERT_OK(cache->Insert(key, reinterpret_cast<void*>(value), kv_size,
|
|
|
|
DumbDeleter));
|
|
|
|
ASSERT_OK(precise_cache->Insert(key, reinterpret_cast<void*>(value),
|
|
|
|
kv_size, DumbDeleter));
|
|
|
|
usage += kv_size;
|
|
|
|
ASSERT_EQ(usage, cache->GetUsage());
|
|
|
|
if (type == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(baseline_meta_usage + usage, precise_cache->GetUsage());
|
|
|
|
} else {
|
|
|
|
ASSERT_LT(usage, precise_cache->GetUsage());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cache->EraseUnRefEntries();
|
|
|
|
precise_cache->EraseUnRefEntries();
|
|
|
|
ASSERT_EQ(0, cache->GetUsage());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
|
|
|
|
|
|
|
|
// make sure the cache will be overloaded
|
|
|
|
for (size_t i = 1; i < kCapacity; ++i) {
|
|
|
|
std::string key;
|
|
|
|
if (type == kLRU) {
|
|
|
|
key = std::to_string(i);
|
|
|
|
} else {
|
|
|
|
key = EncodeKey(static_cast<int>(1000 + i));
|
|
|
|
}
|
|
|
|
ASSERT_OK(cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
|
|
|
|
DumbDeleter));
|
|
|
|
ASSERT_OK(precise_cache->Insert(key, reinterpret_cast<void*>(value),
|
|
|
|
key.size() + 5, DumbDeleter));
|
|
|
|
}
|
|
|
|
|
|
|
|
// the usage should be close to the capacity
|
|
|
|
ASSERT_GT(kCapacity, cache->GetUsage());
|
|
|
|
ASSERT_GT(kCapacity, precise_cache->GetUsage());
|
|
|
|
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
|
|
|
|
if (type != kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_LT(kCapacity * 0.95, precise_cache->GetUsage());
|
|
|
|
} else {
|
|
|
|
// estimated value size of 1 is weird for clock cache, because
|
|
|
|
// almost all of the capacity will be used for metadata, and due to only
|
|
|
|
// using power of 2 table sizes, we might hit strict occupancy limit
|
|
|
|
// before hitting capacity limit.
|
|
|
|
ASSERT_LT(kCapacity * 0.80, precise_cache->GetUsage());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: This test takes longer than expected on ClockCache. This is
|
|
|
|
// because the values size estimate at construction is too sloppy.
|
|
|
|
// Fix this.
|
|
|
|
// Why is it so slow? The cache is constructed with an estimate of 1, but
|
|
|
|
// then the charge is claimed to be 21. This will cause the hash table
|
|
|
|
// to be extremely sparse, which in turn means clock needs to scan too
|
|
|
|
// many slots to find victims.
|
|
|
|
TEST_P(CacheTest, PinnedUsageTest) {
|
|
|
|
auto type = GetParam();
|
|
|
|
|
|
|
|
// cache is std::shared_ptr and will be automatically cleaned up.
|
|
|
|
const size_t kCapacity = 200000;
|
|
|
|
auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata);
|
|
|
|
auto precise_cache = NewCache(kCapacity, 8, false, kFullChargeCacheMetadata);
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
size_t baseline_meta_usage = precise_cache->GetUsage();
|
|
|
|
if (type != kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(0, baseline_meta_usage);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t pinned_usage = 0;
|
|
|
|
char value[10] = "abcdef";
|
|
|
|
|
|
|
|
std::forward_list<Cache::Handle*> unreleased_handles;
|
|
|
|
std::forward_list<Cache::Handle*> unreleased_handles_in_precise_cache;
|
|
|
|
|
|
|
|
// Add entries. Unpin some of them after insertion. Then, pin some of them
|
|
|
|
// again. Check GetPinnedUsage().
