You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/compaction/compaction_job.cc

3128 lines
122 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction_job.h"
#include <algorithm>
#include <cinttypes>
#include <functional>
#include <list>
#include <memory>
#include <random>
#include <set>
#include <thread>
#include <utility>
#include <vector>
#include "db/blob/blob_counting_iterator.h"
#include "db/blob/blob_file_addition.h"
#include "db/blob/blob_file_builder.h"
#include "db/blob/blob_garbage_meter.h"
#include "db/builder.h"
#include "db/compaction/clipping_iterator.h"
#include "db/db_impl/db_impl.h"
#include "db/db_iter.h"
#include "db/dbformat.h"
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "db/history_trimming_iterator.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/memtable.h"
#include "db/memtable_list.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/output_validator.h"
#include "db/range_del_aggregator.h"
#include "db/version_set.h"
#include "file/filename.h"
#include "file/read_write_util.h"
#include "file/sst_file_manager_impl.h"
#include "file/writable_file_writer.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/thread_status_util.h"
#include "options/configurable_helper.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/sst_partitioner.h"
#include "rocksdb/statistics.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "rocksdb/utilities/options_type.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/merging_iterator.h"
#include "table/table_builder.h"
#include "table/unique_id_impl.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/hash.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
const char* GetCompactionReasonString(CompactionReason compaction_reason) {
switch (compaction_reason) {
case CompactionReason::kUnknown:
return "Unknown";
case CompactionReason::kLevelL0FilesNum:
return "LevelL0FilesNum";
case CompactionReason::kLevelMaxLevelSize:
return "LevelMaxLevelSize";
case CompactionReason::kUniversalSizeAmplification:
return "UniversalSizeAmplification";
case CompactionReason::kUniversalSizeRatio:
return "UniversalSizeRatio";
case CompactionReason::kUniversalSortedRunNum:
return "UniversalSortedRunNum";
case CompactionReason::kFIFOMaxSize:
return "FIFOMaxSize";
case CompactionReason::kFIFOReduceNumFiles:
return "FIFOReduceNumFiles";
case CompactionReason::kFIFOTtl:
return "FIFOTtl";
case CompactionReason::kManualCompaction:
return "ManualCompaction";
case CompactionReason::kFilesMarkedForCompaction:
return "FilesMarkedForCompaction";
case CompactionReason::kBottommostFiles:
return "BottommostFiles";
case CompactionReason::kTtl:
return "Ttl";
case CompactionReason::kFlush:
return "Flush";
case CompactionReason::kExternalSstIngestion:
return "ExternalSstIngestion";
Periodic Compactions (#5166) Summary: Introducing Periodic Compactions. This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold. - Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF. - This works across all levels. - The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used). - Compaction filters, if any, are invoked as usual. - A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS). This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166 Differential Revision: D14884441 Pulled By: sagar0 fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
6 years ago
case CompactionReason::kPeriodicCompaction:
return "PeriodicCompaction";
case CompactionReason::kChangeTemperature:
return "ChangeTemperature";
Make it possible to force the garbage collection of the oldest blob files (#8994) Summary: The current BlobDB garbage collection logic works by relocating the valid blobs from the oldest blob files as they are encountered during compaction, and cleaning up blob files once they contain nothing but garbage. However, with sufficiently skewed workloads, it is theoretically possible to end up in a situation when few or no compactions get scheduled for the SST files that contain references to the oldest blob files, which can lead to increased space amp due to the lack of GC. In order to efficiently handle such workloads, the patch adds a new BlobDB configuration option called `blob_garbage_collection_force_threshold`, which signals to BlobDB to schedule targeted compactions for the SST files that keep alive the oldest batch of blob files if the overall ratio of garbage in the given blob files meets the threshold *and* all the given blob files are eligible for GC based on `blob_garbage_collection_age_cutoff`. (For example, if the new option is set to 0.9, targeted compactions will get scheduled if the sum of garbage bytes meets or exceeds 90% of the sum of total bytes in the oldest blob files, assuming all affected blob files are below the age-based cutoff.) The net result of these targeted compactions is that the valid blobs in the oldest blob files are relocated and the oldest blob files themselves cleaned up (since *all* SST files that rely on them get compacted away). These targeted compactions are similar to periodic compactions in the sense that they force certain SST files that otherwise would not get picked up to undergo compaction and also in the sense that instead of merging files from multiple levels, they target a single file. (Note: such compactions might still include neighboring files from the same level due to the need of having a "clean cut" boundary but they never include any files from any other level.) This functionality is currently only supported with the leveled compaction style and is inactive by default (since the default value is set to 1.0, i.e. 100%). Pull Request resolved: https://github.com/facebook/rocksdb/pull/8994 Test Plan: Ran `make check` and tested using `db_bench` and the stress/crash tests. Reviewed By: riversand963 Differential Revision: D31489850 Pulled By: ltamasi fbshipit-source-id: 44057d511726a0e2a03c5d9313d7511b3f0c4eab
3 years ago
case CompactionReason::kForcedBlobGC:
return "ForcedBlobGC";
case CompactionReason::kNumOfReasons:
// fall through
default:
assert(false);
return "Invalid";
}
}
// Maintains state for each sub-compaction
struct CompactionJob::SubcompactionState {
const Compaction* compaction;
std::unique_ptr<CompactionIterator> c_iter;
// The boundaries of the key-range this compaction is interested in. No two
// subcompactions may have overlapping key-ranges.
// 'start' is inclusive, 'end' is exclusive, and nullptr means unbounded
Slice *start, *end;
// The return status of this subcompaction
Status status;
// The return IO Status of this subcompaction
IOStatus io_status;
// Files produced by this subcompaction
struct Output {
Output(FileMetaData&& _meta, const InternalKeyComparator& _icmp,
bool _enable_order_check, bool _enable_hash, bool _finished = false,
uint64_t precalculated_hash = 0)
: meta(std::move(_meta)),
validator(_icmp, _enable_order_check, _enable_hash,
precalculated_hash),
finished(_finished) {}
FileMetaData meta;
OutputValidator validator;
bool finished;
std::shared_ptr<const TableProperties> table_properties;
};
// State kept for output being generated
std::vector<Output> outputs;
std::vector<BlobFileAddition> blob_file_additions;
std::unique_ptr<BlobGarbageMeter> blob_garbage_meter;
std::unique_ptr<WritableFileWriter> outfile;
std::unique_ptr<TableBuilder> builder;
Output* current_output() {
if (outputs.empty()) {
// This subcompaction's output could be empty if compaction was aborted
// before this subcompaction had a chance to generate any output files.
// When subcompactions are executed sequentially this is more likely and
// will be particularly likely for the later subcompactions to be empty.
// Once they are run in parallel however it should be much rarer.
return nullptr;
} else {
return &outputs.back();
}
}
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
// Some identified files with old oldest ancester time and the range should be
// isolated out so that the output file(s) in that range can be merged down
// for TTL and clear the timestamps for the range.
std::vector<FileMetaData*> files_to_cut_for_ttl;
int cur_files_to_cut_for_ttl = -1;
int next_files_to_cut_for_ttl = 0;
uint64_t current_output_file_size = 0;
// State during the subcompaction
uint64_t total_bytes = 0;
uint64_t num_output_records = 0;
CompactionJobStats compaction_job_stats;
uint64_t approx_size = 0;
// An index that used to speed up ShouldStopBefore().
size_t grandparent_index = 0;
// The number of bytes overlapping between the current output and
// grandparent files used in ShouldStopBefore().
uint64_t overlapped_bytes = 0;
// A flag determine whether the key has been seen in ShouldStopBefore()
bool seen_key = false;
// sub compaction job id, which is used to identify different sub-compaction
// within the same compaction job.
const uint32_t sub_job_id;
// Notify on sub-compaction completion only if listener was notified on
// sub-compaction begin.
bool notify_on_subcompaction_completion = false;
SubcompactionState(Compaction* c, Slice* _start, Slice* _end, uint64_t size,
uint32_t _sub_job_id)
: compaction(c),
start(_start),
end(_end),
approx_size(size),
sub_job_id(_sub_job_id) {
assert(compaction != nullptr);
}
// Adds the key and value to the builder
// If paranoid is true, adds the key-value to the paranoid hash
Status AddToBuilder(const Slice& key, const Slice& value) {
auto curr = current_output();
assert(builder != nullptr);
assert(curr != nullptr);
Status s = curr->validator.Add(key, value);
if (!s.ok()) {
return s;
}
builder->Add(key, value);
return Status::OK();
}
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
void FillFilesToCutForTtl();
// Returns true iff we should stop building the current output
// before processing "internal_key".
bool ShouldStopBefore(const Slice& internal_key, uint64_t curr_file_size) {
const InternalKeyComparator* icmp =
&compaction->column_family_data()->internal_comparator();
const std::vector<FileMetaData*>& grandparents = compaction->grandparents();
Incremental Space Amp Compactions in Universal Style (#8655) Summary: This commit introduces incremental compaction in univeral style for space amplification. This follows the first improvement mentioned in https://rocksdb.org/blog/2021/04/12/universal-improvements.html . The implemention simply picks up files about size of max_compaction_bytes to compact and execute if the penalty is not too big. More optimizations can be done in the future, e.g. prioritizing between this compaction and other types. But for now, the feature is supposed to be functional and can often reduce frequency of full compactions, although it can introduce penalty. In order to add cut files more efficiently so that more files from upper levels can be included, SST file cutting threshold (for current file + overlapping parent level files) is set to 1.5X of target file size. A 2MB target file size will generate files like this: https://gist.github.com/siying/29d2676fba417404f3c95e6c013c7de8 Number of files indeed increases but it is not out of control. Two set of write benchmarks are run: 1. For ingestion rate limited scenario, we can see full compaction is mostly eliminated: https://gist.github.com/siying/959bc1186066906831cf4c808d6e0a19 . The write amp increased from 7.7 to 9.4, as expected. After applying file cutting, the number is improved to 8.9. In another benchmark, the write amp is even better with the incremental approach: https://gist.github.com/siying/d1c16c286d7c59c4d7bba718ca198163 2. For ingestion rate unlimited scenario, incremental compaction turns out to be too expensive most of the time and is not executed, as expected. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8655 Test Plan: Add unit tests to the functionality. Reviewed By: ajkr Differential Revision: D31787034 fbshipit-source-id: ce813e63b15a61d5a56e97bf8902a1b28e011beb
3 years ago
bool grandparant_file_switched = false;
// Scan to find earliest grandparent file that contains key.
while (grandparent_index < grandparents.size() &&
icmp->Compare(internal_key,
grandparents[grandparent_index]->largest.Encode()) >
0) {
if (seen_key) {
overlapped_bytes += grandparents[grandparent_index]->fd.GetFileSize();
Incremental Space Amp Compactions in Universal Style (#8655) Summary: This commit introduces incremental compaction in univeral style for space amplification. This follows the first improvement mentioned in https://rocksdb.org/blog/2021/04/12/universal-improvements.html . The implemention simply picks up files about size of max_compaction_bytes to compact and execute if the penalty is not too big. More optimizations can be done in the future, e.g. prioritizing between this compaction and other types. But for now, the feature is supposed to be functional and can often reduce frequency of full compactions, although it can introduce penalty. In order to add cut files more efficiently so that more files from upper levels can be included, SST file cutting threshold (for current file + overlapping parent level files) is set to 1.5X of target file size. A 2MB target file size will generate files like this: https://gist.github.com/siying/29d2676fba417404f3c95e6c013c7de8 Number of files indeed increases but it is not out of control. Two set of write benchmarks are run: 1. For ingestion rate limited scenario, we can see full compaction is mostly eliminated: https://gist.github.com/siying/959bc1186066906831cf4c808d6e0a19 . The write amp increased from 7.7 to 9.4, as expected. After applying file cutting, the number is improved to 8.9. In another benchmark, the write amp is even better with the incremental approach: https://gist.github.com/siying/d1c16c286d7c59c4d7bba718ca198163 2. For ingestion rate unlimited scenario, incremental compaction turns out to be too expensive most of the time and is not executed, as expected. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8655 Test Plan: Add unit tests to the functionality. Reviewed By: ajkr Differential Revision: D31787034 fbshipit-source-id: ce813e63b15a61d5a56e97bf8902a1b28e011beb
3 years ago
grandparant_file_switched = true;
}
assert(grandparent_index + 1 >= grandparents.size() ||
icmp->Compare(
grandparents[grandparent_index]->largest.Encode(),
grandparents[grandparent_index + 1]->smallest.Encode()) <= 0);
grandparent_index++;
}
seen_key = true;
Incremental Space Amp Compactions in Universal Style (#8655) Summary: This commit introduces incremental compaction in univeral style for space amplification. This follows the first improvement mentioned in https://rocksdb.org/blog/2021/04/12/universal-improvements.html . The implemention simply picks up files about size of max_compaction_bytes to compact and execute if the penalty is not too big. More optimizations can be done in the future, e.g. prioritizing between this compaction and other types. But for now, the feature is supposed to be functional and can often reduce frequency of full compactions, although it can introduce penalty. In order to add cut files more efficiently so that more files from upper levels can be included, SST file cutting threshold (for current file + overlapping parent level files) is set to 1.5X of target file size. A 2MB target file size will generate files like this: https://gist.github.com/siying/29d2676fba417404f3c95e6c013c7de8 Number of files indeed increases but it is not out of control. Two set of write benchmarks are run: 1. For ingestion rate limited scenario, we can see full compaction is mostly eliminated: https://gist.github.com/siying/959bc1186066906831cf4c808d6e0a19 . The write amp increased from 7.7 to 9.4, as expected. After applying file cutting, the number is improved to 8.9. In another benchmark, the write amp is even better with the incremental approach: https://gist.github.com/siying/d1c16c286d7c59c4d7bba718ca198163 2. For ingestion rate unlimited scenario, incremental compaction turns out to be too expensive most of the time and is not executed, as expected. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8655 Test Plan: Add unit tests to the functionality. Reviewed By: ajkr Differential Revision: D31787034 fbshipit-source-id: ce813e63b15a61d5a56e97bf8902a1b28e011beb
3 years ago
if (grandparant_file_switched && overlapped_bytes + curr_file_size >
compaction->max_compaction_bytes()) {
// Too much overlap for current output; start new output
overlapped_bytes = 0;
return true;
}
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
if (!files_to_cut_for_ttl.empty()) {
if (cur_files_to_cut_for_ttl != -1) {
// Previous key is inside the range of a file
if (icmp->Compare(internal_key,
files_to_cut_for_ttl[cur_files_to_cut_for_ttl]
->largest.Encode()) > 0) {
next_files_to_cut_for_ttl = cur_files_to_cut_for_ttl + 1;
cur_files_to_cut_for_ttl = -1;
return true;
}
} else {
// Look for the key position
while (next_files_to_cut_for_ttl <
static_cast<int>(files_to_cut_for_ttl.size())) {
if (icmp->Compare(internal_key,
files_to_cut_for_ttl[next_files_to_cut_for_ttl]
->smallest.Encode()) >= 0) {
if (icmp->Compare(internal_key,
files_to_cut_for_ttl[next_files_to_cut_for_ttl]
->largest.Encode()) <= 0) {
// With in the current file
cur_files_to_cut_for_ttl = next_files_to_cut_for_ttl;
return true;
}
// Beyond the current file
next_files_to_cut_for_ttl++;
} else {
// Still fall into the gap
break;
}
}
}
}
return false;
}
Status ProcessOutFlowIfNeeded(const Slice& key, const Slice& value) {
if (!blob_garbage_meter) {
return Status::OK();
}
return blob_garbage_meter->ProcessOutFlow(key, value);
}
};
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
void CompactionJob::SubcompactionState::FillFilesToCutForTtl() {
if (compaction->immutable_options()->compaction_style !=
CompactionStyle::kCompactionStyleLevel ||
compaction->immutable_options()->compaction_pri !=
CompactionPri::kMinOverlappingRatio ||
compaction->mutable_cf_options()->ttl == 0 ||
compaction->num_input_levels() < 2 || compaction->bottommost_level()) {
return;
}
// We define new file with oldest ancestor time to be younger than 1/4 TTL,
// and an old one to be older than 1/2 TTL time.
int64_t temp_current_time;
auto get_time_status = compaction->immutable_options()->clock->GetCurrentTime(
&temp_current_time);
if (!get_time_status.ok()) {
return;
}
uint64_t current_time = static_cast<uint64_t>(temp_current_time);
if (current_time < compaction->mutable_cf_options()->ttl) {
return;
}
uint64_t old_age_thres =
current_time - compaction->mutable_cf_options()->ttl / 2;
const std::vector<FileMetaData*>& olevel =
*(compaction->inputs(compaction->num_input_levels() - 1));
for (FileMetaData* file : olevel) {
// Worth filtering out by start and end?
uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
// We put old files if they are not too small to prevent a flood
// of small files.
if (oldest_ancester_time < old_age_thres &&
file->fd.GetFileSize() >
compaction->mutable_cf_options()->target_file_size_base / 2) {
files_to_cut_for_ttl.push_back(file);
}
}
}
// Maintains state for the entire compaction
struct CompactionJob::CompactionState {
Compaction* const compaction;
// REQUIRED: subcompaction states are stored in order of increasing
// key-range
std::vector<CompactionJob::SubcompactionState> sub_compact_states;
Status status;
size_t num_output_files = 0;
uint64_t total_bytes = 0;
size_t num_blob_output_files = 0;
uint64_t total_blob_bytes = 0;
uint64_t num_output_records = 0;
explicit CompactionState(Compaction* c) : compaction(c) {}
Slice SmallestUserKey() {
for (const auto& sub_compact_state : sub_compact_states) {
if (!sub_compact_state.outputs.empty() &&
sub_compact_state.outputs[0].finished) {
return sub_compact_state.outputs[0].meta.smallest.user_key();
}
}
// If there is no finished output, return an empty slice.
return Slice(nullptr, 0);
}
Slice LargestUserKey() {
for (auto it = sub_compact_states.rbegin(); it < sub_compact_states.rend();
++it) {
if (!it->outputs.empty() && it->current_output()->finished) {
assert(it->current_output() != nullptr);
return it->current_output()->meta.largest.user_key();
}
}
// If there is no finished output, return an empty slice.
return Slice(nullptr, 0);
}
};
void CompactionJob::AggregateStatistics() {
assert(compact_);
for (SubcompactionState& sc : compact_->sub_compact_states) {
auto& outputs = sc.outputs;
if (!outputs.empty() && !outputs.back().meta.fd.file_size) {
// An error occurred, so ignore the last output.
outputs.pop_back();
}
compact_->num_output_files += outputs.size();
compact_->total_bytes += sc.total_bytes;
const auto& blobs = sc.blob_file_additions;
compact_->num_blob_output_files += blobs.size();
for (const auto& blob : blobs) {
compact_->total_blob_bytes += blob.GetTotalBlobBytes();
}
compact_->num_output_records += sc.num_output_records;
compaction_job_stats_->Add(sc.compaction_job_stats);
}
}
CompactionJob::CompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options, const FileOptions& file_options,
VersionSet* versions, const std::atomic<bool>* shutting_down,
LogBuffer* log_buffer, FSDirectory* db_directory,
FSDirectory* output_directory, FSDirectory* blob_output_directory,
Statistics* stats, InstrumentedMutex* db_mutex,
ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
SequenceNumber earliest_write_conflict_snapshot,
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
const SnapshotChecker* snapshot_checker, JobContext* job_context,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
bool paranoid_file_checks, bool measure_io_stats, const std::string& dbname,
CompactionJobStats* compaction_job_stats, Env::Priority thread_pri,
const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>& manual_compaction_canceled,
const std::string& db_id, const std::string& db_session_id,
std::string full_history_ts_low, std::string trim_ts,
BlobFileCompletionCallback* blob_callback)
: compact_(new CompactionState(compaction)),
compaction_stats_(compaction->compaction_reason(), 1),
db_options_(db_options),
mutable_db_options_copy_(mutable_db_options),
log_buffer_(log_buffer),
output_directory_(output_directory),
stats_(stats),
bottommost_level_(false),
write_hint_(Env::WLTH_NOT_SET),
job_id_(job_id),
compaction_job_stats_(compaction_job_stats),
dbname_(dbname),
db_id_(db_id),
db_session_id_(db_session_id),
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
file_options_(file_options),
env_(db_options.env),
io_tracer_(io_tracer),
fs_(db_options.fs, io_tracer),
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
file_options_for_read_(
fs_->OptimizeForCompactionTableRead(file_options, db_options_)),
versions_(versions),
shutting_down_(shutting_down),
manual_compaction_canceled_(manual_compaction_canceled),
db_directory_(db_directory),
blob_output_directory_(blob_output_directory),
db_mutex_(db_mutex),
db_error_handler_(db_error_handler),
existing_snapshots_(std::move(existing_snapshots)),
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
snapshot_checker_(snapshot_checker),
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
job_context_(job_context),
table_cache_(std::move(table_cache)),
event_logger_(event_logger),
paranoid_file_checks_(paranoid_file_checks),
measure_io_stats_(measure_io_stats),
thread_pri_(thread_pri),
full_history_ts_low_(std::move(full_history_ts_low)),
trim_ts_(std::move(trim_ts)),
blob_callback_(blob_callback) {
assert(compaction_job_stats_ != nullptr);
assert(log_buffer_ != nullptr);
const auto* cfd = compact_->compaction->column_family_data();
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
db_options_.enable_thread_tracking);
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ReportStartedCompaction(compaction);
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
}
CompactionJob::~CompactionJob() {
assert(compact_ == nullptr);
ThreadStatusUtil::ResetThreadStatus();
}
void CompactionJob::ReportStartedCompaction(Compaction* compaction) {
const auto* cfd = compact_->compaction->column_family_data();
ThreadStatusUtil::SetColumnFamily(cfd, cfd->ioptions()->env,
db_options_.enable_thread_tracking);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::SetThreadOperationProperty(ThreadStatus::COMPACTION_JOB_ID,
job_id_);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_INPUT_OUTPUT_LEVEL,
(static_cast<uint64_t>(compact_->compaction->start_level()) << 32) +
compact_->compaction->output_level());
// In the current design, a CompactionJob is always created
// for non-trivial compaction.
assert(compaction->IsTrivialMove() == false ||
compaction->is_manual_compaction() == true);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_PROP_FLAGS,
compaction->is_manual_compaction() +
(compaction->deletion_compaction() << 1));
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_TOTAL_INPUT_BYTES,
compaction->CalculateTotalInputSize());
IOSTATS_RESET(bytes_written);
IOSTATS_RESET(bytes_read);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, 0);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, 0);
// Set the thread operation after operation properties
// to ensure GetThreadList() can always show them all together.
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
compaction_job_stats_->is_manual_compaction =
compaction->is_manual_compaction();
compaction_job_stats_->is_full_compaction = compaction->is_full_compaction();
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
}
void CompactionJob::Prepare() {
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PREPARE);
// Generate file_levels_ for compaction before making Iterator
auto* c = compact_->compaction;
assert(c->column_family_data() != nullptr);
assert(c->column_family_data()->current()->storage_info()->NumLevelFiles(
compact_->compaction->level()) > 0);
write_hint_ =
c->column_family_data()->CalculateSSTWriteHint(c->output_level());
bottommost_level_ = c->bottommost_level();
if (c->ShouldFormSubcompactions()) {
{
StopWatch sw(db_options_.clock, stats_, SUBCOMPACTION_SETUP_TIME);
GenSubcompactionBoundaries();
}
assert(sizes_.size() == boundaries_.size() + 1);
for (size_t i = 0; i <= boundaries_.size(); i++) {
Slice* start = i == 0 ? nullptr : &boundaries_[i - 1];
Slice* end = i == boundaries_.size() ? nullptr : &boundaries_[i];
compact_->sub_compact_states.emplace_back(c, start, end, sizes_[i],
static_cast<uint32_t>(i));
}
RecordInHistogram(stats_, NUM_SUBCOMPACTIONS_SCHEDULED,
compact_->sub_compact_states.size());
} else {
constexpr Slice* start = nullptr;
constexpr Slice* end = nullptr;
constexpr uint64_t size = 0;
compact_->sub_compact_states.emplace_back(c, start, end, size,
/*sub_job_id*/ 0);
}
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
}
struct RangeWithSize {
Range range;
uint64_t size;
RangeWithSize(const Slice& a, const Slice& b, uint64_t s = 0)
: range(a, b), size(s) {}
};
void CompactionJob::GenSubcompactionBoundaries() {
auto* c = compact_->compaction;
auto* cfd = c->column_family_data();
const Comparator* cfd_comparator = cfd->user_comparator();
std::vector<Slice> bounds;
int start_lvl = c->start_level();
int out_lvl = c->output_level();
// Add the starting and/or ending key of certain input files as a potential
// boundary
for (size_t lvl_idx = 0; lvl_idx < c->num_input_levels(); lvl_idx++) {
int lvl = c->level(lvl_idx);
if (lvl >= start_lvl && lvl <= out_lvl) {
const LevelFilesBrief* flevel = c->input_levels(lvl_idx);
size_t num_files = flevel->num_files;
if (num_files == 0) {
continue;
}
if (lvl == 0) {
// For level 0 add the starting and ending key of each file since the
// files may have greatly differing key ranges (not range-partitioned)
for (size_t i = 0; i < num_files; i++) {
bounds.emplace_back(flevel->files[i].smallest_key);
bounds.emplace_back(flevel->files[i].largest_key);
}
} else {
// For all other levels add the smallest/largest key in the level to
// encompass the range covered by that level
bounds.emplace_back(flevel->files[0].smallest_key);
bounds.emplace_back(flevel->files[num_files - 1].largest_key);
if (lvl == out_lvl) {
// For the last level include the starting keys of all files since
// the last level is the largest and probably has the widest key
// range. Since it's range partitioned, the ending key of one file
// and the starting key of the next are very close (or identical).
for (size_t i = 1; i < num_files; i++) {
bounds.emplace_back(flevel->files[i].smallest_key);
}
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
}
}
}
}
std::sort(bounds.begin(), bounds.end(),
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
return cfd_comparator->Compare(ExtractUserKey(a),
ExtractUserKey(b)) < 0;
});
// Remove duplicated entries from bounds
bounds.erase(
std::unique(bounds.begin(), bounds.end(),
[cfd_comparator](const Slice& a, const Slice& b) -> bool {
return cfd_comparator->Compare(ExtractUserKey(a),
ExtractUserKey(b)) == 0;
}),
bounds.end());
// Combine consecutive pairs of boundaries into ranges with an approximate
// size of data covered by keys in that range
uint64_t sum = 0;
std::vector<RangeWithSize> ranges;
// Get input version from CompactionState since it's already referenced
// earlier in SetInputVersioCompaction::SetInputVersion and will not change
// when db_mutex_ is released below
auto* v = compact_->compaction->input_version();
for (auto it = bounds.begin();;) {
const Slice a = *it;
++it;
if (it == bounds.end()) {
break;
}
const Slice b = *it;
// ApproximateSize could potentially create table reader iterator to seek
// to the index block and may incur I/O cost in the process. Unlock db
// mutex to reduce contention
db_mutex_->Unlock();
uint64_t size = versions_->ApproximateSize(SizeApproximationOptions(), v, a,
b, start_lvl, out_lvl + 1,
TableReaderCaller::kCompaction);
db_mutex_->Lock();
ranges.emplace_back(a, b, size);
sum += size;
}
// Group the ranges into subcompactions
const double min_file_fill_percent = 4.0 / 5;
int base_level = v->storage_info()->base_level();
uint64_t max_output_files = static_cast<uint64_t>(std::ceil(
sum / min_file_fill_percent /
MaxFileSizeForLevel(
*(c->mutable_cf_options()), out_lvl,
c->immutable_options()->compaction_style, base_level,
c->immutable_options()->level_compaction_dynamic_level_bytes)));
uint64_t subcompactions =
std::min({static_cast<uint64_t>(ranges.size()),
static_cast<uint64_t>(c->max_subcompactions()),
max_output_files});
if (subcompactions > 1) {
double mean = sum * 1.0 / subcompactions;
// Greedily add ranges to the subcompaction until the sum of the ranges'
// sizes becomes >= the expected mean size of a subcompaction
sum = 0;
for (size_t i = 0; i + 1 < ranges.size(); i++) {
sum += ranges[i].size;
if (subcompactions == 1) {
// If there's only one left to schedule then it goes to the end so no
// need to put an end boundary
continue;
}
if (sum >= mean) {
boundaries_.emplace_back(ExtractUserKey(ranges[i].range.limit));
sizes_.emplace_back(sum);
subcompactions--;
sum = 0;
}
}
sizes_.emplace_back(sum + ranges.back().size);
} else {
// Only one range so its size is the total sum of sizes computed above
sizes_.emplace_back(sum);
}
}
Status CompactionJob::Run() {
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_RUN);
TEST_SYNC_POINT("CompactionJob::Run():Start");
log_buffer_->FlushBufferToLog();
LogCompaction();
const size_t num_threads = compact_->sub_compact_states.size();
assert(num_threads > 0);
const uint64_t start_micros = db_options_.clock->NowMicros();
// Launch a thread for each of subcompactions 1...num_threads-1
std::vector<port::Thread> thread_pool;
thread_pool.reserve(num_threads - 1);
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(&CompactionJob::ProcessKeyValueCompaction, this,
&compact_->sub_compact_states[i]);
}
// Always schedule the first subcompaction (whether or not there are also
// others) in the current thread to be efficient with resources
ProcessKeyValueCompaction(&compact_->sub_compact_states[0]);
// Wait for all other threads (if there are any) to finish execution
for (auto& thread : thread_pool) {
thread.join();
}
compaction_stats_.micros = db_options_.clock->NowMicros() - start_micros;
compaction_stats_.cpu_micros = 0;
for (size_t i = 0; i < compact_->sub_compact_states.size(); i++) {
compaction_stats_.cpu_micros +=
compact_->sub_compact_states[i].compaction_job_stats.cpu_micros;
}
RecordTimeToHistogram(stats_, COMPACTION_TIME, compaction_stats_.micros);
RecordTimeToHistogram(stats_, COMPACTION_CPU_TIME,
compaction_stats_.cpu_micros);
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
TEST_SYNC_POINT("CompactionJob::Run:BeforeVerify");
// Check if any thread encountered an error during execution
Status status;
IOStatus io_s;
bool wrote_new_blob_files = false;
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
io_s = state.io_status;
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
break;
}
if (!state.blob_file_additions.empty()) {
wrote_new_blob_files = true;
}
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
constexpr IODebugContext* dbg = nullptr;
if (output_directory_) {
io_s = output_directory_->FsyncWithDirOptions(
IOOptions(), dbg,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
}
if (io_s.ok() && wrote_new_blob_files && blob_output_directory_ &&
blob_output_directory_ != output_directory_) {
io_s = blob_output_directory_->FsyncWithDirOptions(
IOOptions(), dbg,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
}
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
status = io_s;
}
if (status.ok()) {
thread_pool.clear();
std::vector<const CompactionJob::SubcompactionState::Output*> files_output;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.outputs) {
files_output.emplace_back(&output);
}
}
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
3 years ago
auto& prefix_extractor =
compact_->compaction->mutable_cf_options()->prefix_extractor;
std::atomic<size_t> next_file_idx(0);
auto verify_table = [&](Status& output_status) {
while (true) {
size_t file_idx = next_file_idx.fetch_add(1);
if (file_idx >= files_output.size()) {
break;
}
// Verify that the table is usable
// We set for_compaction to false and don't OptimizeForCompactionTableRead
// here because this is a special case after we finish the table building
// No matter whether use_direct_io_for_flush_and_compaction is true,
// we will regard this verification as user reads since the goal is
// to cache it here for further user reads
ReadOptions read_options;
InternalIterator* iter = cfd->table_cache()->NewIterator(
read_options, file_options_, cfd->internal_comparator(),
files_output[file_idx]->meta, /*range_del_agg=*/nullptr,
prefix_extractor,
/*table_reader_ptr=*/nullptr,
cfd->internal_stats()->GetFileReadHist(
compact_->compaction->output_level()),
TableReaderCaller::kCompactionRefill, /*arena=*/nullptr,
/*skip_filters=*/false, compact_->compaction->output_level(),
MaxFileSizeForL0MetaPin(
*compact_->compaction->mutable_cf_options()),
/*smallest_compaction_key=*/nullptr,
Properly report IO errors when IndexType::kBinarySearchWithFirstKey is used (#6621) Summary: Context: Index type `kBinarySearchWithFirstKey` added the ability for sst file iterator to sometimes report a key from index without reading the corresponding data block. This is useful when sst blocks are cut at some meaningful boundaries (e.g. one block per key prefix), and many seeks land between blocks (e.g. for each prefix, the ranges of keys in different sst files are nearly disjoint, so a typical seek needs to read a data block from only one file even if all files have the prefix). But this added a new error condition, which rocksdb code was really not equipped to deal with: `InternalIterator::value()` may fail with an IO error or Status::Incomplete, but it's just a method returning a Slice, with no way to report error instead. Before this PR, this type of error wasn't handled at all (an empty slice was returned), and kBinarySearchWithFirstKey implementation was considered a prototype. Now that we (LogDevice) have experimented with kBinarySearchWithFirstKey for a while and confirmed that it's really useful, this PR is adding the missing error handling. It's a pretty inconvenient situation implementation-wise. The error needs to be reported from InternalIterator when trying to access value. But there are ~700 call sites of `InternalIterator::value()`, most of which either can't hit the error condition (because the iterator is reading from memtable or from index or something) or wouldn't benefit from the deferred loading of the value (e.g. compaction iterator that reads all values anyway). Adding error handling to all these call sites would needlessly bloat the code. So instead I made the deferred value loading optional: only the call sites that may use deferred loading have to call the new method `PrepareValue()` before calling `value()`. The feature is enabled with a new bool argument `allow_unprepared_value` to a bunch of methods that create iterators (it wouldn't make sense to put it in ReadOptions because it's completely internal to iterators, with virtually no user-visible effect). Lmk if you have better ideas. Note that the deferred value loading only happens for *internal* iterators. The user-visible iterator (DBIter) always prepares the value before returning from Seek/Next/etc. We could go further and add an API to defer that value loading too, but that's most likely not useful for LogDevice, so it doesn't seem worth the complexity for now. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6621 Test Plan: make -j5 check . Will also deploy to some logdevice test clusters and look at stats. Reviewed By: siying Differential Revision: D20786930 Pulled By: al13n321 fbshipit-source-id: 6da77d918bad3780522e918f17f4d5513d3e99ee
5 years ago
/*largest_compaction_key=*/nullptr,
/*allow_unprepared_value=*/false);
auto s = iter->status();
if (s.ok() && paranoid_file_checks_) {
OutputValidator validator(cfd->internal_comparator(),
/*_enable_order_check=*/true,
/*_enable_hash=*/true);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
s = validator.Add(iter->key(), iter->value());
