You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/memtable_list_test.cc

1038 lines
39 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/memtable_list.h"
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
#include <algorithm>
#include <string>
#include <vector>
#include "db/merge_context.h"
#include "db/version_set.h"
#include "db/write_controller.h"
#include "rocksdb/db.h"
#include "rocksdb/status.h"
#include "rocksdb/write_buffer_manager.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
class MemTableListTest : public testing::Test {
public:
std::string dbname;
DB* db;
Options options;
std::vector<ColumnFamilyHandle*> handles;
std::atomic<uint64_t> file_number;
MemTableListTest() : db(nullptr), file_number(1) {
dbname = test::PerThreadDBPath("memtable_list_test");
options.create_if_missing = true;
EXPECT_OK(DestroyDB(dbname, options));
}
// Create a test db if not yet created
void CreateDB() {
if (db == nullptr) {
options.create_if_missing = true;
EXPECT_OK(DestroyDB(dbname, options));
// Open DB only with default column family
ColumnFamilyOptions cf_options;
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, cf_options);
Status s = DB::Open(options, dbname, cf_descs, &handles, &db);
EXPECT_OK(s);
ColumnFamilyOptions cf_opt1, cf_opt2;
cf_opt1.cf_paths.emplace_back(dbname + "_one_1",
std::numeric_limits<uint64_t>::max());
cf_opt2.cf_paths.emplace_back(dbname + "_two_1",
std::numeric_limits<uint64_t>::max());
int sz = static_cast<int>(handles.size());
handles.resize(sz + 2);
s = db->CreateColumnFamily(cf_opt1, "one", &handles[1]);
EXPECT_OK(s);
s = db->CreateColumnFamily(cf_opt2, "two", &handles[2]);
EXPECT_OK(s);
cf_descs.emplace_back("one", cf_options);
cf_descs.emplace_back("two", cf_options);
}
}
~MemTableListTest() override {
if (db) {
std::vector<ColumnFamilyDescriptor> cf_descs(handles.size());
for (int i = 0; i != static_cast<int>(handles.size()); ++i) {
EXPECT_OK(handles[i]->GetDescriptor(&cf_descs[i]));
}
for (auto h : handles) {
if (h) {
EXPECT_OK(db->DestroyColumnFamilyHandle(h));
}
}
handles.clear();
delete db;
db = nullptr;
EXPECT_OK(DestroyDB(dbname, options, cf_descs));
}
}
// Calls MemTableList::TryInstallMemtableFlushResults() and sets up all
// structures needed to call this function.
Status Mock_InstallMemtableFlushResults(
MemTableList* list, const MutableCFOptions& mutable_cf_options,
const autovector<MemTable*>& m, autovector<MemTable*>* to_delete) {
// Create a mock Logger
test::NullLogger logger;
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
CreateDB();
// Create a mock VersionSet
DBOptions db_options;
ImmutableDBOptions immutable_db_options(db_options);
EnvOptions env_options;
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
WriteController write_controller(10000000u);
VersionSet versions(dbname, &immutable_db_options, env_options,
table_cache.get(), &write_buffer_manager,
&write_controller, /*block_cache_tracer=*/nullptr,
/*io_tracer=*/nullptr, /*db_id*/ "",
/*db_session_id*/ "");
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
cf_descs.emplace_back("one", ColumnFamilyOptions());
cf_descs.emplace_back("two", ColumnFamilyOptions());
EXPECT_OK(versions.Recover(cf_descs, false));
// Create mock default ColumnFamilyData
auto column_family_set = versions.GetColumnFamilySet();
LogsWithPrepTracker dummy_prep_tracker;
auto cfd = column_family_set->GetDefault();
EXPECT_TRUE(nullptr != cfd);
uint64_t file_num = file_number.fetch_add(1);
IOStatus io_s;
// Create dummy mutex.