|
|
|
|
for (int i = 1; i < 100; ++i) {
|
|
|
|
std::string key;
|
|
|
|
if (type == kLRU) {
|
|
|
|
key = std::string(i, 'a');
|
|
|
|
} else {
|
|
|
|
key = EncodeKey(i);
|
|
|
|
}
|
|
|
|
auto kv_size = key.size() + 5;
|
|
|
|
Cache::Handle* handle;
|
|
|
|
Cache::Handle* handle_in_precise_cache;
|
|
|
|
ASSERT_OK(cache->Insert(key, reinterpret_cast<void*>(value), kv_size,
|
|
|
|
DumbDeleter, &handle));
|
|
|
|
assert(handle);
|
|
|
|
ASSERT_OK(precise_cache->Insert(key, reinterpret_cast<void*>(value),
|
|
|
|
kv_size, DumbDeleter,
|
|
|
|
&handle_in_precise_cache));
|
|
|
|
assert(handle_in_precise_cache);
|
|
|
|
pinned_usage += kv_size;
|
|
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
cache->Release(handle);
|
|
|
|
precise_cache->Release(handle_in_precise_cache);
|
|
|
|
pinned_usage -= kv_size;
|
|
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
} else {
|
|
|
|
unreleased_handles.push_front(handle);
|
|
|
|
unreleased_handles_in_precise_cache.push_front(handle_in_precise_cache);
|
|
|
|
}
|
|
|
|
if (i % 3 == 0) {
|
|
|
|
unreleased_handles.push_front(cache->Lookup(key));
|
|
|
|
auto x = precise_cache->Lookup(key);
|
|
|
|
assert(x);
|
|
|
|
unreleased_handles_in_precise_cache.push_front(x);
|
|
|
|
// If i % 2 == 0, then the entry was unpinned before Lookup, so pinned
|
|
|
|
// usage increased
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
pinned_usage += kv_size;
|
|
|
|
}
|
|
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
auto precise_cache_pinned_usage = precise_cache->GetPinnedUsage();
|
|
|
|
ASSERT_LT(pinned_usage, precise_cache_pinned_usage);
|
|
|
|
|
|
|
|
// check that overloading the cache does not change the pinned usage
|
|
|
|
for (size_t i = 1; i < 2 * kCapacity; ++i) {
|
|
|
|
std::string key;
|
|
|
|
if (type == kLRU) {
|
|
|
|
key = std::to_string(i);
|
|
|
|
} else {
|
|
|
|
key = EncodeKey(static_cast<int>(1000 + i));
|
|
|
|
}
|
|
|
|
ASSERT_OK(cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
|
|
|
|
DumbDeleter));
|
|
|
|
ASSERT_OK(precise_cache->Insert(key, reinterpret_cast<void*>(value),
|
|
|
|
key.size() + 5, DumbDeleter));
|
|
|
|
}
|
|
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
|
|
|
|
cache->EraseUnRefEntries();
|
|
|
|
precise_cache->EraseUnRefEntries();
|
|
|
|
ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
|
|
|
|
ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage());
|
|
|
|
|
|
|
|
// release handles for pinned entries to prevent memory leaks
|
|
|
|
for (auto handle : unreleased_handles) {
|
|
|
|
cache->Release(handle);
|
|
|
|
}
|
|
|
|
for (auto handle : unreleased_handles_in_precise_cache) {
|
|
|
|
precise_cache->Release(handle);
|
|
|
|
}
|
|
|
|
ASSERT_EQ(0, cache->GetPinnedUsage());
|
|
|
|
ASSERT_EQ(0, precise_cache->GetPinnedUsage());
|
|
|
|
cache->EraseUnRefEntries();
|
|
|
|
precise_cache->EraseUnRefEntries();
|
|
|
|
ASSERT_EQ(0, cache->GetUsage());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, HitAndMiss) {
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
|
|
|
|
Insert(100, 101);
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
|
|
|
|
Insert(200, 201);
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
ASSERT_EQ(201, Lookup(200));
|
|
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
|
|
|
|
Insert(100, 102);
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// ClockCache usually doesn't overwrite on Insert
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
} else {
|
|
|
|
ASSERT_EQ(102, Lookup(100));
|
|
|
|
}
|
|
|
|
ASSERT_EQ(201, Lookup(200));
|
|
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ASSERT_EQ(102, deleted_values_[0]);
|
|
|
|
} else {
|
|
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, InsertSameKey) {
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ROCKSDB_GTEST_BYPASS(
|
|
|
|
"ClockCache doesn't guarantee Insert overwrite same key.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Insert(1, 1);
|
|
|
|
Insert(1, 2);
|
|
|
|
ASSERT_EQ(2, Lookup(1));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, Erase) {
|
|
|
|
Erase(200);
|
|
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
|
|
|
|
Insert(100, 101);
|
|
|
|
Insert(200, 201);
|
|
|
|
Erase(100);
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
ASSERT_EQ(201, Lookup(200));
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
|
|
|
|
|
|
Erase(100);
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
ASSERT_EQ(201, Lookup(200));
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, EntriesArePinned) {
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
ROCKSDB_GTEST_BYPASS(
|
|
|
|
"ClockCache doesn't guarantee Insert overwrite same key.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Insert(100, 101);
|
|
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
|
|
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
|
|
|
|
Insert(100, 102);
|
|
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
|
|
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
|
|
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(2U, cache_->GetUsage());
|
|
|
|
|
|
|
|
cache_->Release(h1);
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(100, deleted_keys_[0]);
|
|
|
|
ASSERT_EQ(101, deleted_values_[0]);
|
|
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
|
|
|
|
Erase(100);
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
|
|
|
|
cache_->Release(h2);
|
|
|
|
ASSERT_EQ(2U, deleted_keys_.size());
|
|
|
|
ASSERT_EQ(100, deleted_keys_[1]);
|
|
|
|
ASSERT_EQ(102, deleted_values_[1]);
|
|
|
|
ASSERT_EQ(0U, cache_->GetUsage());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, EvictionPolicy) {
|
|
|
|
Insert(100, 101);
|
|
|
|
Insert(200, 201);
|
|
|
|
// Frequently used entry must be kept around
|
|
|
|
for (int i = 0; i < 2 * kCacheSize; i++) {
|
|
|
|
Insert(1000+i, 2000+i);
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
}
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
ASSERT_EQ(-1, Lookup(200));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ExternalRefPinsEntries) {
|
|
|
|
Insert(100, 101);
|
|
|
|
Cache::Handle* h = cache_->Lookup(EncodeKey(100));
|
|
|
|
ASSERT_TRUE(cache_->Ref(h));
|
|
|
|
ASSERT_EQ(101, DecodeValue(cache_->Value(h)));
|
|
|
|
ASSERT_EQ(1U, cache_->GetUsage());
|
|
|
|
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
if (i > 0) {
|
|
|
|
// First release (i == 1) corresponds to Ref(), second release (i == 2)
|
|
|
|
// corresponds to Lookup(). Then, since all external refs are released,
|
|
|
|
// the below insertions should push out the cache entry.