if (!s.ok()) {
break;
}
}
if (s.ok()) {
s = iter->status();
}
if (s.ok() &&
!validator.CompareValidator(files_output[file_idx]->validator)) {
s = Status::Corruption("Paranoid checksums do not match");
}
}
delete iter;
if (!s.ok()) {
output_status = s;
break;
}
}
};
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(verify_table,
std::ref(compact_->sub_compact_states[i].status));
}
verify_table(compact_->sub_compact_states[0].status);
for (auto& thread : thread_pool) {
thread.join();
}
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
break;
}
}
}
TablePropertiesCollection tp;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.outputs) {
auto fn =
TableFileName(state.compaction->immutable_options()->cf_paths,
output.meta.fd.GetNumber(), output.meta.fd.GetPathId());
tp[fn] = output.table_properties;
}
}
compact_->compaction->SetOutputTableProperties(std::move(tp));
// Finish up all book-keeping to unify the subcompaction results
AggregateStatistics();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
UpdateCompactionStats();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
RecordCompactionIOStats();
LogFlush(db_options_.info_log);
TEST_SYNC_POINT("CompactionJob::Run():End");
compact_->status = status;
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
return status;
}
Status CompactionJob::Install(const MutableCFOptions& mutable_cf_options) {
assert(compact_);
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_INSTALL);
db_mutex_->AssertHeld();
Status status = compact_->status;
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
assert(cfd);
cfd->internal_stats()->AddCompactionStats(
compact_->compaction->output_level(), thread_pri_, compaction_stats_);
if (status.ok()) {
status = InstallCompactionResults(mutable_cf_options);
}
if (!versions_->io_status().ok()) {
io_status_ = versions_->io_status();
}
VersionStorageInfo::LevelSummaryStorage tmp;
auto vstorage = cfd->current()->storage_info();
const auto& stats = compaction_stats_;
double read_write_amp = 0.0;
double write_amp = 0.0;
double bytes_read_per_sec = 0;
double bytes_written_per_sec = 0;
const uint64_t bytes_read_non_output_and_blob =
stats.bytes_read_non_output_levels + stats.bytes_read_blob;
const uint64_t bytes_read_all =
stats.bytes_read_output_level + bytes_read_non_output_and_blob;
const uint64_t bytes_written_all =
stats.bytes_written + stats.bytes_written_blob;
if (bytes_read_non_output_and_blob > 0) {
read_write_amp = (bytes_written_all + bytes_read_all) /
static_cast<double>(bytes_read_non_output_and_blob);
write_amp =
bytes_written_all / static_cast<double>(bytes_read_non_output_and_blob);
}
if (stats.micros > 0) {
bytes_read_per_sec = bytes_read_all / static_cast<double>(stats.micros);
bytes_written_per_sec =
bytes_written_all / static_cast<double>(stats.micros);
}
const std::string& column_family_name = cfd->GetName();
constexpr double kMB = 1048576.0;
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] compacted to: %s, MB/sec: %.1f rd, %.1f wr, level %d, "
"files in(%d, %d) out(%d +%d blob) "
"MB in(%.1f, %.1f +%.1f blob) out(%.1f +%.1f blob), "
"read-write-amplify(%.1f) write-amplify(%.1f) %s, records in: %" PRIu64
", records dropped: %" PRIu64 " output_compression: %s\n",
column_family_name.c_str(), vstorage->LevelSummary(&tmp),
bytes_read_per_sec, bytes_written_per_sec,
compact_->compaction->output_level(),
stats.num_input_files_in_non_output_levels,
stats.num_input_files_in_output_level, stats.num_output_files,
stats.num_output_files_blob, stats.bytes_read_non_output_levels / kMB,
stats.bytes_read_output_level / kMB, stats.bytes_read_blob / kMB,
stats.bytes_written / kMB, stats.bytes_written_blob / kMB, read_write_amp,
write_amp, status.ToString().c_str(), stats.num_input_records,
stats.num_dropped_records,
CompressionTypeToString(compact_->compaction->output_compression())
.c_str());
const auto& blob_files = vstorage->GetBlobFiles();
if (!blob_files.empty()) {
Use a sorted vector instead of a map to store blob file metadata (#9526) Summary: The patch replaces `std::map` with a sorted `std::vector` for `VersionStorageInfo::blob_files_` and preallocates the space for the `vector` before saving the `BlobFileMetaData` into the new `VersionStorageInfo` in `VersionBuilder::Rep::SaveBlobFilesTo`. These changes reduce the time the DB mutex is held while saving new `Version`s, and using a sorted `vector` also makes lookups faster thanks to better memory locality. In addition, the patch introduces helper methods `VersionStorageInfo::GetBlobFileMetaData` and `VersionStorageInfo::GetBlobFileMetaDataLB` that can be used by clients to perform lookups in the `vector`, and does some general cleanup in the parts of code where blob file metadata are used. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9526 Test Plan: Ran `make check` and the crash test script for a while. Performance was tested using a load-optimized benchmark (`fillseq` with vector memtable, no WAL) and small file sizes so that a significant number of files are produced: ``` numactl --interleave=all ./db_bench --benchmarks=fillseq --allow_concurrent_memtable_write=false --level0_file_num_compaction_trigger=4 --level0_slowdown_writes_trigger=20 --level0_stop_writes_trigger=30 --max_background_jobs=8 --max_write_buffer_number=8 --db=/data/ltamasi-dbbench --wal_dir=/data/ltamasi-dbbench --num=800000000 --num_levels=8 --key_size=20 --value_size=400 --block_size=8192 --cache_size=51539607552 --cache_numshardbits=6 --compression_max_dict_bytes=0 --compression_ratio=0.5 --compression_type=lz4 --bytes_per_sync=8388608 --cache_index_and_filter_blocks=1 --cache_high_pri_pool_ratio=0.5 --benchmark_write_rate_limit=0 --write_buffer_size=16777216 --target_file_size_base=16777216 --max_bytes_for_level_base=67108864 --verify_checksum=1 --delete_obsolete_files_period_micros=62914560 --max_bytes_for_level_multiplier=8 --statistics=0 --stats_per_interval=1 --stats_interval_seconds=20 --histogram=1 --memtablerep=skip_list --bloom_bits=10 --open_files=-1 --subcompactions=1 --compaction_style=0 --min_level_to_compress=3 --level_compaction_dynamic_level_bytes=true --pin_l0_filter_and_index_blocks_in_cache=1 --soft_pending_compaction_bytes_limit=167503724544 --hard_pending_compaction_bytes_limit=335007449088 --min_level_to_compress=0 --use_existing_db=0 --sync=0 --threads=1 --memtablerep=vector --allow_concurrent_memtable_write=false --disable_wal=1 --enable_blob_files=1 --blob_file_size=16777216 --min_blob_size=0 --blob_compression_type=lz4 --enable_blob_garbage_collection=1 --seed=<some value> ``` Final statistics before the patch: ``` Cumulative writes: 0 writes, 700M keys, 0 commit groups, 0.0 writes per commit group, ingest: 284.62 GB, 121.27 MB/s Interval writes: 0 writes, 334K keys, 0 commit groups, 0.0 writes per commit group, ingest: 139.28 MB, 72.46 MB/s ``` With the patch: ``` Cumulative writes: 0 writes, 760M keys, 0 commit groups, 0.0 writes per commit group, ingest: 308.66 GB, 131.52 MB/s Interval writes: 0 writes, 445K keys, 0 commit groups, 0.0 writes per commit group, ingest: 185.35 MB, 93.15 MB/s ``` Total time to complete the benchmark is 2611 seconds with the patch, down from 2986 secs. Reviewed By: riversand963 Differential Revision: D34082728 Pulled By: ltamasi fbshipit-source-id: fc598abf676dce436734d06bb9d2d99a26a004fc
3 years ago
assert(blob_files.front());
assert(blob_files.back());
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] Blob file summary: head=%" PRIu64 ", tail=%" PRIu64 "\n",
column_family_name.c_str(), blob_files.front()->GetBlobFileNumber(),
blob_files.back()->GetBlobFileNumber());
}
UpdateCompactionJobStats(stats);
auto stream = event_logger_->LogToBuffer(log_buffer_, 8192);
stream << "job" << job_id_ << "event"
<< "compaction_finished"
<< "compaction_time_micros" << stats.micros
<< "compaction_time_cpu_micros" << stats.cpu_micros << "output_level"
<< compact_->compaction->output_level() << "num_output_files"
<< compact_->num_output_files << "total_output_size"
<< compact_->total_bytes;
if (compact_->num_blob_output_files > 0) {
stream << "num_blob_output_files" << compact_->num_blob_output_files
<< "total_blob_output_size" << compact_->total_blob_bytes;
}
stream << "num_input_records" << stats.num_input_records
<< "num_output_records" << compact_->num_output_records
<< "num_subcompactions" << compact_->sub_compact_states.size()
<< "output_compression"
<< CompressionTypeToString(compact_->compaction->output_compression());
stream << "num_single_delete_mismatches"
<< compaction_job_stats_->num_single_del_mismatch;
stream << "num_single_delete_fallthrough"
<< compaction_job_stats_->num_single_del_fallthru;
if (measure_io_stats_) {
stream << "file_write_nanos" << compaction_job_stats_->file_write_nanos;
stream << "file_range_sync_nanos"
<< compaction_job_stats_->file_range_sync_nanos;
stream << "file_fsync_nanos" << compaction_job_stats_->file_fsync_nanos;
stream << "file_prepare_write_nanos"
<< compaction_job_stats_->file_prepare_write_nanos;
}
stream << "lsm_state";
stream.StartArray();
for (int level = 0; level < vstorage->num_levels(); ++level) {
stream << vstorage->NumLevelFiles(level);
}
stream.EndArray();
if (!blob_files.empty()) {
Use a sorted vector instead of a map to store blob file metadata (#9526) Summary: The patch replaces `std::map` with a sorted `std::vector` for `VersionStorageInfo::blob_files_` and preallocates the space for the `vector` before saving the `BlobFileMetaData` into the new `VersionStorageInfo` in `VersionBuilder::Rep::SaveBlobFilesTo`. These changes reduce the time the DB mutex is held while saving new `Version`s, and using a sorted `vector` also makes lookups faster thanks to better memory locality. In addition, the patch introduces helper methods `VersionStorageInfo::GetBlobFileMetaData` and `VersionStorageInfo::GetBlobFileMetaDataLB` that can be used by clients to perform lookups in the `vector`, and does some general cleanup in the parts of code where blob file metadata are used. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9526 Test Plan: Ran `make check` and the crash test script for a while. Performance was tested using a load-optimized benchmark (`fillseq` with vector memtable, no WAL) and small file sizes so that a significant number of files are produced: ``` numactl --interleave=all ./db_bench --benchmarks=fillseq --allow_concurrent_memtable_write=false --level0_file_num_compaction_trigger=4 --level0_slowdown_writes_trigger=20 --level0_stop_writes_trigger=30 --max_background_jobs=8 --max_write_buffer_number=8 --db=/data/ltamasi-dbbench --wal_dir=/data/ltamasi-dbbench --num=800000000 --num_levels=8 --key_size=20 --value_size=400 --block_size=8192 --cache_size=51539607552 --cache_numshardbits=6 --compression_max_dict_bytes=0 --compression_ratio=0.5 --compression_type=lz4 --bytes_per_sync=8388608 --cache_index_and_filter_blocks=1 --cache_high_pri_pool_ratio=0.5 --benchmark_write_rate_limit=0 --write_buffer_size=16777216 --target_file_size_base=16777216 --max_bytes_for_level_base=67108864 --verify_checksum=1 --delete_obsolete_files_period_micros=62914560 --max_bytes_for_level_multiplier=8 --statistics=0 --stats_per_interval=1 --stats_interval_seconds=20 --histogram=1 --memtablerep=skip_list --bloom_bits=10 --open_files=-1 --subcompactions=1 --compaction_style=0 --min_level_to_compress=3 --level_compaction_dynamic_level_bytes=true --pin_l0_filter_and_index_blocks_in_cache=1 --soft_pending_compaction_bytes_limit=167503724544 --hard_pending_compaction_bytes_limit=335007449088 --min_level_to_compress=0 --use_existing_db=0 --sync=0 --threads=1 --memtablerep=vector --allow_concurrent_memtable_write=false --disable_wal=1 --enable_blob_files=1 --blob_file_size=16777216 --min_blob_size=0 --blob_compression_type=lz4 --enable_blob_garbage_collection=1 --seed=<some value> ``` Final statistics before the patch: ``` Cumulative writes: 0 writes, 700M keys, 0 commit groups, 0.0 writes per commit group, ingest: 284.62 GB, 121.27 MB/s Interval writes: 0 writes, 334K keys, 0 commit groups, 0.0 writes per commit group, ingest: 139.28 MB, 72.46 MB/s ``` With the patch: ``` Cumulative writes: 0 writes, 760M keys, 0 commit groups, 0.0 writes per commit group, ingest: 308.66 GB, 131.52 MB/s Interval writes: 0 writes, 445K keys, 0 commit groups, 0.0 writes per commit group, ingest: 185.35 MB, 93.15 MB/s ``` Total time to complete the benchmark is 2611 seconds with the patch, down from 2986 secs. Reviewed By: riversand963 Differential Revision: D34082728 Pulled By: ltamasi fbshipit-source-id: fc598abf676dce436734d06bb9d2d99a26a004fc
3 years ago
assert(blob_files.front());
stream << "blob_file_head" << blob_files.front()->GetBlobFileNumber();
assert(blob_files.back());
stream << "blob_file_tail" << blob_files.back()->GetBlobFileNumber();
}
CleanupCompaction();
return status;
}
#ifndef ROCKSDB_LITE
CompactionServiceJobStatus
CompactionJob::ProcessKeyValueCompactionWithCompactionService(
SubcompactionState* sub_compact) {
assert(sub_compact);
assert(sub_compact->compaction);
assert(db_options_.compaction_service);
const Compaction* compaction = sub_compact->compaction;
CompactionServiceInput compaction_input;
compaction_input.output_level = compaction->output_level();
compaction_input.db_id = db_id_;
const std::vector<CompactionInputFiles>& inputs =
*(compact_->compaction->inputs());
for (const auto& files_per_level : inputs) {
for (const auto& file : files_per_level.files) {
compaction_input.input_files.emplace_back(
MakeTableFileName(file->fd.GetNumber()));
}
}
compaction_input.column_family.name =
compaction->column_family_data()->GetName();
compaction_input.column_family.options =
compaction->column_family_data()->GetLatestCFOptions();
compaction_input.db_options =
BuildDBOptions(db_options_, mutable_db_options_copy_);
compaction_input.snapshots = existing_snapshots_;
compaction_input.has_begin = sub_compact->start;
compaction_input.begin =
compaction_input.has_begin ? sub_compact->start->ToString() : "";
compaction_input.has_end = sub_compact->end;
compaction_input.end =
compaction_input.has_end ? sub_compact->end->ToString() : "";
compaction_input.approx_size = sub_compact->approx_size;
std::string compaction_input_binary;
Status s = compaction_input.Write(&compaction_input_binary);
if (!s.ok()) {
sub_compact->status = s;
return CompactionServiceJobStatus::kFailure;
}
std::ostringstream input_files_oss;
bool is_first_one = true;
for (const auto& file : compaction_input.input_files) {
input_files_oss << (is_first_one ? "" : ", ") << file;
is_first_one = false;
}
ROCKS_LOG_INFO(
db_options_.info_log,
"[%s] [JOB %d] Starting remote compaction (output level: %d): %s",
compaction_input.column_family.name.c_str(), job_id_,
compaction_input.output_level, input_files_oss.str().c_str());
CompactionServiceJobInfo info(dbname_, db_id_, db_session_id_,
GetCompactionId(sub_compact), thread_pri_);
CompactionServiceJobStatus compaction_status =
db_options_.compaction_service->StartV2(info, compaction_input_binary);
switch (compaction_status) {
case CompactionServiceJobStatus::kSuccess:
break;
case CompactionServiceJobStatus::kFailure:
sub_compact->status = Status::Incomplete(
"CompactionService failed to start compaction job.");
ROCKS_LOG_WARN(db_options_.info_log,
"[%s] [JOB %d] Remote compaction failed to start.",
compaction_input.column_family.name.c_str(), job_id_);
return compaction_status;
case CompactionServiceJobStatus::kUseLocal:
ROCKS_LOG_INFO(
db_options_.info_log,
"[%s] [JOB %d] Remote compaction fallback to local by API Start.",
compaction_input.column_family.name.c_str(), job_id_);
return compaction_status;
default:
assert(false); // unknown status
break;
}
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Waiting for remote compaction...",
compaction_input.column_family.name.c_str(), job_id_);
std::string compaction_result_binary;
compaction_status = db_options_.compaction_service->WaitForCompleteV2(
info, &compaction_result_binary);
if (compaction_status == CompactionServiceJobStatus::kUseLocal) {
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Remote compaction fallback to local by API "
"WaitForComplete.",
compaction_input.column_family.name.c_str(), job_id_);
return compaction_status;
}
CompactionServiceResult compaction_result;
s = CompactionServiceResult::Read(compaction_result_binary,
&compaction_result);
if (compaction_status == CompactionServiceJobStatus::kFailure) {
if (s.ok()) {
if (compaction_result.status.ok()) {
sub_compact->status = Status::Incomplete(
"CompactionService failed to run the compaction job (even though "
"the internal status is okay).");
} else {
// set the current sub compaction status with the status returned from
// remote
sub_compact->status = compaction_result.status;
}
} else {
sub_compact->status = Status::Incomplete(
"CompactionService failed to run the compaction job (and no valid "
"result is returned).");
compaction_result.status.PermitUncheckedError();
}
ROCKS_LOG_WARN(db_options_.info_log,
"[%s] [JOB %d] Remote compaction failed.",
compaction_input.column_family.name.c_str(), job_id_);
return compaction_status;
}
if (!s.ok()) {
sub_compact->status = s;
compaction_result.status.PermitUncheckedError();
return CompactionServiceJobStatus::kFailure;
}
sub_compact->status = compaction_result.status;
std::ostringstream output_files_oss;
is_first_one = true;
for (const auto& file : compaction_result.output_files) {
output_files_oss << (is_first_one ? "" : ", ") << file.file_name;
is_first_one = false;
}
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Receive remote compaction result, output path: "
"%s, files: %s",
compaction_input.column_family.name.c_str(), job_id_,
compaction_result.output_path.c_str(),
output_files_oss.str().c_str());
if (!s.ok()) {
sub_compact->status = s;
return CompactionServiceJobStatus::kFailure;
}
for (const auto& file : compaction_result.output_files) {
uint64_t file_num = versions_->NewFileNumber();
auto src_file = compaction_result.output_path + "/" + file.file_name;
auto tgt_file = TableFileName(compaction->immutable_options()->cf_paths,
file_num, compaction->output_path_id());
s = fs_->RenameFile(src_file, tgt_file, IOOptions(), nullptr);
if (!s.ok()) {
sub_compact->status = s;
return CompactionServiceJobStatus::kFailure;
}
FileMetaData meta;
uint64_t file_size;
s = fs_->GetFileSize(tgt_file, IOOptions(), &file_size, nullptr);
if (!s.ok()) {
sub_compact->status = s;
return CompactionServiceJobStatus::kFailure;
}
meta.fd = FileDescriptor(file_num, compaction->output_path_id(), file_size,
file.smallest_seqno, file.largest_seqno);
meta.smallest.DecodeFrom(file.smallest_internal_key);
meta.largest.DecodeFrom(file.largest_internal_key);
meta.oldest_ancester_time = file.oldest_ancester_time;
meta.file_creation_time = file.file_creation_time;
meta.marked_for_compaction = file.marked_for_compaction;
meta.unique_id = file.unique_id;
auto cfd = compaction->column_family_data();
sub_compact->outputs.emplace_back(std::move(meta),
cfd->internal_comparator(), false, false,
true, file.paranoid_hash);
}
sub_compact->compaction_job_stats = compaction_result.stats;
sub_compact->num_output_records = compaction_result.num_output_records;
sub_compact->approx_size = compaction_input.approx_size; // is this used?