InstrumentedMutex mutex;
InstrumentedMutexLock l(&mutex);
std::list<std::unique_ptr<FlushJobInfo>> flush_jobs_info;
Status s = list->TryInstallMemtableFlushResults(
cfd, mutable_cf_options, m, &dummy_prep_tracker, &versions, &mutex,
file_num, to_delete, nullptr, &log_buffer, &flush_jobs_info);
EXPECT_OK(io_s);
return s;
}
// Calls MemTableList::InstallMemtableFlushResults() and sets up all
// structures needed to call this function.
Status Mock_InstallMemtableAtomicFlushResults(
autovector<MemTableList*>& lists, const autovector<uint32_t>& cf_ids,
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
const autovector<const autovector<MemTable*>*>& mems_list,
autovector<MemTable*>* to_delete) {
// Create a mock Logger
test::NullLogger logger;
LogBuffer log_buffer(DEBUG_LEVEL, &logger);
CreateDB();
// Create a mock VersionSet
DBOptions db_options;
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
ImmutableDBOptions immutable_db_options(db_options);
EnvOptions env_options;
std::shared_ptr<Cache> table_cache(NewLRUCache(50000, 16));
WriteBufferManager write_buffer_manager(db_options.db_write_buffer_size);
WriteController write_controller(10000000u);
VersionSet versions(dbname, &immutable_db_options, env_options,
table_cache.get(), &write_buffer_manager,
&write_controller, /*block_cache_tracer=*/nullptr,
/*io_tracer=*/nullptr, /*db_id*/ "",
/*db_session_id*/ "");
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
cf_descs.emplace_back("one", ColumnFamilyOptions());
cf_descs.emplace_back("two", ColumnFamilyOptions());
EXPECT_OK(versions.Recover(cf_descs, false));
// Create mock default ColumnFamilyData
auto column_family_set = versions.GetColumnFamilySet();
LogsWithPrepTracker dummy_prep_tracker;
autovector<ColumnFamilyData*> cfds;
for (int i = 0; i != static_cast<int>(cf_ids.size()); ++i) {
cfds.emplace_back(column_family_set->GetColumnFamily(cf_ids[i]));
EXPECT_NE(nullptr, cfds[i]);
}
std::vector<FileMetaData> file_metas;
file_metas.reserve(cf_ids.size());
for (size_t i = 0; i != cf_ids.size(); ++i) {
FileMetaData meta;
uint64_t file_num = file_number.fetch_add(1);
meta.fd = FileDescriptor(file_num, 0, 0);
file_metas.emplace_back(meta);
}
autovector<FileMetaData*> file_meta_ptrs;
for (auto& meta : file_metas) {
file_meta_ptrs.push_back(&meta);
}
std::vector<std::list<std::unique_ptr<FlushJobInfo>>>
committed_flush_jobs_info_storage(cf_ids.size());
autovector<std::list<std::unique_ptr<FlushJobInfo>>*>
committed_flush_jobs_info;
for (int i = 0; i < static_cast<int>(cf_ids.size()); ++i) {
committed_flush_jobs_info.push_back(
&committed_flush_jobs_info_storage[i]);
}
InstrumentedMutex mutex;
InstrumentedMutexLock l(&mutex);
return InstallMemtableAtomicFlushResults(
&lists, cfds, mutable_cf_options_list, mems_list, &versions,
nullptr /* prep_tracker */, &mutex, file_meta_ptrs,
committed_flush_jobs_info, to_delete, nullptr, &log_buffer);
}
};
TEST_F(MemTableListTest, Empty) {
// Create an empty MemTableList and validate basic functions.
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
MemTableList list(1, 0, 0);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
autovector<MemTable*> mems;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &mems);
ASSERT_EQ(0, mems.size());
autovector<MemTable*> to_delete;
list.current()->Unref(&to_delete);
ASSERT_EQ(0, to_delete.size());
}
TEST_F(MemTableListTest, GetTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
int max_write_buffer_number_to_maintain = 0;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
int64_t max_write_buffer_size_to_maintain = 0;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
MemTableList list(min_write_buffer_number_to_merge,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
InternalKeyComparator ikey_cmp(options.comparator);
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
SequenceNumber max_covering_tombstone_seq = 0;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
autovector<MemTable*> to_delete;
LookupKey lkey("key1", seq);
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
bool found = list.current()->Get(lkey, &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->Ref();
// Write some keys to this memtable.