|
|
|
|
cache_->Release(h);
|
|
|
|
}
|
|
|
|
// double cache size because the usage bit in block cache prevents 100 from
|
|
|
|
// being evicted in the first kCacheSize iterations
|
|
|
|
for (int j = 0; j < 2 * kCacheSize + 100; j++) {
|
|
|
|
Insert(1000 + j, 2000 + j);
|
|
|
|
}
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// Clock cache is even more stateful and needs more churn to evict
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
for (int j = 0; j < kCacheSize; j++) {
|
|
|
|
Insert(11000 + j, 11000 + j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (i < 2) {
|
|
|
|
ASSERT_EQ(101, Lookup(100));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, EvictionPolicyRef) {
|
|
|
|
Insert(100, 101);
|
|
|
|
Insert(101, 102);
|
|
|
|
Insert(102, 103);
|
|
|
|
Insert(103, 104);
|
|
|
|
Insert(200, 101);
|
|
|
|
Insert(201, 102);
|
|
|
|
Insert(202, 103);
|
|
|
|
Insert(203, 104);
|
|
|
|
Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
|
|
|
|
Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
|
|
|
|
Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
|
|
|
|
Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
|
|
|
|
Insert(300, 101);
|
|
|
|
Insert(301, 102);
|
|
|
|
Insert(302, 103);
|
|
|
|
Insert(303, 104);
|
|
|
|
|
|
|
|
// Insert entries much more than cache capacity.
|
|
|
|
for (int i = 0; i < 100 * kCacheSize; i++) {
|
|
|
|
Insert(1000 + i, 2000 + i);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check whether the entries inserted in the beginning
|
|
|
|
// are evicted. Ones without extra ref are evicted and
|
|
|
|
// those with are not.
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
ASSERT_EQ(-1, Lookup(101));
|
|
|
|
ASSERT_EQ(-1, Lookup(102));
|
|
|
|
ASSERT_EQ(-1, Lookup(103));
|
|
|
|
|
|
|
|
ASSERT_EQ(-1, Lookup(300));
|
|
|
|
ASSERT_EQ(-1, Lookup(301));
|
|
|
|
ASSERT_EQ(-1, Lookup(302));
|
|
|
|
ASSERT_EQ(-1, Lookup(303));
|
|
|
|
|
|
|
|
ASSERT_EQ(101, Lookup(200));
|
|
|
|
ASSERT_EQ(102, Lookup(201));
|
|
|
|
ASSERT_EQ(103, Lookup(202));
|
|
|
|
ASSERT_EQ(104, Lookup(203));
|
|
|
|
|
|
|
|
// Cleaning up all the handles
|
|
|
|
cache_->Release(h201);
|
|
|
|
cache_->Release(h202);
|
|
|
|
cache_->Release(h203);
|
|
|
|
cache_->Release(h204);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, EvictEmptyCache) {
|
|
|
|
auto type = GetParam();
|
|
|
|
|
|
|
|
// Insert item large than capacity to trigger eviction on empty cache.
|
|
|
|
auto cache = NewCache(1, 0, false);
|
|
|
|
if (type == kLRU) {
|
|
|
|
ASSERT_OK(cache->Insert("foo", nullptr, 10, DumbDeleter));
|
|
|
|
} else {
|
|
|
|
ASSERT_OK(cache->Insert(EncodeKey(1000), nullptr, 10, DumbDeleter));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, EraseFromDeleter) {
|
|
|
|
auto type = GetParam();
|
|
|
|
|
|
|
|
// Have deleter which will erase item from cache, which will re-enter
|
|
|
|
// the cache at that point.