sub_compact->total_bytes = compaction_result.total_bytes;
RecordTick(stats_, REMOTE_COMPACT_READ_BYTES, compaction_result.bytes_read);
RecordTick(stats_, REMOTE_COMPACT_WRITE_BYTES,
compaction_result.bytes_written);
return CompactionServiceJobStatus::kSuccess;
}
void CompactionJob::BuildSubcompactionJobInfo(
SubcompactionState* sub_compact,
SubcompactionJobInfo* subcompaction_job_info) const {
Compaction* c = compact_->compaction;
ColumnFamilyData* cfd = c->column_family_data();
subcompaction_job_info->cf_id = cfd->GetID();
subcompaction_job_info->cf_name = cfd->GetName();
subcompaction_job_info->status = sub_compact->status;
subcompaction_job_info->thread_id = env_->GetThreadID();
subcompaction_job_info->job_id = job_id_;
subcompaction_job_info->subcompaction_job_id = sub_compact->sub_job_id;
subcompaction_job_info->base_input_level = c->start_level();
subcompaction_job_info->output_level = c->output_level();
subcompaction_job_info->stats = sub_compact->compaction_job_stats;
}
#endif // !ROCKSDB_LITE
void CompactionJob::NotifyOnSubcompactionBegin(
SubcompactionState* sub_compact) {
#ifndef ROCKSDB_LITE
Compaction* c = compact_->compaction;
if (db_options_.listeners.empty()) {
return;
}
if (shutting_down_->load(std::memory_order_acquire)) {
return;
}
if (c->is_manual_compaction() &&
manual_compaction_canceled_.load(std::memory_order_acquire)) {
return;
}
sub_compact->notify_on_subcompaction_completion = true;
SubcompactionJobInfo info{};
BuildSubcompactionJobInfo(sub_compact, &info);
for (auto listener : db_options_.listeners) {
listener->OnSubcompactionBegin(info);
}
info.status.PermitUncheckedError();
#else
(void)sub_compact;
#endif // ROCKSDB_LITE
}
void CompactionJob::NotifyOnSubcompactionCompleted(
SubcompactionState* sub_compact) {
#ifndef ROCKSDB_LITE
if (db_options_.listeners.empty()) {
return;
}
if (shutting_down_->load(std::memory_order_acquire)) {
return;
}
if (sub_compact->notify_on_subcompaction_completion == false) {
return;
}
SubcompactionJobInfo info{};
BuildSubcompactionJobInfo(sub_compact, &info);
for (auto listener : db_options_.listeners) {
listener->OnSubcompactionCompleted(info);
}
#else
(void)sub_compact;
#endif // ROCKSDB_LITE
}
void CompactionJob::ProcessKeyValueCompaction(SubcompactionState* sub_compact) {
assert(sub_compact);
assert(sub_compact->compaction);
#ifndef ROCKSDB_LITE
if (db_options_.compaction_service) {
CompactionServiceJobStatus comp_status =
ProcessKeyValueCompactionWithCompactionService(sub_compact);
if (comp_status == CompactionServiceJobStatus::kSuccess ||
comp_status == CompactionServiceJobStatus::kFailure) {
return;
}
// fallback to local compaction
assert(comp_status == CompactionServiceJobStatus::kUseLocal);
}
#endif // !ROCKSDB_LITE
uint64_t prev_cpu_micros = db_options_.clock->CPUMicros();
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
// Create compaction filter and fail the compaction if
// IgnoreSnapshots() = false because it is not supported anymore
const CompactionFilter* compaction_filter =
cfd->ioptions()->compaction_filter;
std::unique_ptr<CompactionFilter> compaction_filter_from_factory = nullptr;
if (compaction_filter == nullptr) {
compaction_filter_from_factory =
sub_compact->compaction->CreateCompactionFilter();
compaction_filter = compaction_filter_from_factory.get();
}
if (compaction_filter != nullptr && !compaction_filter->IgnoreSnapshots()) {
sub_compact->status = Status::NotSupported(
"CompactionFilter::IgnoreSnapshots() = false is not supported "
"anymore.");
return;
}
NotifyOnSubcompactionBegin(sub_compact);
CompactionRangeDelAggregator range_del_agg(&cfd->internal_comparator(),
existing_snapshots_);
// TODO: since we already use C++17, should use
// std::optional<const Slice> instead.
const Slice* const start = sub_compact->start;
const Slice* const end = sub_compact->end;
ReadOptions read_options;
read_options.verify_checksums = true;
read_options.fill_cache = false;
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
3 years ago
read_options.rate_limiter_priority = GetRateLimiterPriority();
// Compaction iterators shouldn't be confined to a single prefix.
// Compactions use Seek() for
// (a) concurrent compactions,
// (b) CompactionFilter::Decision::kRemoveAndSkipUntil.
read_options.total_order_seek = true;
// Note: if we're going to support subcompactions for user-defined timestamps,
// the timestamp part will have to be stripped from the bounds here.
assert((!start && !end) || cfd->user_comparator()->timestamp_size() == 0);
read_options.iterate_lower_bound = start;
read_options.iterate_upper_bound = end;
// Although the v2 aggregator is what the level iterator(s) know about,
// the AddTombstones calls will be propagated down to the v1 aggregator.
std::unique_ptr<InternalIterator> raw_input(versions_->MakeInputIterator(
read_options, sub_compact->compaction, &range_del_agg,
file_options_for_read_,
(start == nullptr) ? std::optional<const Slice>{}
: std::optional<const Slice>{*start},
(end == nullptr) ? std::optional<const Slice>{}
: std::optional<const Slice>{*end}));
InternalIterator* input = raw_input.get();
IterKey start_ikey;
IterKey end_ikey;
Slice start_slice;
Slice end_slice;
if (start) {
start_ikey.SetInternalKey(*start, kMaxSequenceNumber, kValueTypeForSeek);
start_slice = start_ikey.GetInternalKey();
}
if (end) {
end_ikey.SetInternalKey(*end, kMaxSequenceNumber, kValueTypeForSeek);
end_slice = end_ikey.GetInternalKey();
}
std::unique_ptr<InternalIterator> clip;
if (start || end) {
clip = std::make_unique<ClippingIterator>(
raw_input.get(), start ? &start_slice : nullptr,
end ? &end_slice : nullptr, &cfd->internal_comparator());
input = clip.get();
}
std::unique_ptr<InternalIterator> blob_counter;
if (sub_compact->compaction->DoesInputReferenceBlobFiles()) {
sub_compact->blob_garbage_meter = std::make_unique<BlobGarbageMeter>();
blob_counter = std::make_unique<BlobCountingIterator>(
input, sub_compact->blob_garbage_meter.get());
input = blob_counter.get();
}
std::unique_ptr<InternalIterator> trim_history_iter;
if (cfd->user_comparator()->timestamp_size() > 0 && !trim_ts_.empty()) {
trim_history_iter = std::make_unique<HistoryTrimmingIterator>(
input, cfd->user_comparator(), trim_ts_);
input = trim_history_iter.get();
}
input->SeekToFirst();
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PROCESS_KV);
// I/O measurement variables
PerfLevel prev_perf_level = PerfLevel::kEnableTime;
const uint64_t kRecordStatsEvery = 1000;
uint64_t prev_write_nanos = 0;
uint64_t prev_fsync_nanos = 0;
uint64_t prev_range_sync_nanos = 0;
uint64_t prev_prepare_write_nanos = 0;
uint64_t prev_cpu_write_nanos = 0;
uint64_t prev_cpu_read_nanos = 0;
if (measure_io_stats_) {
prev_perf_level = GetPerfLevel();
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
prev_write_nanos = IOSTATS(write_nanos);
prev_fsync_nanos = IOSTATS(fsync_nanos);
prev_range_sync_nanos = IOSTATS(range_sync_nanos);
prev_prepare_write_nanos = IOSTATS(prepare_write_nanos);
prev_cpu_write_nanos = IOSTATS(cpu_write_nanos);
prev_cpu_read_nanos = IOSTATS(cpu_read_nanos);
}
MergeHelper merge(
env_, cfd->user_comparator(), cfd->ioptions()->merge_operator.get(),
compaction_filter, db_options_.info_log.get(),
false /* internal key corruption is expected */,
existing_snapshots_.empty() ? 0 : existing_snapshots_.back(),
snapshot_checker_, compact_->compaction->level(), db_options_.stats);
const MutableCFOptions* mutable_cf_options =
sub_compact->compaction->mutable_cf_options();
assert(mutable_cf_options);
std::vector<std::string> blob_file_paths;
std::unique_ptr<BlobFileBuilder> blob_file_builder(
Make it possible to enable blob files starting from a certain LSM tree level (#10077) Summary: Currently, if blob files are enabled (i.e. `enable_blob_files` is true), large values are extracted both during flush/recovery (when SST files are written into level 0 of the LSM tree) and during compaction into any LSM tree level. For certain use cases that have a mix of short-lived and long-lived values, it might make sense to support extracting large values only during compactions whose output level is greater than or equal to a specified LSM tree level (e.g. compactions into L1/L2/... or above). This could reduce the space amplification caused by large values that are turned into garbage shortly after being written at the price of some write amplification incurred by long-lived values whose extraction to blob files is delayed. In order to achieve this, we would like to do the following: - Add a new configuration option `blob_file_starting_level` (default: 0) to `AdvancedColumnFamilyOptions` (and `MutableCFOptions` and extend the related logic) - Instantiate `BlobFileBuilder` in `BuildTable` (used during flush and recovery, where the LSM tree level is L0) and `CompactionJob` iff `enable_blob_files` is set and the LSM tree level is `>= blob_file_starting_level` - Add unit tests for the new functionality, and add the new option to our stress tests (`db_stress` and `db_crashtest.py` ) - Add the new option to our benchmarking tool `db_bench` and the BlobDB benchmark script `run_blob_bench.sh` - Add the new option to the `ldb` tool (see https://github.com/facebook/rocksdb/wiki/Administration-and-Data-Access-Tool) - Ideally extend the C and Java bindings with the new option - Update the BlobDB wiki to document the new option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10077 Reviewed By: ltamasi Differential Revision: D36884156 Pulled By: gangliao fbshipit-source-id: 942bab025f04633edca8564ed64791cb5e31627d
3 years ago
(mutable_cf_options->enable_blob_files &&
sub_compact->compaction->output_level() >=
mutable_cf_options->blob_file_starting_level)
? new BlobFileBuilder(
versions_, fs_.get(),
sub_compact->compaction->immutable_options(),
mutable_cf_options, &file_options_, job_id_, cfd->GetID(),
cfd->GetName(), Env::IOPriority::IO_LOW, write_hint_,
io_tracer_, blob_callback_, BlobFileCreationReason::kCompaction,
&blob_file_paths, &sub_compact->blob_file_additions)
: nullptr);
TEST_SYNC_POINT("CompactionJob::Run():Inprogress");
TEST_SYNC_POINT_CALLBACK(
"CompactionJob::Run():PausingManualCompaction:1",
reinterpret_cast<void*>(
const_cast<std::atomic<bool>*>(&manual_compaction_canceled_)));
Status status;
const std::string* const full_history_ts_low =
full_history_ts_low_.empty() ? nullptr : &full_history_ts_low_;
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
const SequenceNumber job_snapshot_seq =
job_context_ ? job_context_->GetJobSnapshotSequence()
: kMaxSequenceNumber;
sub_compact->c_iter.reset(new CompactionIterator(
input, cfd->user_comparator(), &merge, versions_->LastSequence(),
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
&existing_snapshots_, earliest_write_conflict_snapshot_, job_snapshot_seq,
snapshot_checker_, env_, ShouldReportDetailedTime(env_, stats_),
/*expect_valid_internal_key=*/true, &range_del_agg,
blob_file_builder.get(), db_options_.allow_data_in_errors,
db_options_.enforce_single_del_contracts, manual_compaction_canceled_,
sub_compact->compaction, compaction_filter, shutting_down_,
db_options_.info_log, full_history_ts_low));
auto c_iter = sub_compact->c_iter.get();
c_iter->SeekToFirst();
if (c_iter->Valid() && sub_compact->compaction->output_level() != 0) {
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
sub_compact->FillFilesToCutForTtl();
// ShouldStopBefore() maintains state based on keys processed so far. The
// compaction loop always calls it on the "next" key, thus won't tell it the
// first key. So we do that here.
sub_compact->ShouldStopBefore(c_iter->key(),
sub_compact->current_output_file_size);
}
const auto& c_iter_stats = c_iter->iter_stats();
std::unique_ptr<SstPartitioner> partitioner =
sub_compact->compaction->output_level() == 0
? nullptr
: sub_compact->compaction->CreateSstPartitioner();
std::string last_key_for_partitioner;
while (status.ok() && !cfd->IsDropped() && c_iter->Valid()) {
// Invariant: c_iter.status() is guaranteed to be OK if c_iter->Valid()
// returns true.
const Slice& key = c_iter->key();
const Slice& value = c_iter->value();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
assert(!end ||
cfd->user_comparator()->Compare(c_iter->user_key(), *end) < 0);
if (c_iter_stats.num_input_records % kRecordStatsEvery ==
kRecordStatsEvery - 1) {
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
c_iter->ResetRecordCounts();
RecordCompactionIOStats();
}
// Open output file if necessary
if (sub_compact->builder == nullptr) {
status = OpenCompactionOutputFile(sub_compact);
if (!status.ok()) {
break;
}
}
status = sub_compact->AddToBuilder(key, value);
if (!status.ok()) {
break;
}
status = sub_compact->ProcessOutFlowIfNeeded(key, value);
if (!status.ok()) {
break;
}
const ParsedInternalKey& ikey = c_iter->ikey();
status = sub_compact->current_output()->meta.UpdateBoundaries(
key, value, ikey.sequence, ikey.type);
if (!status.ok()) {
break;
}
sub_compact->current_output_file_size =
sub_compact->builder->EstimatedFileSize();
sub_compact->num_output_records++;
// Close output file if it is big enough. Two possibilities determine it's
// time to close it: (1) the current key should be this file's last key, (2)
// the next key should not be in this file.