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
ASSERT_OK(
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", "value1",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
nullptr /* kv_prot_info */));
// Fetch the newly written keys
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = mem->Get(LookupKey("key1", seq), &value, /*columns*/ nullptr,
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value1");
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = mem->Get(LookupKey("key1", 2), &value, /*columns*/ nullptr,
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = mem->Get(LookupKey("key2", seq), &value, /*columns*/ nullptr,
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
ASSERT_EQ(4, mem->num_entries());
ASSERT_EQ(1, mem->num_deletes());
// Add memtable to list
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem->ConstructFragmentedRangeTombstones();
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(mem, &to_delete);
SequenceNumber saved_seq = seq;
// Create another memtable and write some keys to it
WriteBufferManager wb2(options.db_write_buffer_size);
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
kMaxSequenceNumber, 0 /* column_family_id */);
mem2->Ref();
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
ASSERT_OK(
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key2", "value2.3",
nullptr /* kv_prot_info */));
// Add second memtable to list
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem2->ConstructFragmentedRangeTombstones();
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(mem2, &to_delete);
// Fetch keys via MemTableList
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = list.current()->Get(LookupKey("key1", saved_seq), &value,
/*columns=*/nullptr, /*timestamp=*/nullptr, &s,
&merge_context, &max_covering_tombstone_seq,
ReadOptions());
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value1", value);
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.3");
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = list.current()->Get(LookupKey("key2", 1), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
ASSERT_FALSE(found);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(2, list.NumNotFlushed());
list.current()->Unref(&to_delete);
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, GetFromHistoryTest) {
// Create MemTableList
int min_write_buffer_number_to_merge = 2;
int max_write_buffer_number_to_maintain = 2;
int64_t max_write_buffer_size_to_maintain = 2 * Arena::kInlineSize;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
MemTableList list(min_write_buffer_number_to_merge,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
SequenceNumber seq = 1;
std::string value;
Status s;
MergeContext merge_context;
InternalKeyComparator ikey_cmp(options.comparator);
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
SequenceNumber max_covering_tombstone_seq = 0;
autovector<MemTable*> to_delete;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
LookupKey lkey("key1", seq);
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
bool found = list.current()->Get(lkey, &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
mem->Ref();
// Write some keys to this memtable.
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
ASSERT_OK(
mem->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2",
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "key2", "value2.2",
nullptr /* kv_prot_info */));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
// Fetch the newly written keys
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = mem->Get(LookupKey("key1", seq), &value, /*columns*/ nullptr,
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
// MemTable found out that this key is *not* found (at this sequence#)
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found = mem->Get(LookupKey("key2", seq), &value, /*columns*/ nullptr,
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
/*timestamp*/ nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions(),
false /* immutable_memtable */);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ(value, "value2.2");
// Add memtable to list
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem->ConstructFragmentedRangeTombstones();
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(mem, &to_delete);
ASSERT_EQ(0, to_delete.size());
// Fetch keys via MemTableList
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(s.ok() && found);
ASSERT_EQ("value2.2", value);
// Flush this memtable from the list.
// (It will then be a part of the memtable history).