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(10, 0, false);
|
|
|
|
std::string foo, bar;
|
|
|
|
Cache::DeleterFn erase_deleter;
|
|
|
|
if (type == kLRU) {
|
|
|
|
foo = "foo";
|
|
|
|
bar = "bar";
|
|
|
|
erase_deleter = EraseDeleter1;
|
|
|
|
} else {
|
|
|
|
foo = EncodeKey(1234);
|
|
|
|
bar = EncodeKey(5678);
|
|
|
|
erase_deleter = EraseDeleter2;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_OK(cache->Insert(foo, nullptr, 1, DumbDeleter));
|
|
|
|
ASSERT_OK(cache->Insert(bar, cache.get(), 1, erase_deleter));
|
|
|
|
|
|
|
|
cache->Erase(bar);
|
|
|
|
ASSERT_EQ(nullptr, cache->Lookup(foo));
|
|
|
|
ASSERT_EQ(nullptr, cache->Lookup(bar));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ErasedHandleState) {
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
// insert a key and get two handles
|
|
|
|
Insert(100, 1000);
|
|
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
|
|
|
|
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
|
|
|
|
ASSERT_EQ(h1, h2);
|
|
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000);
|
|
|
|
ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000);
|
|
|
|
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
// delete the key from the cache
|
|
|
|
Erase(100);
|
|
|
|
// can no longer find in the cache
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
// release one handle
|
|
|
|
cache_->Release(h1);
|
|
|
|
// still can't find in cache
|
|
|
|
ASSERT_EQ(-1, Lookup(100));
|
|
|
|
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
cache_->Release(h2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, HeavyEntries) {
|
|
|
|
// Add a bunch of light and heavy entries and then count the combined
|
|
|
|
// size of items still in the cache, which must be approximately the
|
|
|
|
// same as the total capacity.
|
|
|
|
const int kLight = 1;
|
|
|
|
const int kHeavy = 10;
|
|
|
|
int added = 0;
|
|
|
|
int index = 0;
|
|
|
|
while (added < 2 * kCacheSize) {
|
|
|
|
const int weight = (index & 1) ? kLight : kHeavy;
|
|
|
|
Insert(index, 1000 + index, weight);
|
|
|
|
added += weight;
|
|
|
|
index++;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cached_weight = 0;
|
|
|
|
for (int i = 0; i < index; i++) {
|
|
|
|
const int weight = (i & 1 ? kLight : kHeavy);
|
|
|
|
int r = Lookup(i);
|
|
|
|
if (r >= 0) {
|
|
|
|
cached_weight += weight;
|
|
|
|
ASSERT_EQ(1000 + i, r);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, NewId) {
|
|
|
|
uint64_t a = cache_->NewId();
|
|
|
|
uint64_t b = cache_->NewId();
|
|
|
|
ASSERT_NE(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
class Value {
|
|
|
|
public:
|
|
|
|
explicit Value(int v) : v_(v) {}
|
|
|
|
|
|
|
|
int v_;
|
|
|
|
};
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
void deleter(const Slice& /*key*/, void* value) {
|
|
|
|
delete static_cast<Value *>(value);
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ReleaseAndErase) {
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
|
|
Cache::Handle* handle;
|
|
|
|
Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
|
|
|
|
&CacheTest::Deleter, &handle);
|
|
|
|
ASSERT_TRUE(s.ok());
|
|
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
auto erased = cache->Release(handle, true);
|
|
|
|
ASSERT_TRUE(erased);
|
|
|
|
// This tests that deleter has been called
|
|
|
|
ASSERT_EQ(1U, deleted_keys_.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ReleaseWithoutErase) {
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
|
|
Cache::Handle* handle;
|
|
|
|
Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
|
|
|
|
&CacheTest::Deleter, &handle);
|
|
|
|
ASSERT_TRUE(s.ok());
|
|
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(1U, cache->GetUsage());
|
|
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
auto erased = cache->Release(handle);
|
|
|
|
ASSERT_FALSE(erased);
|
|
|
|
// This tests that deleter is not called. When cache has free capacity it is
|
|
|
|
// not expected to immediately erase the released items.
|
|
|
|
ASSERT_EQ(0U, deleted_keys_.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, SetCapacity) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kFast || type == kHyperClock) {
|
|
|
|
ROCKSDB_GTEST_BYPASS(
|
|
|
|
"FastLRUCache and HyperClockCache don't support arbitrary capacity "
|
|
|
|
"adjustments.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// test1: increase capacity
|
|
|
|
// lets create a cache with capacity 5,
|
|
|
|
// then, insert 5 elements, then increase capacity
|
|
|
|
// to 10, returned capacity should be 10, usage=5
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
|
|
std::vector<Cache::Handle*> handles(10);
|
|
|
|
// Insert 5 entries, but not releasing.