//
// TODO(aekmekji): determine if file should be closed earlier than this
// during subcompactions (i.e. if output size, estimated by input size, is
// going to be 1.2MB and max_output_file_size = 1MB, prefer to have 0.6MB
// and 0.6MB instead of 1MB and 0.2MB)
bool output_file_ended = false;
if (sub_compact->compaction->output_level() != 0 &&
sub_compact->current_output_file_size >=
sub_compact->compaction->max_output_file_size()) {
// (1) this key terminates the file. For historical reasons, the iterator
// status before advancing will be given to FinishCompactionOutputFile().
output_file_ended = true;
}
TEST_SYNC_POINT_CALLBACK(
"CompactionJob::Run():PausingManualCompaction:2",
reinterpret_cast<void*>(
const_cast<std::atomic<bool>*>(&manual_compaction_canceled_)));
if (partitioner.get()) {
last_key_for_partitioner.assign(c_iter->user_key().data_,
c_iter->user_key().size_);
}
c_iter->Next();
if (c_iter->status().IsManualCompactionPaused()) {
break;
}
if (!output_file_ended && c_iter->Valid()) {
if (((partitioner.get() &&
partitioner->ShouldPartition(PartitionerRequest(
last_key_for_partitioner, c_iter->user_key(),
sub_compact->current_output_file_size)) == kRequired) ||
(sub_compact->compaction->output_level() != 0 &&
sub_compact->ShouldStopBefore(
c_iter->key(), sub_compact->current_output_file_size))) &&
sub_compact->builder != nullptr) {
// (2) this key belongs to the next file. For historical reasons, the
// iterator status after advancing will be given to
// FinishCompactionOutputFile().
output_file_ended = true;
}
}
if (output_file_ended) {
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
const Slice* next_key = nullptr;
if (c_iter->Valid()) {
next_key = &c_iter->key();
}
CompactionIterationStats range_del_out_stats;
status = FinishCompactionOutputFile(input->status(), sub_compact,
&range_del_agg, &range_del_out_stats,
next_key);
RecordDroppedKeys(range_del_out_stats,
&sub_compact->compaction_job_stats);
}
}
sub_compact->compaction_job_stats.num_blobs_read =
c_iter_stats.num_blobs_read;
sub_compact->compaction_job_stats.total_blob_bytes_read =
c_iter_stats.total_blob_bytes_read;
sub_compact->compaction_job_stats.num_input_deletion_records =
c_iter_stats.num_input_deletion_records;
sub_compact->compaction_job_stats.num_corrupt_keys =
c_iter_stats.num_input_corrupt_records;
sub_compact->compaction_job_stats.num_single_del_fallthru =
c_iter_stats.num_single_del_fallthru;
sub_compact->compaction_job_stats.num_single_del_mismatch =
c_iter_stats.num_single_del_mismatch;
sub_compact->compaction_job_stats.total_input_raw_key_bytes +=
c_iter_stats.total_input_raw_key_bytes;
sub_compact->compaction_job_stats.total_input_raw_value_bytes +=
c_iter_stats.total_input_raw_value_bytes;
RecordTick(stats_, FILTER_OPERATION_TOTAL_TIME,
c_iter_stats.total_filter_time);
if (c_iter_stats.num_blobs_relocated > 0) {
RecordTick(stats_, BLOB_DB_GC_NUM_KEYS_RELOCATED,
c_iter_stats.num_blobs_relocated);
}
if (c_iter_stats.total_blob_bytes_relocated > 0) {
RecordTick(stats_, BLOB_DB_GC_BYTES_RELOCATED,
c_iter_stats.total_blob_bytes_relocated);
}
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
RecordCompactionIOStats();
if (status.ok() && cfd->IsDropped()) {
status =
Status::ColumnFamilyDropped("Column family dropped during compaction");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
shutting_down_->load(std::memory_order_relaxed)) {
status = Status::ShutdownInProgress("Database shutdown");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
(manual_compaction_canceled_.load(std::memory_order_relaxed))) {
status = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
}
if (status.ok()) {
status = input->status();
}
if (status.ok()) {
status = c_iter->status();
}
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
if (status.ok() && sub_compact->builder == nullptr &&
sub_compact->outputs.size() == 0 && !range_del_agg.IsEmpty()) {
// handle subcompaction containing only range deletions
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
status = OpenCompactionOutputFile(sub_compact);
}
// Call FinishCompactionOutputFile() even if status is not ok: it needs to
// close the output file.
if (sub_compact->builder != nullptr) {
CompactionIterationStats range_del_out_stats;
Status s = FinishCompactionOutputFile(status, sub_compact, &range_del_agg,
&range_del_out_stats);
if (!s.ok() && status.ok()) {
status = s;
}
RecordDroppedKeys(range_del_out_stats, &sub_compact->compaction_job_stats);
}
if (blob_file_builder) {
if (status.ok()) {
status = blob_file_builder->Finish();
} else {
blob_file_builder->Abandon(status);
}
blob_file_builder.reset();
}
sub_compact->compaction_job_stats.cpu_micros =
db_options_.clock->CPUMicros() - prev_cpu_micros;
if (measure_io_stats_) {
sub_compact->compaction_job_stats.file_write_nanos +=
IOSTATS(write_nanos) - prev_write_nanos;
sub_compact->compaction_job_stats.file_fsync_nanos +=
IOSTATS(fsync_nanos) - prev_fsync_nanos;
sub_compact->compaction_job_stats.file_range_sync_nanos +=
IOSTATS(range_sync_nanos) - prev_range_sync_nanos;
sub_compact->compaction_job_stats.file_prepare_write_nanos +=
IOSTATS(prepare_write_nanos) - prev_prepare_write_nanos;
sub_compact->compaction_job_stats.cpu_micros -=
(IOSTATS(cpu_write_nanos) - prev_cpu_write_nanos +
IOSTATS(cpu_read_nanos) - prev_cpu_read_nanos) /
1000;
if (prev_perf_level != PerfLevel::kEnableTimeAndCPUTimeExceptForMutex) {
SetPerfLevel(prev_perf_level);
}
}
#ifdef ROCKSDB_ASSERT_STATUS_CHECKED
if (!status.ok()) {
if (sub_compact->c_iter) {
sub_compact->c_iter->status().PermitUncheckedError();
}
if (input) {
input->status().PermitUncheckedError();
}
}
#endif // ROCKSDB_ASSERT_STATUS_CHECKED
sub_compact->c_iter.reset();
blob_counter.reset();
clip.reset();
raw_input.reset();
sub_compact->status = status;
NotifyOnSubcompactionCompleted(sub_compact);
}
uint64_t CompactionJob::GetCompactionId(SubcompactionState* sub_compact) {
return (uint64_t)job_id_ << 32 | sub_compact->sub_job_id;
}
void CompactionJob::RecordDroppedKeys(
const CompactionIterationStats& c_iter_stats,
CompactionJobStats* compaction_job_stats) {
if (c_iter_stats.num_record_drop_user > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_USER,
c_iter_stats.num_record_drop_user);
}
if (c_iter_stats.num_record_drop_hidden > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_NEWER_ENTRY,
c_iter_stats.num_record_drop_hidden);
if (compaction_job_stats) {
compaction_job_stats->num_records_replaced +=
c_iter_stats.num_record_drop_hidden;
}
}
if (c_iter_stats.num_record_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_OBSOLETE,
c_iter_stats.num_record_drop_obsolete);
if (compaction_job_stats) {
compaction_job_stats->num_expired_deletion_records +=
c_iter_stats.num_record_drop_obsolete;
}
}
if (c_iter_stats.num_record_drop_range_del > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_RANGE_DEL,
c_iter_stats.num_record_drop_range_del);
}
if (c_iter_stats.num_range_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_RANGE_DEL_DROP_OBSOLETE,
c_iter_stats.num_range_del_drop_obsolete);
}
if (c_iter_stats.num_optimized_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE,
c_iter_stats.num_optimized_del_drop_obsolete);
}
}
Status CompactionJob::FinishCompactionOutputFile(
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
const Status& input_status, SubcompactionState* sub_compact,
CompactionRangeDelAggregator* range_del_agg,
CompactionIterationStats* range_del_out_stats,
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
const Slice* next_table_min_key /* = nullptr */) {
Allow GetThreadList() to report operation stage. Summary: Allow GetThreadList() to report operation stage. Test Plan: ./thread_list_test ./db_bench --benchmarks=fillrandom --num=100000 --threads=40 \ --max_background_compactions=10 --max_background_flushes=3 \ --thread_status_per_interval=1000 --key_size=16 --value_size=1000 \ --num_column_families=10 export ROCKSDB_TESTS=ThreadStatus ./db_test Sample output ThreadID ThreadType cfName Operation OP_StartTime ElapsedTime Stage State 140116265861184 Low Pri 140116270055488 Low Pri 140116274249792 High Pri column_family_name_000005 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116400078912 Low Pri column_family_name_000004 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116358135872 Low Pri column_family_name_000006 Compaction 2015/03/10-14:58:10 1 us CompactionJob::FinishCompactionOutputFile 140116341358656 Low Pri 140116295221312 High Pri default Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116324581440 Low Pri column_family_name_000009 Compaction 2015/03/10-14:58:11 0 us CompactionJob::ProcessKeyValueCompaction 140116278444096 Low Pri 140116299415616 Low Pri column_family_name_000008 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116291027008 High Pri column_family_name_000001 Flush 2015/03/10-14:58:11 0 us FlushJob::WriteLevel0Table 140116286832704 Low Pri column_family_name_000002 Compaction 2015/03/10-14:58:11 0 us CompactionJob::FinishCompactionOutputFile 140116282638400 Low Pri Reviewers: rven, igor, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D34683
10 years ago
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_SYNC_FILE);
assert(sub_compact != nullptr);
assert(sub_compact->outfile);
assert(sub_compact->builder != nullptr);
assert(sub_compact->current_output() != nullptr);
uint64_t output_number = sub_compact->current_output()->meta.fd.GetNumber();
assert(output_number != 0);
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
const Comparator* ucmp = cfd->user_comparator();
std::string file_checksum = kUnknownFileChecksum;
std::string file_checksum_func_name = kUnknownFileChecksumFuncName;
// Check for iterator errors
Status s = input_status;
auto meta = &sub_compact->current_output()->meta;
assert(meta != nullptr);
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
if (s.ok()) {
Slice lower_bound_guard, upper_bound_guard;
std::string smallest_user_key;
const Slice *lower_bound, *upper_bound;
bool lower_bound_from_sub_compact = false;
if (sub_compact->outputs.size() == 1) {
// For the first output table, include range tombstones before the min key
// but after the subcompaction boundary.
lower_bound = sub_compact->start;
lower_bound_from_sub_compact = true;
} else if (meta->smallest.size() > 0) {
// For subsequent output tables, only include range tombstones from min
// key onwards since the previous file was extended to contain range
// tombstones falling before min key.
smallest_user_key = meta->smallest.user_key().ToString(false /*hex*/);
lower_bound_guard = Slice(smallest_user_key);
lower_bound = &lower_bound_guard;
} else {
lower_bound = nullptr;
}
if (next_table_min_key != nullptr) {
// This may be the last file in the subcompaction in some cases, so we
// need to compare the end key of subcompaction with the next file start
// key. When the end key is chosen by the subcompaction, we know that
// it must be the biggest key in output file. Therefore, it is safe to
// use the smaller key as the upper bound of the output file, to ensure
// that there is no overlapping between different output files.
upper_bound_guard = ExtractUserKey(*next_table_min_key);
if (sub_compact->end != nullptr &&
ucmp->Compare(upper_bound_guard, *sub_compact->end) >= 0) {
upper_bound = sub_compact->end;
} else {
upper_bound = &upper_bound_guard;
}
} else {
// This is the last file in the subcompaction, so extend until the
// subcompaction ends.
upper_bound = sub_compact->end;
}
auto earliest_snapshot = kMaxSequenceNumber;
if (existing_snapshots_.size() > 0) {
earliest_snapshot = existing_snapshots_[0];
}
bool has_overlapping_endpoints;
if (upper_bound != nullptr && meta->largest.size() > 0) {
has_overlapping_endpoints =
ucmp->Compare(meta->largest.user_key(), *upper_bound) == 0;
} else {
has_overlapping_endpoints = false;
}
// The end key of the subcompaction must be bigger or equal to the upper
// bound. If the end of subcompaction is null or the upper bound is null,
// it means that this file is the last file in the compaction. So there
// will be no overlapping between this file and others.
assert(sub_compact->end == nullptr ||
upper_bound == nullptr ||
ucmp->Compare(*upper_bound , *sub_compact->end) <= 0);
auto it = range_del_agg->NewIterator(lower_bound, upper_bound,
has_overlapping_endpoints);
// Position the range tombstone output iterator. There may be tombstone
// fragments that are entirely out of range, so make sure that we do not
// include those.
if (lower_bound != nullptr) {
it->Seek(*lower_bound);
} else {
it->SeekToFirst();
}
TEST_SYNC_POINT("CompactionJob::FinishCompactionOutputFile1");
for (; it->Valid(); it->Next()) {
auto tombstone = it->Tombstone();
if (upper_bound != nullptr) {
int cmp = ucmp->Compare(*upper_bound, tombstone.start_key_);
if ((has_overlapping_endpoints && cmp < 0) ||
(!has_overlapping_endpoints && cmp <= 0)) {
// Tombstones starting after upper_bound only need to be included in
// the next table. If the current SST ends before upper_bound, i.e.,
// `has_overlapping_endpoints == false`, we can also skip over range
// tombstones that start exactly at upper_bound. Such range tombstones
// will be included in the next file and are not relevant to the point
// keys or endpoints of the current file.
break;
}
}
if (bottommost_level_ && tombstone.seq_ <= earliest_snapshot) {
// TODO(andrewkr): tombstones that span multiple output files are
// counted for each compaction output file, so lots of double counting.
range_del_out_stats->num_range_del_drop_obsolete++;
range_del_out_stats->num_record_drop_obsolete++;
continue;
}
auto kv = tombstone.Serialize();
assert(lower_bound == nullptr ||
ucmp->Compare(*lower_bound, kv.second) < 0);
// Range tombstone is not supported by output validator yet.
sub_compact->builder->Add(kv.first.Encode(), kv.second);
InternalKey smallest_candidate = std::move(kv.first);
if (lower_bound != nullptr &&
ucmp->Compare(smallest_candidate.user_key(), *lower_bound) <= 0) {
// Pretend the smallest key has the same user key as lower_bound
// (the max key in the previous table or subcompaction) in order for
// files to appear key-space partitioned.