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(1, to_flush.size());
MutableCFOptions mutable_cf_options(options);
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
// Verify keys are present in history
merge_context.Clear();
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
found = list.current()->GetFromHistory(
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
found = list.current()->GetFromHistory(
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(found);
ASSERT_EQ("value2.2", value);
// Create another memtable and write some keys to it
WriteBufferManager wb2(options.db_write_buffer_size);
MemTable* mem2 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb2,
kMaxSequenceNumber, 0 /* column_family_id */);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
mem2->Ref();
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
ASSERT_OK(
mem2->Add(++seq, kTypeDeletion, "key1", "", nullptr /* kv_prot_info */));
ASSERT_OK(mem2->Add(++seq, kTypeValue, "key3", "value3",
nullptr /* kv_prot_info */));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
// Add second memtable to list
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem2->ConstructFragmentedRangeTombstones();
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(mem2, &to_delete);
ASSERT_EQ(0, to_delete.size());
to_flush.clear();
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(1, to_flush.size());
// Flush second memtable
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_OK(s);
ASSERT_EQ(0, list.NumNotFlushed());
ASSERT_EQ(2, list.NumFlushed());
ASSERT_EQ(0, to_delete.size());
// Add a third memtable to push the first memtable out of the history
WriteBufferManager wb3(options.db_write_buffer_size);
MemTable* mem3 = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb3,
kMaxSequenceNumber, 0 /* column_family_id */);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
mem3->Ref();
Fragment memtable range tombstone in the write path (#10380) Summary: - Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact. - db_bench is updated to print out the number of range deletions executed if there is any. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380 Test Plan: - CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed. - Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable. ``` single thread: ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100 multi_thread ./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100 ``` Commit 99cdf16464a057ca44de2f747541dedf651bae9e is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results. Results are averaged over 5 runs. Single thread result: | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 | | 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 | | 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 | | 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 | | 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 | 32-thread result: note that "Max # tombstones" is per thread. | Max # tombstones | main fillrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | main readrandom micros/op | 99cdf16464a057ca44de2f747541dedf651bae9e | Post PR | | ------------- | ------------- |------------- |------------- |------------- |------------- |------------- | | 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 | | 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 | | 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 | | 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 | Reviewed By: ajkr Differential Revision: D37916564 Pulled By: cbi42 fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
3 years ago
// This is to make assert(memtable->IsFragmentedRangeTombstonesConstructed())
// in MemTableListVersion::GetFromList work.
mem3->ConstructFragmentedRangeTombstones();
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(mem3, &to_delete);
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_EQ(1, list.NumFlushed());
ASSERT_EQ(1, to_delete.size());
// Verify keys are no longer in MemTableList
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key3", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
// Verify that the second memtable's keys are in the history
merge_context.Clear();
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
found = list.current()->GetFromHistory(
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
LookupKey("key1", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(found && s.IsNotFound());
merge_context.Clear();
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
6 years ago
found = list.current()->GetFromHistory(
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
LookupKey("key3", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context, &max_covering_tombstone_seq,
ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_TRUE(found);
ASSERT_EQ("value3", value);
// Verify that key2 from the first memtable is no longer in the history
merge_context.Clear();
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2 years ago
found =
list.current()->Get(LookupKey("key2", seq), &value, /*columns=*/nullptr,
/*timestamp=*/nullptr, &s, &merge_context,
&max_covering_tombstone_seq, ReadOptions());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_FALSE(found);
// Cleanup
list.current()->Unref(&to_delete);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(3, to_delete.size());
for (MemTable* m : to_delete) {
delete m;
}
}
TEST_F(MemTableListTest, FlushPendingTest) {
const int num_tables = 6;
SequenceNumber seq = 1;
Status s;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
InternalKeyComparator cmp(BytewiseComparator());
WriteBufferManager wb(options.db_write_buffer_size);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
autovector<MemTable*> to_delete;
// Create MemTableList
int min_write_buffer_number_to_merge = 3;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
int max_write_buffer_number_to_maintain = 7;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
int64_t max_write_buffer_size_to_maintain =
7 * static_cast<int>(options.write_buffer_size);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
MemTableList list(min_write_buffer_number_to_merge,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain);
// Create some MemTables
uint64_t memtable_id = 0;
std::vector<MemTable*> tables;
MutableCFOptions mutable_cf_options(options);
for (int i = 0; i < num_tables; i++) {
MemTable* mem = new MemTable(cmp, ioptions, mutable_cf_options, &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->SetID(memtable_id++);
mem->Ref();
std::string value;
MergeContext merge_context;
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", std::to_string(i),
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + std::to_string(i), "valueN",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + std::to_string(i), "value",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + std::to_string(i), "valueM",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + std::to_string(i), "",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
tables.push_back(mem);
}
// Nothing to flush
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
autovector<MemTable*> to_flush;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(0, to_flush.size());
// Request a flush even though there is nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Attempt to 'flush' to clear request for flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(0, to_flush.size());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Request a flush again
list.FlushRequested();
// No flush pending since the list is empty.