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
|
|
ASSERT_TRUE(s.ok());
|
|
|
|
}
|
|
|
|
ASSERT_EQ(5U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(5U, cache->GetUsage());
|
|
|
|
cache->SetCapacity(10);
|
|
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(5U, cache->GetUsage());
|
|
|
|
|
|
|
|
// test2: decrease capacity
|
|
|
|
// insert 5 more elements to cache, then release 5,
|
|
|
|
// then decrease capacity to 7, final capacity should be 7
|
|
|
|
// and usage should be 7
|
|
|
|
for (int i = 5; i < 10; i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
|
|
ASSERT_TRUE(s.ok());
|
|
|
|
}
|
|
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(10U, cache->GetUsage());
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
|
cache->Release(handles[i]);
|
|
|
|
}
|
|
|
|
ASSERT_EQ(10U, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(10U, cache->GetUsage());
|
|
|
|
cache->SetCapacity(7);
|
|
|
|
ASSERT_EQ(7, cache->GetCapacity());
|
|
|
|
ASSERT_EQ(7, cache->GetUsage());
|
|
|
|
|
|
|
|
// release remaining 5 to keep valgrind happy
|
|
|
|
for (int i = 5; i < 10; i++) {
|
|
|
|
cache->Release(handles[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure this doesn't crash or upset ASAN/valgrind
|
|
|
|
cache->DisownData();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(LRUCacheTest, SetStrictCapacityLimit) {
|
|
|
|
auto type = GetParam();
|
|
|
|
if (type == kFast) {
|
|
|
|
ROCKSDB_GTEST_BYPASS(
|
|
|
|
"FastLRUCache only supports a limited number of "
|
|
|
|
"inserts beyond "
|
|
|
|
"capacity.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// test1: set the flag to false. Insert more keys than capacity. See if they
|
|
|
|
// all go through.
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(5, 0, false);
|
|
|
|
std::vector<Cache::Handle*> handles(10);
|
|
|
|
Status s;
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
|
|
ASSERT_OK(s);
|
|
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
|
|
}
|
|
|
|
ASSERT_EQ(10, cache->GetUsage());
|
|
|
|
|
|
|
|
// test2: set the flag to true. Insert and check if it fails.
|
|
|
|
std::string extra_key = EncodeKey(100);
|
|
|
|
Value* extra_value = new Value(0);
|
|
|
|
cache->SetStrictCapacityLimit(true);
|
|
|
|
Cache::Handle* handle;
|
|
|
|
s = cache->Insert(extra_key, extra_value, 1, &deleter, &handle);
|
|
|
|
ASSERT_TRUE(s.IsMemoryLimit());
|
|
|
|
ASSERT_EQ(nullptr, handle);
|
|
|
|
ASSERT_EQ(10, cache->GetUsage());
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
cache->Release(handles[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// test3: init with flag being true.
|
|
|
|
std::shared_ptr<Cache> cache2 = NewCache(5, 0, true);
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
s = cache2->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
|
|
ASSERT_OK(s);
|
|
|
|
ASSERT_NE(nullptr, handles[i]);
|
|
|
|
}
|
|
|
|
s = cache2->Insert(extra_key, extra_value, 1, &deleter, &handle);
|
|
|
|
ASSERT_TRUE(s.IsMemoryLimit());
|
|
|
|
ASSERT_EQ(nullptr, handle);
|
|
|
|
// test insert without handle
|
|
|
|
s = cache2->Insert(extra_key, extra_value, 1, &deleter);
|
|
|
|
// AS if the key have been inserted into cache but get evicted immediately.
|
|
|
|
ASSERT_OK(s);
|
|
|
|
ASSERT_EQ(5, cache2->GetUsage());
|
|
|
|
ASSERT_EQ(nullptr, cache2->Lookup(extra_key));
|
|
|
|
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
|
cache2->Release(handles[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, OverCapacity) {
|
|
|
|
size_t n = 10;
|
|
|
|
|
|
|
|
// a LRUCache with n entries and one shard only
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(n, 0, false);
|
|
|
|
|
|
|
|
std::vector<Cache::Handle*> handles(n+1);
|
|
|
|
|
|
|
|
// Insert n+1 entries, but not releasing.
|
|
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
|
|
|
|
ASSERT_TRUE(s.ok());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Guess what's in the cache now?
|
|
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
auto h = cache->Lookup(key);
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
ASSERT_TRUE(h != nullptr);
|
|
|
|
if (h) cache->Release(h);
|
|
|
|
}
|
|
|
|
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
// the cache is over capacity since nothing could be evicted
|
|
|
|
ASSERT_EQ(n + 1U, cache->GetUsage());
|
|
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
|
|
cache->Release(handles[i]);
|
|
|
|
}
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
|
|
|
|
if (GetParam() == kHyperClock) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// Make sure eviction is triggered.
|
|
|
|
ASSERT_OK(cache->Insert(EncodeKey(-1), nullptr, 1, &deleter, &handles[0]));
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// cache is under capacity now since elements were released
|
|
|
|
ASSERT_GE(n, cache->GetUsage());
|
|
|
|
|
|
|
|
// clean up
|
|
|
|
cache->Release(handles[0]);
|
|
|
|
} else {
|
|
|
|
// LRUCache checks for over-capacity in Release.