//
// When lower_bound is chosen by a subcompaction, we know that
// subcompactions over smaller keys cannot contain any keys at
// lower_bound. We also know that smaller subcompactions exist, because
// otherwise the subcompaction woud be unbounded on the left. As a
// result, we know that no other files on the output level will contain
// actual keys at lower_bound (an output file may have a largest key of
// lower_bound@kMaxSequenceNumber, but this only indicates a large range
// tombstone was truncated). Therefore, it is safe to use the
// tombstone's sequence number, to ensure that keys at lower_bound at
// lower levels are covered by truncated tombstones.
//
// If lower_bound was chosen by the smallest data key in the file,
// choose lowest seqnum so this file's smallest internal key comes after
// the previous file's largest. The fake seqnum is OK because the read
// path's file-picking code only considers user key.
smallest_candidate = InternalKey(
*lower_bound, lower_bound_from_sub_compact ? tombstone.seq_ : 0,
kTypeRangeDeletion);
}
InternalKey largest_candidate = tombstone.SerializeEndKey();
if (upper_bound != nullptr &&
ucmp->Compare(*upper_bound, largest_candidate.user_key()) <= 0) {
// Pretend the largest key has the same user key as upper_bound (the
// min key in the following table or subcompaction) in order for files
// to appear key-space partitioned.
//
// Choose highest seqnum so this file's largest internal key comes
// before the next file's/subcompaction's smallest. The fake seqnum is
// OK because the read path's file-picking code only considers the user
// key portion.
//
// Note Seek() also creates InternalKey with (user_key,
// kMaxSequenceNumber), but with kTypeDeletion (0x7) instead of
// kTypeRangeDeletion (0xF), so the range tombstone comes before the
// Seek() key in InternalKey's ordering. So Seek() will look in the
// next file for the user key.
largest_candidate =
InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion);
}
#ifndef NDEBUG
SequenceNumber smallest_ikey_seqnum = kMaxSequenceNumber;
if (meta->smallest.size() > 0) {
smallest_ikey_seqnum = GetInternalKeySeqno(meta->smallest.Encode());
}
#endif
meta->UpdateBoundariesForRange(smallest_candidate, largest_candidate,
tombstone.seq_,
cfd->internal_comparator());
// The smallest key in a file is used for range tombstone truncation, so
// it cannot have a seqnum of 0 (unless the smallest data key in a file
// has a seqnum of 0). Otherwise, the truncated tombstone may expose
// deleted keys at lower levels.
assert(smallest_ikey_seqnum == 0 ||
ExtractInternalKeyFooter(meta->smallest.Encode()) !=
PackSequenceAndType(0, kTypeRangeDeletion));
}
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
}
const uint64_t current_entries = sub_compact->builder->NumEntries();
if (s.ok()) {
s = sub_compact->builder->Finish();
} else {
sub_compact->builder->Abandon();
}
IOStatus io_s = sub_compact->builder->io_status();
if (s.ok()) {
s = io_s;
}
const uint64_t current_bytes = sub_compact->builder->FileSize();
if (s.ok()) {
meta->fd.file_size = current_bytes;
meta->marked_for_compaction = sub_compact->builder->NeedCompact();
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
// With accurate smallest and largest key, we can get a slightly more
// accurate oldest ancester time.
// This makes oldest ancester time in manifest more accurate than in
// table properties. Not sure how to resolve it.
if (meta->smallest.size() > 0 && meta->largest.size() > 0) {
uint64_t refined_oldest_ancester_time;
Slice new_smallest = meta->smallest.user_key();
Slice new_largest = meta->largest.user_key();
if (!new_largest.empty() && !new_smallest.empty()) {
refined_oldest_ancester_time =
sub_compact->compaction->MinInputFileOldestAncesterTime(
&(meta->smallest), &(meta->largest));
if (refined_oldest_ancester_time !=
std::numeric_limits<uint64_t>::max()) {
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
meta->oldest_ancester_time = refined_oldest_ancester_time;
}
}
}
}
sub_compact->current_output()->finished = true;
sub_compact->total_bytes += current_bytes;
// Finish and check for file errors
if (s.ok()) {
StopWatch sw(db_options_.clock, stats_, COMPACTION_OUTFILE_SYNC_MICROS);
io_s = sub_compact->outfile->Sync(db_options_.use_fsync);
}
if (s.ok() && io_s.ok()) {
io_s = sub_compact->outfile->Close();
}
if (s.ok() && io_s.ok()) {
// Add the checksum information to file metadata.
meta->file_checksum = sub_compact->outfile->GetFileChecksum();
meta->file_checksum_func_name =
sub_compact->outfile->GetFileChecksumFuncName();
file_checksum = meta->file_checksum;
file_checksum_func_name = meta->file_checksum_func_name;
}
if (s.ok()) {
s = io_s;
}
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the
// "normal" status, it does not also need to be checked
sub_compact->io_status.PermitUncheckedError();
}
sub_compact->outfile.reset();
TableProperties tp;
if (s.ok()) {
tp = sub_compact->builder->GetTableProperties();
}
if (s.ok() && current_entries == 0 && tp.num_range_deletions == 0) {
// If there is nothing to output, no necessary to generate a sst file.
// This happens when the output level is bottom level, at the same time
// the sub_compact output nothing.
std::string fname =
TableFileName(sub_compact->compaction->immutable_options()->cf_paths,
meta->fd.GetNumber(), meta->fd.GetPathId());
// TODO(AR) it is not clear if there are any larger implications if
// DeleteFile fails here
Status ds = env_->DeleteFile(fname);
if (!ds.ok()) {
ROCKS_LOG_WARN(
db_options_.info_log,
"[%s] [JOB %d] Unable to remove SST file for table #%" PRIu64
" at bottom level%s",
cfd->GetName().c_str(), job_id_, output_number,
meta->marked_for_compaction ? " (need compaction)" : "");
}
// Also need to remove the file from outputs, or it will be added to the
// VersionEdit.
assert(!sub_compact->outputs.empty());
sub_compact->outputs.pop_back();
meta = nullptr;
}
if (s.ok() && (current_entries > 0 || tp.num_range_deletions > 0)) {
// Output to event logger and fire events.
sub_compact->current_output()->table_properties =
std::make_shared<TableProperties>(tp);
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Generated table #%" PRIu64 ": %" PRIu64
" keys, %" PRIu64 " bytes%s",
cfd->GetName().c_str(), job_id_, output_number,
current_entries, current_bytes,
meta->marked_for_compaction ? " (need compaction)" : "");
}
std::string fname;
FileDescriptor output_fd;
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber;
Status status_for_listener = s;
if (meta != nullptr) {
fname = GetTableFileName(meta->fd.GetNumber());
output_fd = meta->fd;
oldest_blob_file_number = meta->oldest_blob_file_number;
} else {
fname = "(nil)";
if (s.ok()) {
status_for_listener = Status::Aborted("Empty SST file not kept");
}
}
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname,
job_id_, output_fd, oldest_blob_file_number, tp,
TableFileCreationReason::kCompaction, status_for_listener, file_checksum,
file_checksum_func_name);
#ifndef ROCKSDB_LITE
// Report new file to SstFileManagerImpl
auto sfm =
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
if (sfm && meta != nullptr && meta->fd.GetPathId() == 0) {
Status add_s = sfm->OnAddFile(fname);
if (!add_s.ok() && s.ok()) {
s = add_s;
}
if (sfm->IsMaxAllowedSpaceReached()) {
// TODO(ajkr): should we return OK() if max space was reached by the final
// compaction output file (similarly to how flush works when full)?
s = Status::SpaceLimit("Max allowed space was reached");
TEST_SYNC_POINT(
"CompactionJob::FinishCompactionOutputFile:"
"MaxAllowedSpaceReached");
InstrumentedMutexLock l(db_mutex_);
db_error_handler_->SetBGError(s, BackgroundErrorReason::kCompaction);
}
}
#endif
sub_compact->builder.reset();
sub_compact->current_output_file_size = 0;
return s;
}
Status CompactionJob::InstallCompactionResults(
const MutableCFOptions& mutable_cf_options) {
assert(compact_);
db_mutex_->AssertHeld();
auto* compaction = compact_->compaction;
assert(compaction);
{
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_BUFFER(log_buffer_,
"[%s] [JOB %d] Compacted %s => %" PRIu64 " bytes",
compaction->column_family_data()->GetName().c_str(),
job_id_, compaction->InputLevelSummary(&inputs_summary),
compact_->total_bytes + compact_->total_blob_bytes);
}
VersionEdit* const edit = compaction->edit();
assert(edit);
// Add compaction inputs
compaction->AddInputDeletions(edit);
std::unordered_map<uint64_t, BlobGarbageMeter::BlobStats> blob_total_garbage;
for (const auto& sub_compact : compact_->sub_compact_states) {
for (const auto& out : sub_compact.outputs) {
edit->AddFile(compaction->output_level(), out.meta);
}
for (const auto& blob : sub_compact.blob_file_additions) {
edit->AddBlobFile(blob);
}
if (sub_compact.blob_garbage_meter) {
const auto& flows = sub_compact.blob_garbage_meter->flows();
for (const auto& pair : flows) {
const uint64_t blob_file_number = pair.first;
const BlobGarbageMeter::BlobInOutFlow& flow = pair.second;
assert(flow.IsValid());
if (flow.HasGarbage()) {
blob_total_garbage[blob_file_number].Add(flow.GetGarbageCount(),
flow.GetGarbageBytes());
}
}
}
}
for (const auto& pair : blob_total_garbage) {
const uint64_t blob_file_number = pair.first;
const BlobGarbageMeter::BlobStats& stats = pair.second;
edit->AddBlobFileGarbage(blob_file_number, stats.GetCount(),
stats.GetBytes());
}
Add basic kRoundRobin compaction policy (#10107) Summary: Add `kRoundRobin` as a compaction priority. The implementation is as follows. - Define a cursor as the smallest Internal key in the successor of the selected file. Add `vector<InternalKey> compact_cursor_` into `VersionStorageInfo` where each element (`InternalKey`) in `compact_cursor_` represents a cursor. In round-robin compaction policy, we just need to select the first file (assuming files are sorted) and also has the smallest InternalKey larger than/equal to the cursor. After a file is chosen, we create a new `Fsize` vector which puts the selected file is placed at the first position in `temp`, the next cursor is then updated as the smallest InternalKey in successor of the selected file (the above logic is implemented in `SortFileByRoundRobin`). - After a compaction succeeds, typically `InstallCompactionResults()`, we choose the next cursor for the input level and save it to `edit`. When calling `LogAndApply`, we save the next cursor with its level into some local variable and finally apply the change to `vstorage` in `SaveTo` function. - Cursors are persist pair by pair (<level, InternalKey>) in `EncodeTo` so that they can be reconstructed when reopening. An empty cursor will not be encoded to MANIFEST Pull Request resolved: https://github.com/facebook/rocksdb/pull/10107 Test Plan: add unit test (`CompactionPriRoundRobin`) in `compaction_picker_test`, add `kRoundRobin` priority in `CompactionPriTest` from `db_compaction_test`, and add `PersistRoundRobinCompactCursor` in `db_compaction_test` Reviewed By: ajkr Differential Revision: D37316037 Pulled By: littlepig2013 fbshipit-source-id: 9f481748190ace416079139044e00df2968fb1ee
3 years ago
if (compaction->compaction_reason() == CompactionReason::kLevelMaxLevelSize &&
compaction->immutable_options()->compaction_pri == kRoundRobin) {
int start_level = compaction->start_level();
if (start_level > 0) {
auto vstorage = compaction->input_version()->storage_info();
edit->AddCompactCursor(start_level,
vstorage->GetNextCompactCursor(start_level));
}
}
return versions_->LogAndApply(compaction->column_family_data(),
mutable_cf_options, edit, db_mutex_,
db_directory_);
}
void CompactionJob::RecordCompactionIOStats() {
RecordTick(stats_, COMPACT_READ_BYTES, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES, IOSTATS(bytes_written));
CompactionReason compaction_reason =
compact_->compaction->compaction_reason();
if (compaction_reason == CompactionReason::kFilesMarkedForCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_MARKED, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_MARKED, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kPeriodicCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_PERIODIC, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_PERIODIC, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kTtl) {
RecordTick(stats_, COMPACT_READ_BYTES_TTL, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_TTL, IOSTATS(bytes_written));
}
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, IOSTATS(bytes_read));
IOSTATS_RESET(bytes_read);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, IOSTATS(bytes_written));
IOSTATS_RESET(bytes_written);
}
Status CompactionJob::OpenCompactionOutputFile(
SubcompactionState* sub_compact) {
assert(sub_compact != nullptr);
assert(sub_compact->builder == nullptr);
// no need to lock because VersionSet::next_file_number_ is atomic
uint64_t file_number = versions_->NewFileNumber();
std::string fname = GetTableFileName(file_number);
// Fire events.
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
#ifndef ROCKSDB_LITE
EventHelpers::NotifyTableFileCreationStarted(
cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname, job_id_,
TableFileCreationReason::kCompaction);
#endif // !ROCKSDB_LITE
// Make the output file
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
std::unique_ptr<FSWritableFile> writable_file;
#ifndef NDEBUG
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
bool syncpoint_arg = file_options_.use_direct_writes;
TEST_SYNC_POINT_CALLBACK("CompactionJob::OpenCompactionOutputFile",
&syncpoint_arg);
#endif
// Pass temperature of botommost files to FileSystem.
FileOptions fo_copy = file_options_;
Temperature temperature = sub_compact->compaction->output_temperature();
if (temperature == Temperature::kUnknown && bottommost_level_) {
temperature =
sub_compact->compaction->mutable_cf_options()->bottommost_temperature;
}
fo_copy.temperature = temperature;
Status s;
IOStatus io_s = NewWritableFile(fs_.get(), fname, &writable_file, fo_copy);
s = io_s;
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the io_s that is checked below as s,
// it does not also need to be checked.
sub_compact->io_status.PermitUncheckedError();
}
if (!s.ok()) {
ROCKS_LOG_ERROR(
db_options_.info_log,
"[%s] [JOB %d] OpenCompactionOutputFiles for table #%" PRIu64
" fails at NewWritableFile with status %s",
sub_compact->compaction->column_family_data()->GetName().c_str(),
job_id_, file_number, s.ToString().c_str());
LogFlush(db_options_.info_log);
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(),
fname, job_id_, FileDescriptor(), kInvalidBlobFileNumber,
TableProperties(), TableFileCreationReason::kCompaction, s,
kUnknownFileChecksum, kUnknownFileChecksumFuncName);
return s;
}
// Try to figure out the output file's oldest ancester time.
int64_t temp_current_time = 0;
auto get_time_status = db_options_.clock->GetCurrentTime(&temp_current_time);
// Safe to proceed even if GetCurrentTime fails. So, log and proceed.