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add 2 tables
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(tables[0], &to_delete);
list.Add(tables[1], &to_delete);
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_EQ(0, to_delete.size());
// Even though we have less than the minimum to flush, a flush is
// pending since we had previously requested a flush and never called
// PickMemtablesToFlush() to clear the flush.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(2, to_flush.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Revert flush
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another table
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(tables[2], &to_delete);
// We now have the minimum to flush regardles of whether FlushRequested()
// was called.
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
ASSERT_EQ(3, to_flush.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush2;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush2);
ASSERT_EQ(0, to_flush2.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(3, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Add another table
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(tables[3], &to_delete);
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(0, to_delete.size());
// Request a flush again
list.FlushRequested();
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush2);
ASSERT_EQ(1, to_flush2.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(4, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Rollback first pick of tables
list.RollbackMemtableFlush(to_flush, 0);
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
to_flush.clear();
// Add another tables
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
list.Add(tables[4], &to_delete);
ASSERT_EQ(5, list.NumNotFlushed());
// We now have the minimum to flush regardles of whether FlushRequested()
ASSERT_TRUE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(0, to_delete.size());
// Pick tables to flush
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush);
// Picks three oldest memtables. The fourth oldest is picked in `to_flush2` so
// must be excluded. The newest (fifth oldest) is non-consecutive with the
// three oldest due to omitting the fourth oldest so must not be picked.
ASSERT_EQ(3, to_flush.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
// Pick tables to flush again
autovector<MemTable*> to_flush3;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush3);
// Picks newest (fifth oldest)
ASSERT_EQ(1, to_flush3.size());
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Nothing left to flush
autovector<MemTable*> to_flush4;
list.PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */, &to_flush4);
ASSERT_EQ(0, to_flush4.size());
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(5, list.NumNotFlushed());
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 3 memtables that were picked in to_flush
s = Mock_InstallMemtableFlushResults(&list, mutable_cf_options, to_flush,
&to_delete);
ASSERT_OK(s);
// Note: now to_flush contains tables[0,1,2]. to_flush2 contains
// tables[3]. to_flush3 contains tables[4].
// Current implementation will only commit memtables in the order they were
// created. So TryInstallMemtableFlushResults will install the first 3 tables
// in to_flush and stop when it encounters a table not yet flushed.
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(2, list.NumNotFlushed());
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
int num_in_history =
std::min(3, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
// Request a flush again. Should be nothing to flush
list.FlushRequested();
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
// Flush the 1 memtable (tables[4]) that was picked in to_flush3
s = MemTableListTest::Mock_InstallMemtableFlushResults(
&list, mutable_cf_options, to_flush3, &to_delete);
ASSERT_OK(s);
// This will install 0 tables since tables[4] flushed while tables[3] has not
// yet flushed.
ASSERT_EQ(2, list.NumNotFlushed());
ASSERT_EQ(0, to_delete.size());
// Flush the 1 memtable (tables[3]) that was picked in to_flush2
s = MemTableListTest::Mock_InstallMemtableFlushResults(
&list, mutable_cf_options, to_flush2, &to_delete);
ASSERT_OK(s);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
// This will actually install 2 tables. The 1 we told it to flush, and also
// tables[4] which has been waiting for tables[3] to commit.