|
|
|
|
|
|
|
|
// cache is exactly at capacity now with minimal eviction
|
|
|
|
ASSERT_EQ(n, cache->GetUsage());
|
|
|
|
|
|
|
|
// element 0 is evicted and the rest is there
|
|
|
|
// This is consistent with the LRU policy since the element 0
|
|
|
|
// was released first
|
|
|
|
for (int i = 0; i < static_cast<int>(n + 1); i++) {
|
|
|
|
std::string key = EncodeKey(i + 1);
|
|
|
|
auto h = cache->Lookup(key);
|
|
|
|
if (h) {
|
|
|
|
ASSERT_NE(static_cast<size_t>(i), 0U);
|
|
|
|
cache->Release(h);
|
|
|
|
} else {
|
|
|
|
ASSERT_EQ(static_cast<size_t>(i), 0U);
|
|
|
|
}
|
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references
Summary:
Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense:
- blocks are still in RAM, so the RAM usage reported by the cache is incorrect
- if the same block is needed by another iterator, it will be loaded and decompressed again
This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache.
This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache.
Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this.
table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved
Test Plan: Ran tests, made sure they pass
Reviewers: sdong, ljin
Differential Revision: https://reviews.facebook.net/D25503
10 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
std::vector<std::pair<int, int>> legacy_callback_state;
|
|
|
|
void legacy_callback(void* value, size_t charge) {
|
|
|
|
legacy_callback_state.push_back(
|
|
|
|
{DecodeValue(value), static_cast<int>(charge)});
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
TEST_P(CacheTest, ApplyToAllCacheEntriesTest) {
|
|
|
|
std::vector<std::pair<int, int>> inserted;
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
legacy_callback_state.clear();
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
|
|
Insert(i, i * 2, i + 1);
|
|
|
|
inserted.push_back({i * 2, i + 1});
|
|
|
|
}
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
cache_->ApplyToAllCacheEntries(legacy_callback, true);
|
|
|
|
|
|
|
|
std::sort(inserted.begin(), inserted.end());
|
|
|
|
std::sort(legacy_callback_state.begin(), legacy_callback_state.end());
|
|
|
|
ASSERT_EQ(inserted.size(), legacy_callback_state.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(inserted.size()); ++i) {
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
EXPECT_EQ(inserted[i], legacy_callback_state[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ApplyToAllEntriesTest) {
|
|
|
|
std::vector<std::string> callback_state;
|
|
|
|
const auto callback = [&](const Slice& key, void* value, size_t charge,
|
|
|
|
Cache::DeleterFn deleter) {
|
|
|
|
callback_state.push_back(std::to_string(DecodeKey(key)) + "," +
|
|
|
|
std::to_string(DecodeValue(value)) + "," +
|
|
|
|
std::to_string(charge));
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
assert(deleter == &CacheTest::Deleter);
|
|
|
|
};
|
|
|
|
|
|
|
|
std::vector<std::string> inserted;
|
|
|
|
callback_state.clear();
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
|
|
Insert(i, i * 2, i + 1);
|
|
|
|
inserted.push_back(std::to_string(i) + "," + std::to_string(i * 2) + "," +
|
|
|
|
std::to_string(i + 1));
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
}
|
|
|
|
cache_->ApplyToAllEntries(callback, /*opts*/ {});
|
|
|
|
|
|
|
|
std::sort(inserted.begin(), inserted.end());
|
|
|
|
std::sort(callback_state.begin(), callback_state.end());
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
ASSERT_EQ(inserted.size(), callback_state.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(inserted.size()); ++i) {
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
EXPECT_EQ(inserted[i], callback_state[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, ApplyToAllEntriesDuringResize) {
|
|
|
|
// This is a mini-stress test of ApplyToAllEntries, to ensure
|
|
|
|
// items in the cache that are neither added nor removed
|
|
|
|
// during ApplyToAllEntries are counted exactly once.
|
|
|
|
|
|
|
|
// Insert some entries that we expect to be seen exactly once
|
|
|
|
// during iteration.