if (!get_time_status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get current time. Status: %s",
get_time_status.ToString().c_str());
}
uint64_t current_time = static_cast<uint64_t>(temp_current_time);
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
InternalKey tmp_start, tmp_end;
if (sub_compact->start != nullptr) {
tmp_start.SetMinPossibleForUserKey(*(sub_compact->start));
}
if (sub_compact->end != nullptr) {
tmp_end.SetMinPossibleForUserKey(*(sub_compact->end));
}
uint64_t oldest_ancester_time =
Try to start TTL earlier with kMinOverlappingRatio is used (#8749) Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
3 years ago
sub_compact->compaction->MinInputFileOldestAncesterTime(
(sub_compact->start != nullptr) ? &tmp_start : nullptr,
(sub_compact->end != nullptr) ? &tmp_end : nullptr);
if (oldest_ancester_time == std::numeric_limits<uint64_t>::max()) {
oldest_ancester_time = current_time;
}
// Initialize a SubcompactionState::Output and add it to sub_compact->outputs
{
FileMetaData meta;
meta.fd = FileDescriptor(file_number,
sub_compact->compaction->output_path_id(), 0);
meta.oldest_ancester_time = oldest_ancester_time;
meta.file_creation_time = current_time;
meta.temperature = temperature;
assert(!db_id_.empty());
assert(!db_session_id_.empty());
s = GetSstInternalUniqueId(db_id_, db_session_id_, meta.fd.GetNumber(),
&meta.unique_id);
if (!s.ok()) {
ROCKS_LOG_ERROR(db_options_.info_log,
"[%s] [JOB %d] file #%" PRIu64
" failed to generate unique id: %s.",
cfd->GetName().c_str(), job_id_, meta.fd.GetNumber(),
s.ToString().c_str());
return s;
}
sub_compact->outputs.emplace_back(
std::move(meta), cfd->internal_comparator(),
/*enable_order_check=*/
sub_compact->compaction->mutable_cf_options()
->check_flush_compaction_key_order,
/*enable_hash=*/paranoid_file_checks_);
}
Set Write rate limiter priority dynamically and pass it to FS (#9988) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one. - The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically. - For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system. ### Solution During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular. **This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush | IO_HIGH | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988 Test Plan: Add unit tests. Reviewed By: anand1976 Differential Revision: D36395159 Pulled By: gitbw95 fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
3 years ago
writable_file->SetIOPriority(GetRateLimiterPriority());
writable_file->SetWriteLifeTimeHint(write_hint_);
FileTypeSet tmp_set = db_options_.checksum_handoff_file_types;
writable_file->SetPreallocationBlockSize(static_cast<size_t>(
sub_compact->compaction->OutputFilePreallocationSize()));
const auto& listeners =
sub_compact->compaction->immutable_options()->listeners;
sub_compact->outfile.reset(new WritableFileWriter(
std::move(writable_file), fname, fo_copy, db_options_.clock, io_tracer_,
db_options_.stats, listeners, db_options_.file_checksum_gen_factory.get(),
Using existing crc32c checksum in checksum handoff for Manifest and WAL (#8412) Summary: In PR https://github.com/facebook/rocksdb/issues/7523 , checksum handoff is introduced in RocksDB for WAL, Manifest, and SST files. When user enable checksum handoff for a certain type of file, before the data is written to the lower layer storage system, we calculate the checksum (crc32c) of each piece of data and pass the checksum down with the data, such that data verification can be down by the lower layer storage system if it has the capability. However, it cannot cover the whole lifetime of the data in the memory and also it potentially introduces extra checksum calculation overhead. In this PR, we introduce a new interface in WritableFileWriter::Append, which allows the caller be able to pass the data and the checksum (crc32c) together. In this way, WritableFileWriter can directly use the pass-in checksum (crc32c) to generate the checksum of data being passed down to the storage system. It saves the calculation overhead and achieves higher protection coverage. When a new checksum is added with the data, we use Crc32cCombine https://github.com/facebook/rocksdb/issues/8305 to combine the existing checksum and the new checksum. To avoid the segmenting of data by rate-limiter before it is stored, rate-limiter is called enough times to accumulate enough credits for a certain write. This design only support Manifest and WAL which use log_writer in the current stage. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8412 Test Plan: make check, add new testing cases. Reviewed By: anand1976 Differential Revision: D29151545 Pulled By: zhichao-cao fbshipit-source-id: 75e2278c5126cfd58393c67b1efd18dcc7a30772
4 years ago
tmp_set.Contains(FileType::kTableFile), false));
TableBuilderOptions tboptions(
*cfd->ioptions(), *(sub_compact->compaction->mutable_cf_options()),
cfd->internal_comparator(), cfd->int_tbl_prop_collector_factories(),
sub_compact->compaction->output_compression(),
Add more LSM info to FilterBuildingContext (#8246) Summary: Add `num_levels`, `is_bottommost`, and table file creation `reason` to `FilterBuildingContext`, in anticipation of more powerful Bloom-like filter support. To support this, added `is_bottommost` and `reason` to `TableBuilderOptions`, which allowed removing `reason` parameter from `rocksdb::BuildTable`. I attempted to remove `skip_filters` from `TableBuilderOptions`, because filter construction decisions should arise from options, not one-off parameters. I could not completely remove it because the public API for SstFileWriter takes a `skip_filters` parameter, and translating this into an option change would mean awkwardly replacing the table_factory if it is BlockBasedTableFactory with new filter_policy=nullptr option. I marked this public skip_filters option as deprecated because of this oddity. (skip_filters on the read side probably makes sense.) At least `skip_filters` is now largely hidden for users of `TableBuilderOptions` and is no longer used for implementing the optimize_filters_for_hits option. Bringing the logic for that option closer to handling of FilterBuildingContext makes it more obvious that hese two are using the same notion of "bottommost." (Planned: configuration options for Bloom-like filters that generalize `optimize_filters_for_hits`) Recommended follow-up: Try to get away from "bottommost level" naming of things, which is inaccurate (see VersionStorageInfo::RangeMightExistAfterSortedRun), and move to "bottommost run" or just "bottommost." Pull Request resolved: https://github.com/facebook/rocksdb/pull/8246 Test Plan: extended an existing unit test to exercise and check various filter building contexts. Also, existing tests for optimize_filters_for_hits validate some of the "bottommost" handling, which is now closely connected to FilterBuildingContext::is_bottommost through TableBuilderOptions::is_bottommost Reviewed By: mrambacher Differential Revision: D28099346 Pulled By: pdillinger fbshipit-source-id: 2c1072e29c24d4ac404c761a7b7663292372600a
4 years ago
sub_compact->compaction->output_compression_opts(), cfd->GetID(),
cfd->GetName(), sub_compact->compaction->output_level(),
bottommost_level_, TableFileCreationReason::kCompaction,
oldest_ancester_time, 0 /* oldest_key_time */, current_time, db_id_,
db_session_id_, sub_compact->compaction->max_output_file_size(),
file_number);
sub_compact->builder.reset(
NewTableBuilder(tboptions, sub_compact->outfile.get()));
LogFlush(db_options_.info_log);
return s;
}
void CompactionJob::CleanupCompaction() {
for (SubcompactionState& sub_compact : compact_->sub_compact_states) {
const auto& sub_status = sub_compact.status;
if (sub_compact.builder != nullptr) {
// May happen if we get a shutdown call in the middle of compaction
sub_compact.builder->Abandon();
sub_compact.builder.reset();
} else {
assert(!sub_status.ok() || sub_compact.outfile == nullptr);
}
for (const auto& out : sub_compact.outputs) {
// If this file was inserted into the table cache then remove
// them here because this compaction was not committed.
if (!sub_status.ok()) {
TableCache::Evict(table_cache_.get(), out.meta.fd.GetNumber());
}
}
// TODO: sub_compact.io_status is not checked like status. Not sure if thats
// intentional. So ignoring the io_status as of now.
sub_compact.io_status.PermitUncheckedError();
}
delete compact_;
compact_ = nullptr;
}
#ifndef ROCKSDB_LITE
namespace {
void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
assert(prefix_length > 0);
size_t length = src.size() > prefix_length ? prefix_length : src.size();
dst->assign(src.data(), length);
}
} // namespace
#endif // !ROCKSDB_LITE
void CompactionJob::UpdateCompactionStats() {
assert(compact_);
Compaction* compaction = compact_->compaction;
compaction_stats_.num_input_files_in_non_output_levels = 0;
compaction_stats_.num_input_files_in_output_level = 0;
for (int input_level = 0;
input_level < static_cast<int>(compaction->num_input_levels());
++input_level) {
if (compaction->level(input_level) != compaction->output_level()) {
UpdateCompactionInputStatsHelper(
&compaction_stats_.num_input_files_in_non_output_levels,
&compaction_stats_.bytes_read_non_output_levels, input_level);
} else {
UpdateCompactionInputStatsHelper(
&compaction_stats_.num_input_files_in_output_level,
&compaction_stats_.bytes_read_output_level, input_level);
}
}
assert(compaction_job_stats_);
compaction_stats_.bytes_read_blob =
compaction_job_stats_->total_blob_bytes_read;
compaction_stats_.num_output_files =
static_cast<int>(compact_->num_output_files);
compaction_stats_.num_output_files_blob =
static_cast<int>(compact_->num_blob_output_files);
compaction_stats_.bytes_written = compact_->total_bytes;
compaction_stats_.bytes_written_blob = compact_->total_blob_bytes;
if (compaction_stats_.num_input_records > compact_->num_output_records) {
compaction_stats_.num_dropped_records =
compaction_stats_.num_input_records - compact_->num_output_records;
}
}
void CompactionJob::UpdateCompactionInputStatsHelper(int* num_files,
uint64_t* bytes_read,
int input_level) {
const Compaction* compaction = compact_->compaction;
auto num_input_files = compaction->num_input_files(input_level);
*num_files += static_cast<int>(num_input_files);
for (size_t i = 0; i < num_input_files; ++i) {
const auto* file_meta = compaction->input(input_level, i);
*bytes_read += file_meta->fd.GetFileSize();
compaction_stats_.num_input_records +=
static_cast<uint64_t>(file_meta->num_entries);
}
}
void CompactionJob::UpdateCompactionJobStats(
const InternalStats::CompactionStats& stats) const {
#ifndef ROCKSDB_LITE
compaction_job_stats_->elapsed_micros = stats.micros;
// input information
compaction_job_stats_->total_input_bytes =
stats.bytes_read_non_output_levels + stats.bytes_read_output_level;
compaction_job_stats_->num_input_records = stats.num_input_records;
compaction_job_stats_->num_input_files =
stats.num_input_files_in_non_output_levels +
stats.num_input_files_in_output_level;
compaction_job_stats_->num_input_files_at_output_level =
stats.num_input_files_in_output_level;
// output information
compaction_job_stats_->total_output_bytes = stats.bytes_written;
compaction_job_stats_->total_output_bytes_blob = stats.bytes_written_blob;
compaction_job_stats_->num_output_records = compact_->num_output_records;
compaction_job_stats_->num_output_files = stats.num_output_files;
compaction_job_stats_->num_output_files_blob = stats.num_output_files_blob;
if (stats.num_output_files > 0) {
CopyPrefix(compact_->SmallestUserKey(),
CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->smallest_output_key_prefix);
CopyPrefix(compact_->LargestUserKey(), CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->largest_output_key_prefix);
}
#else
(void)stats;
#endif // !ROCKSDB_LITE
}
void CompactionJob::LogCompaction() {
Compaction* compaction = compact_->compaction;
ColumnFamilyData* cfd = compaction->column_family_data();
// Let's check if anything will get logged. Don't prepare all the info if
// we're not logging
if (db_options_.info_log_level <= InfoLogLevel::INFO_LEVEL) {
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_INFO(
db_options_.info_log, "[%s] [JOB %d] Compacting %s, score %.2f",
cfd->GetName().c_str(), job_id_,
compaction->InputLevelSummary(&inputs_summary), compaction->score());
char scratch[2345];
compaction->Summary(scratch, sizeof(scratch));
ROCKS_LOG_INFO(db_options_.info_log, "[%s] Compaction start summary: %s\n",
cfd->GetName().c_str(), scratch);
// build event logger report
auto stream = event_logger_->Log();
stream << "job" << job_id_ << "event"
<< "compaction_started"
<< "compaction_reason"
<< GetCompactionReasonString(compaction->compaction_reason());
for (size_t i = 0; i < compaction->num_input_levels(); ++i) {
stream << ("files_L" + std::to_string(compaction->level(i)));
stream.StartArray();
for (auto f : *compaction->inputs(i)) {
stream << f->fd.GetNumber();
}
stream.EndArray();
}
stream << "score" << compaction->score() << "input_data_size"
<< compaction->CalculateTotalInputSize();
}
}
std::string CompactionJob::GetTableFileName(uint64_t file_number) {
return TableFileName(compact_->compaction->immutable_options()->cf_paths,
file_number, compact_->compaction->output_path_id());
}
Set Write rate limiter priority dynamically and pass it to FS (#9988) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one. - The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically. - For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system. ### Solution During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular. **This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush | IO_HIGH | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988 Test Plan: Add unit tests. Reviewed By: anand1976 Differential Revision: D36395159 Pulled By: gitbw95 fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
3 years ago
Env::IOPriority CompactionJob::GetRateLimiterPriority() {
if (versions_ && versions_->GetColumnFamilySet() &&
versions_->GetColumnFamilySet()->write_controller()) {
WriteController* write_controller =
versions_->GetColumnFamilySet()->write_controller();
if (write_controller->NeedsDelay() || write_controller->IsStopped()) {
return Env::IO_USER;
}
}
return Env::IO_LOW;
}
#ifndef ROCKSDB_LITE
std::string CompactionServiceCompactionJob::GetTableFileName(
uint64_t file_number) {
return MakeTableFileName(output_path_, file_number);
}
void CompactionServiceCompactionJob::RecordCompactionIOStats() {
compaction_result_->bytes_read += IOSTATS(bytes_read);
compaction_result_->bytes_written += IOSTATS(bytes_written);
CompactionJob::RecordCompactionIOStats();
}
CompactionServiceCompactionJob::CompactionServiceCompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options, const FileOptions& file_options,
VersionSet* versions, const std::atomic<bool>* shutting_down,
LogBuffer* log_buffer, FSDirectory* output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
const std::string& dbname, const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>& manual_compaction_canceled,
const std::string& db_id, const std::string& db_session_id,
const std::string& output_path,
const CompactionServiceInput& compaction_service_input,
CompactionServiceResult* compaction_service_result)
: CompactionJob(
job_id, compaction, db_options, mutable_db_options, file_options,
versions, shutting_down, log_buffer, nullptr, output_directory,
nullptr, stats, db_mutex, db_error_handler, existing_snapshots,
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
kMaxSequenceNumber, nullptr, nullptr, table_cache, event_logger,
compaction->mutable_cf_options()->paranoid_file_checks,
compaction->mutable_cf_options()->report_bg_io_stats, dbname,
&(compaction_service_result->stats), Env::Priority::USER, io_tracer,
manual_compaction_canceled, db_id, db_session_id,
compaction->column_family_data()->GetFullHistoryTsLow()),
output_path_(output_path),
compaction_input_(compaction_service_input),
compaction_result_(compaction_service_result) {}
Status CompactionServiceCompactionJob::Run() {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_RUN);
auto* c = compact_->compaction;
assert(c->column_family_data() != nullptr);
assert(c->column_family_data()->current()->storage_info()->NumLevelFiles(
compact_->compaction->level()) > 0);
write_hint_ =
c->column_family_data()->CalculateSSTWriteHint(c->output_level());
bottommost_level_ = c->bottommost_level();
Slice begin = compaction_input_.begin;
Slice end = compaction_input_.end;
compact_->sub_compact_states.emplace_back(
c, compaction_input_.has_begin ? &begin : nullptr,
compaction_input_.has_end ? &end : nullptr, compaction_input_.approx_size,
/*sub_job_id*/ 0);
log_buffer_->FlushBufferToLog();
LogCompaction();
const uint64_t start_micros = db_options_.clock->NowMicros();
// Pick the only sub-compaction we should have
assert(compact_->sub_compact_states.size() == 1);
SubcompactionState* sub_compact = compact_->sub_compact_states.data();
ProcessKeyValueCompaction(sub_compact);
compaction_stats_.micros = db_options_.clock->NowMicros() - start_micros;
compaction_stats_.cpu_micros = sub_compact->compaction_job_stats.cpu_micros;
RecordTimeToHistogram(stats_, COMPACTION_TIME, compaction_stats_.micros);
RecordTimeToHistogram(stats_, COMPACTION_CPU_TIME,
compaction_stats_.cpu_micros);
Status status = sub_compact->status;
IOStatus io_s = sub_compact->io_status;
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
constexpr IODebugContext* dbg = nullptr;
if (output_directory_) {
io_s = output_directory_->FsyncWithDirOptions(IOOptions(), dbg,
DirFsyncOptions());
}
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
status = io_s;
}
if (status.ok()) {
// TODO: Add verify_table()
}
// Finish up all book-keeping to unify the subcompaction results
AggregateStatistics();
UpdateCompactionStats();
RecordCompactionIOStats();
LogFlush(db_options_.info_log);
compact_->status = status;
compact_->status.PermitUncheckedError();
// Build compaction result
compaction_result_->output_level = compact_->compaction->output_level();
compaction_result_->output_path = output_path_;
for (const auto& output_file : sub_compact->outputs) {
auto& meta = output_file.meta;
compaction_result_->output_files.emplace_back(
MakeTableFileName(meta.fd.GetNumber()), meta.fd.smallest_seqno,
meta.fd.largest_seqno, meta.smallest.Encode().ToString(),
meta.largest.Encode().ToString(), meta.oldest_ancester_time,
meta.file_creation_time, output_file.validator.GetHash(),
meta.marked_for_compaction, meta.unique_id);
}
compaction_result_->num_output_records = sub_compact->num_output_records;
compaction_result_->total_bytes = sub_compact->total_bytes;
return status;
}
void CompactionServiceCompactionJob::CleanupCompaction() {
CompactionJob::CleanupCompaction();
}
// Internal binary format for the input and result data
enum BinaryFormatVersion : uint32_t {
kOptionsString = 1, // Use string format similar to Option string format
};
static std::unordered_map<std::string, OptionTypeInfo> cfd_type_info = {