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(0, list.NumNotFlushed());
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
num_in_history =
std::min(5, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(num_in_history, list.NumFlushed());
ASSERT_EQ(5 - list.NumNotFlushed() - num_in_history, to_delete.size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
// Verify this, by Ref'ing then UnRef'ing:
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
to_delete.clear();
// Add another table
list.Add(tables[5], &to_delete);
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_EQ(5, list.GetLatestMemTableID());
memtable_id = 4;
// Pick tables to flush. The tables to pick must have ID smaller than or
// equal to 4. Therefore, no table will be selected in this case.
autovector<MemTable*> to_flush5;
list.FlushRequested();
ASSERT_TRUE(list.HasFlushRequested());
list.PickMemtablesToFlush(memtable_id, &to_flush5);
ASSERT_TRUE(to_flush5.empty());
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_TRUE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
ASSERT_FALSE(list.HasFlushRequested());
// Pick tables to flush. The tables to pick must have ID smaller than or
// equal to 5. Therefore, only tables[5] will be selected.
memtable_id = 5;
list.FlushRequested();
list.PickMemtablesToFlush(memtable_id, &to_flush5);
ASSERT_EQ(1, static_cast<int>(to_flush5.size()));
ASSERT_EQ(1, list.NumNotFlushed());
ASSERT_FALSE(list.imm_flush_needed.load(std::memory_order_acquire));
ASSERT_FALSE(list.IsFlushPending());
to_delete.clear();
list.current()->Unref(&to_delete);
int to_delete_size =
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
std::min(num_tables, static_cast<int>(max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size));
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
10 years ago
ASSERT_EQ(to_delete_size, to_delete.size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling TryInstallMemtableFlushResults.
// Verify this, by Ref'ing then UnRef'ing:
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
to_delete.clear();
}
TEST_F(MemTableListTest, EmptyAtomicFlusTest) {
autovector<MemTableList*> lists;
autovector<uint32_t> cf_ids;
autovector<const MutableCFOptions*> options_list;
autovector<const autovector<MemTable*>*> to_flush;
autovector<MemTable*> to_delete;
Status s = Mock_InstallMemtableAtomicFlushResults(lists, cf_ids, options_list,
to_flush, &to_delete);
ASSERT_OK(s);
ASSERT_TRUE(to_delete.empty());
}
TEST_F(MemTableListTest, AtomicFlusTest) {
const int num_cfs = 3;
const int num_tables_per_cf = 2;
SequenceNumber seq = 1;
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableOptions ioptions(options);
InternalKeyComparator cmp(BytewiseComparator());
WriteBufferManager wb(options.db_write_buffer_size);
// Create MemTableLists
int min_write_buffer_number_to_merge = 3;
int max_write_buffer_number_to_maintain = 7;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
int64_t max_write_buffer_size_to_maintain =
7 * static_cast<int64_t>(options.write_buffer_size);
autovector<MemTableList*> lists;
for (int i = 0; i != num_cfs; ++i) {
lists.emplace_back(new MemTableList(min_write_buffer_number_to_merge,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
5 years ago
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain));
}
autovector<uint32_t> cf_ids;
std::vector<std::vector<MemTable*>> tables(num_cfs);
autovector<const MutableCFOptions*> mutable_cf_options_list;
uint32_t cf_id = 0;
for (auto& elem : tables) {
mutable_cf_options_list.emplace_back(new MutableCFOptions(options));
uint64_t memtable_id = 0;
for (int i = 0; i != num_tables_per_cf; ++i) {
MemTable* mem =
new MemTable(cmp, ioptions, *(mutable_cf_options_list.back()), &wb,
kMaxSequenceNumber, cf_id);
mem->SetID(memtable_id++);
mem->Ref();
std::string value;
ASSERT_OK(mem->Add(++seq, kTypeValue, "key1", std::to_string(i),
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyN" + std::to_string(i),
"valueN", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyX" + std::to_string(i), "value",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeValue, "keyM" + std::to_string(i),
"valueM", nullptr /* kv_prot_info */));
ASSERT_OK(mem->Add(++seq, kTypeDeletion, "keyX" + std::to_string(i), "",
Integrity protection for live updates to WriteBatch (#7748) Summary: This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.). The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer. When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748 Test Plan: - an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught - add to stress/crash test to verify it works in variety of configs/operations without intentional corruption - [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc. Reviewed By: pdillinger Differential Revision: D25754492 Pulled By: ajkr fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
4 years ago
nullptr /* kv_prot_info */));
elem.push_back(mem);
}
cf_ids.push_back(cf_id++);
}
std::vector<autovector<MemTable*>> flush_candidates(num_cfs);
// Nothing to flush
for (auto i = 0; i != num_cfs; ++i) {
auto* list = lists[i];
ASSERT_FALSE(list->IsFlushPending());
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
list->PickMemtablesToFlush(
std::numeric_limits<uint64_t>::max() /* memtable_id */,
&flush_candidates[i]);
ASSERT_EQ(0, flush_candidates[i].size());
}
// Request flush even though there is nothing to flush
for (auto i = 0; i != num_cfs; ++i) {
auto* list = lists[i];
list->FlushRequested();
ASSERT_FALSE(list->IsFlushPending());
ASSERT_FALSE(list->imm_flush_needed.load(std::memory_order_acquire));
}
autovector<MemTable*> to_delete;
// Add tables to the immutable memtalbe lists associated with column families
for (auto i = 0; i != num_cfs; ++i) {
for (auto j = 0; j != num_tables_per_cf; ++j) {
lists[i]->Add(tables[i][j], &to_delete);
}
ASSERT_EQ(num_tables_per_cf, lists[i]->NumNotFlushed());
ASSERT_TRUE(lists[i]->IsFlushPending());
ASSERT_TRUE(lists[i]->imm_flush_needed.load(std::memory_order_acquire));
}
std::vector<uint64_t> flush_memtable_ids = {1, 1, 0};
// +----+
// list[0]: |0 1|
// list[1]: |0 1|
// | +--+
// list[2]: |0| 1
// +-+
// Pick memtables to flush
for (auto i = 0; i != num_cfs; ++i) {
flush_candidates[i].clear();
lists[i]->PickMemtablesToFlush(flush_memtable_ids[i], &flush_candidates[i]);
ASSERT_EQ(flush_memtable_ids[i] - 0 + 1,
static_cast<uint64_t>(flush_candidates[i].size()));
}
autovector<MemTableList*> tmp_lists;
autovector<uint32_t> tmp_cf_ids;
autovector<const MutableCFOptions*> tmp_options_list;
autovector<const autovector<MemTable*>*> to_flush;
for (auto i = 0; i != num_cfs; ++i) {
if (!flush_candidates[i].empty()) {
to_flush.push_back(&flush_candidates[i]);
tmp_lists.push_back(lists[i]);
tmp_cf_ids.push_back(i);
tmp_options_list.push_back(mutable_cf_options_list[i]);
}
}
Status s = Mock_InstallMemtableAtomicFlushResults(
tmp_lists, tmp_cf_ids, tmp_options_list, to_flush, &to_delete);
ASSERT_OK(s);
for (auto i = 0; i != num_cfs; ++i) {
for (auto j = 0; j != num_tables_per_cf; ++j) {
if (static_cast<uint64_t>(j) <= flush_memtable_ids[i]) {
ASSERT_LT(0, tables[i][j]->GetFileNumber());
}
}
ASSERT_EQ(
static_cast<size_t>(num_tables_per_cf) - flush_candidates[i].size(),
lists[i]->NumNotFlushed());
}
to_delete.clear();
for (auto list : lists) {
list->current()->Unref(&to_delete);
delete list;
}
for (auto& mutable_cf_options : mutable_cf_options_list) {
if (mutable_cf_options != nullptr) {
delete mutable_cf_options;
mutable_cf_options = nullptr;
}
}
// All memtables in tables array must have been flushed, thus ready to be
// deleted.
ASSERT_EQ(to_delete.size(), tables.size() * tables.front().size());
for (const auto& m : to_delete) {
// Refcount should be 0 after calling InstallMemtableFlushResults.
// Verify this by Ref'ing and then Unref'ing.
m->Ref();
ASSERT_EQ(m, m->Unref());
delete m;
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}