|
|
|
|
constexpr int kSpecialCharge = 2;
|
|
|
|
constexpr int kNotSpecialCharge = 1;
|
|
|
|
constexpr int kSpecialCount = 100;
|
|
|
|
size_t expected_usage = 0;
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
for (int i = 0; i < kSpecialCount; ++i) {
|
|
|
|
Insert(i, i * 2, kSpecialCharge);
|
|
|
|
expected_usage += kSpecialCharge;
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
}
|
|
|
|
|
|
|
|
// For callback
|
|
|
|
int special_count = 0;
|
|
|
|
const auto callback = [&](const Slice&, void*, size_t charge,
|
|
|
|
Cache::DeleterFn) {
|
|
|
|
if (charge == static_cast<size_t>(kSpecialCharge)) {
|
|
|
|
++special_count;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Start counting
|
|
|
|
std::thread apply_thread([&]() {
|
|
|
|
// Use small average_entries_per_lock to make the problem difficult
|
|
|
|
Cache::ApplyToAllEntriesOptions opts;
|
|
|
|
opts.average_entries_per_lock = 2;
|
|
|
|
cache_->ApplyToAllEntries(callback, opts);
|
|
|
|
});
|
|
|
|
|
|
|
|
// In parallel, add more entries, enough to cause resize but not enough
|
|
|
|
// to cause ejections. (Note: if any cache shard is over capacity, there
|
|
|
|
// will be ejections)
|
|
|
|
for (int i = kSpecialCount * 1; i < kSpecialCount * 5; ++i) {
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
Insert(i, i * 2, kNotSpecialCharge);
|
|
|
|
expected_usage += kNotSpecialCharge;
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
}
|
|
|
|
|
|
|
|
apply_thread.join();
|
|
|
|
// verify no evictions
|
|
|
|
ASSERT_EQ(cache_->GetUsage(), expected_usage);
|
|
|
|
// verify everything seen in ApplyToAllEntries
|
New Cache API for gathering statistics (#8225)
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
|
|
|
ASSERT_EQ(special_count, kSpecialCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(CacheTest, DefaultShardBits) {
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// Prevent excessive allocation (to save time & space)
|
|
|
|
estimated_value_size_ = 100000;
|
|
|
|
// Implementations use different minimum shard sizes
|
|
|
|
size_t min_shard_size =
|
|
|
|
(GetParam() == kHyperClock ? 32U * 1024U : 512U) * 1024U;
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
|
|
|
|
std::shared_ptr<Cache> cache = NewCache(32U * min_shard_size);
|
|
|
|
ShardedCacheBase* sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
|
|
ASSERT_EQ(5, sc->GetNumShardBits());
|
|
|
|
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
cache = NewCache(min_shard_size / 1000U * 999U);
|
|
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
|
|
|
ASSERT_EQ(0, sc->GetNumShardBits());
|
|
|
|
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
cache = NewCache(3U * 1024U * 1024U * 1024U);
|
|
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// current maximum of 6
|
|
|
|
ASSERT_EQ(6, sc->GetNumShardBits());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
|
|
|
|
if constexpr (sizeof(size_t) > 4) {
|
|
|
|
cache = NewCache(128U * min_shard_size);
|
|
|
|
sc = dynamic_cast<ShardedCacheBase*>(cache.get());
|
Revamp, optimize new experimental clock cache (#10626)
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
|
|
|
// current maximum of 6
|
|
|
|
ASSERT_EQ(6, sc->GetNumShardBits());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Use deleters to label cache entries and collect stats (#8297)
Summary:
This change gathers and publishes statistics about the
kinds of items in block cache. This is especially important for
profiling relative usage of cache by index vs. filter vs. data blocks.
It works by iterating over the cache during periodic stats dump
(InternalStats, stats_dump_period_sec) or on demand when
DB::Get(Map)Property(kBlockCacheEntryStats), except that for
efficiency and sharing among column families, saved data from
the last scan is used when the data is not considered too old.
The new information can be seen in info LOG, for example:
Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0
Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%)
And also through DB::GetProperty and GetMapProperty (here using
ldb just for demonstration):
$ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats
rocksdb.block-cache-entry-stats.bytes.data-block: 0
rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0
rocksdb.block-cache-entry-stats.bytes.index-block: 178992
rocksdb.block-cache-entry-stats.bytes.misc: 0
rocksdb.block-cache-entry-stats.bytes.other-block: 0
rocksdb.block-cache-entry-stats.bytes.write-buffer: 0
rocksdb.block-cache-entry-stats.capacity: 8388608
rocksdb.block-cache-entry-stats.count.data-block: 0
rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-meta-block: 0
rocksdb.block-cache-entry-stats.count.index-block: 215
rocksdb.block-cache-entry-stats.count.misc: 1
rocksdb.block-cache-entry-stats.count.other-block: 0
rocksdb.block-cache-entry-stats.count.write-buffer: 0
rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290
rocksdb.block-cache-entry-stats.percent.data-block: 0.000000
rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000
rocksdb.block-cache-entry-stats.percent.index-block: 2.133751
rocksdb.block-cache-entry-stats.percent.misc: 0.000000
rocksdb.block-cache-entry-stats.percent.other-block: 0.000000
rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000
rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052
rocksdb.block-cache-entry-stats.secs_since_last_collection: 0
Solution detail - We need some way to flag what kind of blocks each
entry belongs to, preferably without changing the Cache API.
One of the complications is that Cache is a general interface that could
have other users that don't adhere to whichever convention we decide
on for keys and values. Or we would pay for an extra field in the Handle
that would only be used for this purpose.
This change uses a back-door approach, the deleter, to indicate the
"role" of a Cache entry (in addition to the value type, implicitly).
This has the added benefit of ensuring proper code origin whenever we
recognize a particular role for a cache entry; if the entry came from
some other part of the code, it will use an unrecognized deleter, which
we simply attribute to the "Misc" role.
An internal API makes for simple instantiation and automatic
registration of Cache deleters for a given value type and "role".
Another internal API, CacheEntryStatsCollector, solves the problem of
caching the results of a scan and sharing them, to ensure scans are
neither excessive nor redundant so as not to harm Cache performance.
Because code is added to BlocklikeTraits, it is pulled out of
block_based_table_reader.cc into its own file.
This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option
(could still be added), and with actual stat gathering.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297
Test Plan: manual testing with db_bench, and a couple of basic unit tests
Reviewed By: ltamasi
Differential Revision: D28488721
Pulled By: pdillinger
fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
4 years ago
|
|
|
TEST_P(CacheTest, GetChargeAndDeleter) {
|
|
|
|
Insert(1, 2);
|
|
|
|
Cache::Handle* h1 = cache_->Lookup(EncodeKey(1));
|
|
|
|
ASSERT_EQ(2, DecodeValue(cache_->Value(h1)));
|
|
|
|
ASSERT_EQ(1, cache_->GetCharge(h1));
|
Use deleters to label cache entries and collect stats (#8297)
Summary:
This change gathers and publishes statistics about the
kinds of items in block cache. This is especially important for
profiling relative usage of cache by index vs. filter vs. data blocks.
It works by iterating over the cache during periodic stats dump
(InternalStats, stats_dump_period_sec) or on demand when
DB::Get(Map)Property(kBlockCacheEntryStats), except that for
efficiency and sharing among column families, saved data from
the last scan is used when the data is not considered too old.
The new information can be seen in info LOG, for example:
Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0
Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%)
And also through DB::GetProperty and GetMapProperty (here using
ldb just for demonstration):
$ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats
rocksdb.block-cache-entry-stats.bytes.data-block: 0
rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0
rocksdb.block-cache-entry-stats.bytes.index-block: 178992
rocksdb.block-cache-entry-stats.bytes.misc: 0
rocksdb.block-cache-entry-stats.bytes.other-block: 0
rocksdb.block-cache-entry-stats.bytes.write-buffer: 0
rocksdb.block-cache-entry-stats.capacity: 8388608
rocksdb.block-cache-entry-stats.count.data-block: 0
rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-meta-block: 0
rocksdb.block-cache-entry-stats.count.index-block: 215
rocksdb.block-cache-entry-stats.count.misc: 1
rocksdb.block-cache-entry-stats.count.other-block: 0
rocksdb.block-cache-entry-stats.count.write-buffer: 0
rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290
rocksdb.block-cache-entry-stats.percent.data-block: 0.000000
rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000
rocksdb.block-cache-entry-stats.percent.index-block: 2.133751
rocksdb.block-cache-entry-stats.percent.misc: 0.000000
rocksdb.block-cache-entry-stats.percent.other-block: 0.000000
rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000
rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052
rocksdb.block-cache-entry-stats.secs_since_last_collection: 0
Solution detail - We need some way to flag what kind of blocks each
entry belongs to, preferably without changing the Cache API.
One of the complications is that Cache is a general interface that could
have other users that don't adhere to whichever convention we decide
on for keys and values. Or we would pay for an extra field in the Handle
that would only be used for this purpose.
This change uses a back-door approach, the deleter, to indicate the
"role" of a Cache entry (in addition to the value type, implicitly).
This has the added benefit of ensuring proper code origin whenever we
recognize a particular role for a cache entry; if the entry came from
some other part of the code, it will use an unrecognized deleter, which
we simply attribute to the "Misc" role.
An internal API makes for simple instantiation and automatic
registration of Cache deleters for a given value type and "role".
Another internal API, CacheEntryStatsCollector, solves the problem of
caching the results of a scan and sharing them, to ensure scans are
neither excessive nor redundant so as not to harm Cache performance.
Because code is added to BlocklikeTraits, it is pulled out of
block_based_table_reader.cc into its own file.
This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option
(could still be added), and with actual stat gathering.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297
Test Plan: manual testing with db_bench, and a couple of basic unit tests
Reviewed By: ltamasi
Differential Revision: D28488721
Pulled By: pdillinger
fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
4 years ago
|
|
|
ASSERT_EQ(&CacheTest::Deleter, cache_->GetDeleter(h1));
|
|
|
|
cache_->Release(h1);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest,
|
|
|
|
testing::Values(kLRU, kHyperClock, kFast));
|
|
|
|
INSTANTIATE_TEST_CASE_P(CacheTestInstance, LRUCacheTest,
|
|
|
|
testing::Values(kLRU, kFast));
|
|
|
|
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
|
|
return RUN_ALL_TESTS();
|
|
|
|
}
|