{"name",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct ColumnFamilyDescriptor, name), OptionType::kEncodedString,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"options",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct ColumnFamilyDescriptor, options),
OptionType::kConfigurable, OptionVerificationType::kNormal,
OptionTypeFlags::kNone,
[](const ConfigOptions& opts, const std::string& /*name*/,
const std::string& value, void* addr) {
auto cf_options = static_cast<ColumnFamilyOptions*>(addr);
return GetColumnFamilyOptionsFromString(opts, ColumnFamilyOptions(),
value, cf_options);
},
[](const ConfigOptions& opts, const std::string& /*name*/,
const void* addr, std::string* value) {
const auto cf_options = static_cast<const ColumnFamilyOptions*>(addr);
std::string result;
auto status =
GetStringFromColumnFamilyOptions(opts, *cf_options, &result);
*value = "{" + result + "}";
return status;
},
[](const ConfigOptions& opts, const std::string& name, const void* addr1,
const void* addr2, std::string* mismatch) {
const auto this_one = static_cast<const ColumnFamilyOptions*>(addr1);
const auto that_one = static_cast<const ColumnFamilyOptions*>(addr2);
auto this_conf = CFOptionsAsConfigurable(*this_one);
auto that_conf = CFOptionsAsConfigurable(*that_one);
std::string mismatch_opt;
bool result =
this_conf->AreEquivalent(opts, that_conf.get(), &mismatch_opt);
if (!result) {
*mismatch = name + "." + mismatch_opt;
}
return result;
}}},
};
static std::unordered_map<std::string, OptionTypeInfo> cs_input_type_info = {
{"column_family",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
OptionTypeInfo::Struct(
"column_family", &cfd_type_info,
offsetof(struct CompactionServiceInput, column_family),
OptionVerificationType::kNormal, OptionTypeFlags::kNone)},
{"db_options",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, db_options),
OptionType::kConfigurable, OptionVerificationType::kNormal,
OptionTypeFlags::kNone,
[](const ConfigOptions& opts, const std::string& /*name*/,
const std::string& value, void* addr) {
auto options = static_cast<DBOptions*>(addr);
return GetDBOptionsFromString(opts, DBOptions(), value, options);
},
[](const ConfigOptions& opts, const std::string& /*name*/,
const void* addr, std::string* value) {
const auto options = static_cast<const DBOptions*>(addr);
std::string result;
auto status = GetStringFromDBOptions(opts, *options, &result);
*value = "{" + result + "}";
return status;
},
[](const ConfigOptions& opts, const std::string& name, const void* addr1,
const void* addr2, std::string* mismatch) {
const auto this_one = static_cast<const DBOptions*>(addr1);
const auto that_one = static_cast<const DBOptions*>(addr2);
auto this_conf = DBOptionsAsConfigurable(*this_one);
auto that_conf = DBOptionsAsConfigurable(*that_one);
std::string mismatch_opt;
bool result =
this_conf->AreEquivalent(opts, that_conf.get(), &mismatch_opt);
if (!result) {
*mismatch = name + "." + mismatch_opt;
}
return result;
}}},
{"snapshots", OptionTypeInfo::Vector<uint64_t>(
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
offsetof(struct CompactionServiceInput, snapshots),
OptionVerificationType::kNormal, OptionTypeFlags::kNone,
{0, OptionType::kUInt64T})},
{"input_files", OptionTypeInfo::Vector<std::string>(
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
offsetof(struct CompactionServiceInput, input_files),
OptionVerificationType::kNormal, OptionTypeFlags::kNone,
{0, OptionType::kEncodedString})},
{"output_level",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, output_level), OptionType::kInt,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"db_id",
{offsetof(struct CompactionServiceInput, db_id),
OptionType::kEncodedString}},
{"has_begin",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, has_begin), OptionType::kBoolean,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"begin",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, begin),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"has_end",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, has_end), OptionType::kBoolean,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"end",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, end), OptionType::kEncodedString,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"approx_size",
Use -Wno-invalid-offsetof instead of dangerous offset_of hack (#9563) Summary: After https://github.com/facebook/rocksdb/issues/9515 added a unique_ptr to Status, we see some warnings-as-error in some internal builds like this: ``` stderr: rocksdb/src/db/compaction/compaction_job.cc:2839:7: error: offset of on non-standard-layout type 'struct CompactionServiceResult' [-Werror,-Winvalid-offsetof] {offsetof(struct CompactionServiceResult, status), ^ ~~~~~~ ``` I see three potential solutions to resolving this: * Expand our use of an idiom that works around the warning (see offset_of functions removed in this change, inspired by https://gist.github.com/graphitemaster/494f21190bb2c63c5516) However, this construction is invoking undefined behavior that assumes consistent layout with no compiler-introduced indirection. A compiler incompatible with our assumptions will likely compile the code and exhibit undefined behavior. * Migrate to something in place of offset, like a function mapping CompactionServiceResult* to Status* (for the `status` field). This might be required in the long term. * **Selected:** Use our new C++17 dependency to use offsetof in a well-defined way when the compiler allows it. From a comment on https://gist.github.com/graphitemaster/494f21190bb2c63c5516: > A final note: in C++17, offsetof is conditionally supported, which > means that you can use it on any type (not just standard layout > types) and the compiler will error if it can't compile it correctly. > That appears to be the best option if you can live with C++17 and > don't need constexpr support. The C++17 semantics are confirmed on https://en.cppreference.com/w/cpp/types/offsetof, so we can suppress the warning as long as we accept that we might run into a compiler that rejects the code, and at that point we will find a solution, such as the more intrusive "migrate" solution above. Although this is currently only showing in our buck build, it will surely show up also with make and cmake, so I have updated those configurations as well. Also in the buck build, -Wno-expansion-to-defined does not appear to be needed anymore (both current compiler configurations) so I removed it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9563 Test Plan: Tried out buck builds with both current compiler configurations Reviewed By: riversand963 Differential Revision: D34220931 Pulled By: pdillinger fbshipit-source-id: d39436008259bd1eaaa87c77be69fb2a5b559e1f
3 years ago
{offsetof(struct CompactionServiceInput, approx_size),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
};
static std::unordered_map<std::string, OptionTypeInfo>
cs_output_file_type_info = {
{"file_name",
{offsetof(struct CompactionServiceOutputFile, file_name),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"smallest_seqno",
{offsetof(struct CompactionServiceOutputFile, smallest_seqno),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"largest_seqno",
{offsetof(struct CompactionServiceOutputFile, largest_seqno),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"smallest_internal_key",
{offsetof(struct CompactionServiceOutputFile, smallest_internal_key),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"largest_internal_key",
{offsetof(struct CompactionServiceOutputFile, largest_internal_key),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"oldest_ancester_time",
{offsetof(struct CompactionServiceOutputFile, oldest_ancester_time),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"file_creation_time",
{offsetof(struct CompactionServiceOutputFile, file_creation_time),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"paranoid_hash",
{offsetof(struct CompactionServiceOutputFile, paranoid_hash),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"marked_for_compaction",
{offsetof(struct CompactionServiceOutputFile, marked_for_compaction),
OptionType::kBoolean, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"unique_id",
OptionTypeInfo::Array<uint64_t, 2>(
offsetof(struct CompactionServiceOutputFile, unique_id),
OptionVerificationType::kNormal, OptionTypeFlags::kNone,
{0, OptionType::kUInt64T})},
};
static std::unordered_map<std::string, OptionTypeInfo>
compaction_job_stats_type_info = {
{"elapsed_micros",
{offsetof(struct CompactionJobStats, elapsed_micros),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"cpu_micros",
{offsetof(struct CompactionJobStats, cpu_micros), OptionType::kUInt64T,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"num_input_records",
{offsetof(struct CompactionJobStats, num_input_records),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_blobs_read",
{offsetof(struct CompactionJobStats, num_blobs_read),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_input_files",
{offsetof(struct CompactionJobStats, num_input_files),
OptionType::kSizeT, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_input_files_at_output_level",
{offsetof(struct CompactionJobStats, num_input_files_at_output_level),
OptionType::kSizeT, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_output_records",
{offsetof(struct CompactionJobStats, num_output_records),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_output_files",
{offsetof(struct CompactionJobStats, num_output_files),
OptionType::kSizeT, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_output_files_blob",
{offsetof(struct CompactionJobStats, num_output_files_blob),
OptionType::kSizeT, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"is_full_compaction",
{offsetof(struct CompactionJobStats, is_full_compaction),
OptionType::kBoolean, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"is_manual_compaction",
{offsetof(struct CompactionJobStats, is_manual_compaction),
OptionType::kBoolean, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_input_bytes",
{offsetof(struct CompactionJobStats, total_input_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_blob_bytes_read",
{offsetof(struct CompactionJobStats, total_blob_bytes_read),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_output_bytes",
{offsetof(struct CompactionJobStats, total_output_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_output_bytes_blob",
{offsetof(struct CompactionJobStats, total_output_bytes_blob),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_records_replaced",
{offsetof(struct CompactionJobStats, num_records_replaced),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_input_raw_key_bytes",
{offsetof(struct CompactionJobStats, total_input_raw_key_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_input_raw_value_bytes",
{offsetof(struct CompactionJobStats, total_input_raw_value_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_input_deletion_records",
{offsetof(struct CompactionJobStats, num_input_deletion_records),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_expired_deletion_records",
{offsetof(struct CompactionJobStats, num_expired_deletion_records),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_corrupt_keys",
{offsetof(struct CompactionJobStats, num_corrupt_keys),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"file_write_nanos",
{offsetof(struct CompactionJobStats, file_write_nanos),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"file_range_sync_nanos",
{offsetof(struct CompactionJobStats, file_range_sync_nanos),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"file_fsync_nanos",
{offsetof(struct CompactionJobStats, file_fsync_nanos),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"file_prepare_write_nanos",
{offsetof(struct CompactionJobStats, file_prepare_write_nanos),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"smallest_output_key_prefix",
{offsetof(struct CompactionJobStats, smallest_output_key_prefix),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"largest_output_key_prefix",
{offsetof(struct CompactionJobStats, largest_output_key_prefix),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_single_del_fallthru",
{offsetof(struct CompactionJobStats, num_single_del_fallthru),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_single_del_mismatch",
{offsetof(struct CompactionJobStats, num_single_del_mismatch),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
};
namespace {
// this is a helper struct to serialize and deserialize class Status, because
// Status's members are not public.
struct StatusSerializationAdapter {
uint8_t code;
uint8_t subcode;
uint8_t severity;
std::string message;
StatusSerializationAdapter() {}
explicit StatusSerializationAdapter(const Status& s) {
code = s.code();
subcode = s.subcode();
severity = s.severity();
auto msg = s.getState();
message = msg ? msg : "";
}
Status GetStatus() {
return Status(static_cast<Status::Code>(code),
static_cast<Status::SubCode>(subcode),
static_cast<Status::Severity>(severity), message);
}
};
} // namespace
static std::unordered_map<std::string, OptionTypeInfo>
status_adapter_type_info = {
{"code",
{offsetof(struct StatusSerializationAdapter, code),
OptionType::kUInt8T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"subcode",
{offsetof(struct StatusSerializationAdapter, subcode),
OptionType::kUInt8T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"severity",
{offsetof(struct StatusSerializationAdapter, severity),
OptionType::kUInt8T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"message",
{offsetof(struct StatusSerializationAdapter, message),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
};
static std::unordered_map<std::string, OptionTypeInfo> cs_result_type_info = {
{"status",
{offsetof(struct CompactionServiceResult, status),
OptionType::kCustomizable, OptionVerificationType::kNormal,
OptionTypeFlags::kNone,
[](const ConfigOptions& opts, const std::string& /*name*/,
const std::string& value, void* addr) {
auto status_obj = static_cast<Status*>(addr);
StatusSerializationAdapter adapter;
Status s = OptionTypeInfo::ParseType(
opts, value, status_adapter_type_info, &adapter);
*status_obj = adapter.GetStatus();
return s;
},
[](const ConfigOptions& opts, const std::string& /*name*/,
const void* addr, std::string* value) {
const auto status_obj = static_cast<const Status*>(addr);
StatusSerializationAdapter adapter(*status_obj);
std::string result;
Status s = OptionTypeInfo::SerializeType(opts, status_adapter_type_info,
&adapter, &result);
*value = "{" + result + "}";
return s;
},
[](const ConfigOptions& opts, const std::string& /*name*/,
const void* addr1, const void* addr2, std::string* mismatch) {
const auto status1 = static_cast<const Status*>(addr1);
const auto status2 = static_cast<const Status*>(addr2);
StatusSerializationAdapter adatper1(*status1);
StatusSerializationAdapter adapter2(*status2);
return OptionTypeInfo::TypesAreEqual(opts, status_adapter_type_info,
&adatper1, &adapter2, mismatch);
}}},
{"output_files",
OptionTypeInfo::Vector<CompactionServiceOutputFile>(
offsetof(struct CompactionServiceResult, output_files),
OptionVerificationType::kNormal, OptionTypeFlags::kNone,
OptionTypeInfo::Struct("output_files", &cs_output_file_type_info, 0,
OptionVerificationType::kNormal,
OptionTypeFlags::kNone))},
{"output_level",
{offsetof(struct CompactionServiceResult, output_level), OptionType::kInt,
OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
{"output_path",
{offsetof(struct CompactionServiceResult, output_path),
OptionType::kEncodedString, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"num_output_records",
{offsetof(struct CompactionServiceResult, num_output_records),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"total_bytes",
{offsetof(struct CompactionServiceResult, total_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"bytes_read",
{offsetof(struct CompactionServiceResult, bytes_read),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"bytes_written",
{offsetof(struct CompactionServiceResult, bytes_written),
OptionType::kUInt64T, OptionVerificationType::kNormal,
OptionTypeFlags::kNone}},
{"stats", OptionTypeInfo::Struct(
"stats", &compaction_job_stats_type_info,
offsetof(struct CompactionServiceResult, stats),
OptionVerificationType::kNormal, OptionTypeFlags::kNone)},
};
Status CompactionServiceInput::Read(const std::string& data_str,
CompactionServiceInput* obj) {
if (data_str.size() <= sizeof(BinaryFormatVersion)) {
return Status::InvalidArgument("Invalid CompactionServiceInput string");
}
auto format_version = DecodeFixed32(data_str.data());
if (format_version == kOptionsString) {
ConfigOptions cf;
cf.invoke_prepare_options = false;
cf.ignore_unknown_options = true;
return OptionTypeInfo::ParseType(
cf, data_str.substr(sizeof(BinaryFormatVersion)), cs_input_type_info,
obj);
} else {
return Status::NotSupported(
"Compaction Service Input data version not supported: " +
std::to_string(format_version));
}
}
Status CompactionServiceInput::Write(std::string* output) {
char buf[sizeof(BinaryFormatVersion)];
EncodeFixed32(buf, kOptionsString);
output->append(buf, sizeof(BinaryFormatVersion));
ConfigOptions cf;
cf.invoke_prepare_options = false;
return OptionTypeInfo::SerializeType(cf, cs_input_type_info, this, output);
}
Status CompactionServiceResult::Read(const std::string& data_str,
CompactionServiceResult* obj) {
if (data_str.size() <= sizeof(BinaryFormatVersion)) {
return Status::InvalidArgument("Invalid CompactionServiceResult string");
}
auto format_version = DecodeFixed32(data_str.data());
if (format_version == kOptionsString) {
ConfigOptions cf;
cf.invoke_prepare_options = false;
cf.ignore_unknown_options = true;
return OptionTypeInfo::ParseType(
cf, data_str.substr(sizeof(BinaryFormatVersion)), cs_result_type_info,
obj);
} else {
return Status::NotSupported(
"Compaction Service Result data version not supported: " +
std::to_string(format_version));
}
}
Status CompactionServiceResult::Write(std::string* output) {
char buf[sizeof(BinaryFormatVersion)];
EncodeFixed32(buf, kOptionsString);
output->append(buf, sizeof(BinaryFormatVersion));
ConfigOptions cf;
cf.invoke_prepare_options = false;
return OptionTypeInfo::SerializeType(cf, cs_result_type_info, this, output);
}
#ifndef NDEBUG
bool CompactionServiceResult::TEST_Equals(CompactionServiceResult* other) {
std::string mismatch;
return TEST_Equals(other, &mismatch);
}
bool CompactionServiceResult::TEST_Equals(CompactionServiceResult* other,
std::string* mismatch) {
ConfigOptions cf;
cf.invoke_prepare_options = false;
return OptionTypeInfo::TypesAreEqual(cf, cs_result_type_info, this, other,
mismatch);
}
bool CompactionServiceInput::TEST_Equals(CompactionServiceInput* other) {
std::string mismatch;
return TEST_Equals(other, &mismatch);
}
bool CompactionServiceInput::TEST_Equals(CompactionServiceInput* other,
std::string* mismatch) {
ConfigOptions cf;
cf.invoke_prepare_options = false;
return OptionTypeInfo::TypesAreEqual(cf, cs_input_type_info, this, other,
mismatch);
}
#endif // NDEBUG
#endif // !ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE