|
|
|
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under the BSD-style license found in the
|
|
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
//
|
|
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
//
|
|
|
|
// Thread safety
|
|
|
|
// -------------
|
|
|
|
//
|
|
|
|
// Writes require external synchronization, most likely a mutex.
|
|
|
|
// Reads require a guarantee that the SkipList will not be destroyed
|
|
|
|
// while the read is in progress. Apart from that, reads progress
|
|
|
|
// without any internal locking or synchronization.
|
|
|
|
//
|
|
|
|
// Invariants:
|
|
|
|
//
|
|
|
|
// (1) Allocated nodes are never deleted until the SkipList is
|
|
|
|
// destroyed. This is trivially guaranteed by the code since we
|
|
|
|
// never delete any skip list nodes.
|
|
|
|
//
|
|
|
|
// (2) The contents of a Node except for the next/prev pointers are
|
|
|
|
// immutable after the Node has been linked into the SkipList.
|
|
|
|
// Only Insert() modifies the list, and it is careful to initialize
|
|
|
|
// a node and use release-stores to publish the nodes in one or
|
|
|
|
// more lists.
|
|
|
|
//
|
|
|
|
// ... prev vs. next pointer ordering ...
|
|
|
|
//
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
#include <assert.h>
|
|
|
|
#include <atomic>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "port/port.h"
|
|
|
|
#include "util/allocator.h"
|
|
|
|
#include "util/random.h"
|
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
class SkipList {
|
|
|
|
private:
|
|
|
|
struct Node;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Create a new SkipList object that will use "cmp" for comparing keys,
|
|
|
|
// and will allocate memory using "*allocator". Objects allocated in the
|
|
|
|
// allocator must remain allocated for the lifetime of the skiplist object.
|
|
|
|
explicit SkipList(Comparator cmp, Allocator* allocator,
|
|
|
|
int32_t max_height = 12, int32_t branching_factor = 4);
|
|
|
|
|
|
|
|
// Insert key into the list.
|
|
|
|
// REQUIRES: nothing that compares equal to key is currently in the list.
|
|
|
|
void Insert(const Key& key);
|
|
|
|
|
|
|
|
// Returns true iff an entry that compares equal to key is in the list.
|
|
|
|
bool Contains(const Key& key) const;
|
|
|
|
|
|
|
|
// Return estimated number of entries smaller than `key`.
|
|
|
|
uint64_t EstimateCount(const Key& key) const;
|
|
|
|
|
|
|
|
// Iteration over the contents of a skip list
|
|
|
|
class Iterator {
|
|
|
|
public:
|
|
|
|
// Initialize an iterator over the specified list.
|
|
|
|
// The returned iterator is not valid.
|
|
|
|
explicit Iterator(const SkipList* list);
|
|
|
|
|
|
|
|
// Change the underlying skiplist used for this iterator
|
|
|
|
// This enables us not changing the iterator without deallocating
|
|
|
|
// an old one and then allocating a new one
|
|
|
|
void SetList(const SkipList* list);
|
|
|
|
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
|
|
bool Valid() const;
|
|
|
|
|
|
|
|
// Returns the key at the current position.
|
|
|
|
// REQUIRES: Valid()
|
|
|
|
const Key& key() const;
|
|
|
|
|
|
|
|
// Advances to the next position.
|
|
|
|
// REQUIRES: Valid()
|
|
|
|
void Next();
|
|
|
|
|
|
|
|
// Advances to the previous position.
|
|
|
|
// REQUIRES: Valid()
|
|
|
|
void Prev();
|
|
|
|
|
|
|
|
// Advance to the first entry with a key >= target
|
|
|
|
void Seek(const Key& target);
|
|
|
|
|
|
|
|
// Position at the first entry in list.
|
|
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
|
|
void SeekToFirst();
|
|
|
|
|
|
|
|
// Position at the last entry in list.
|
|
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
|
|
void SeekToLast();
|
|
|
|
|
|
|
|
private:
|
|
|
|
const SkipList* list_;
|
|
|
|
Node* node_;
|
|
|
|
// Intentionally copyable
|
|
|
|
};
|
|
|
|
|
|
|
|
private:
|
|
|
|
const uint16_t kMaxHeight_;
|
|
|
|
const uint16_t kBranching_;
|
|
|
|
const uint32_t kScaledInverseBranching_;
|
|
|
|
|
|
|
|
// Immutable after construction
|
|
|
|
Comparator const compare_;
|
|
|
|
Allocator* const allocator_; // Allocator used for allocations of nodes
|
|
|
|
|
|
|
|
Node* const head_;
|
|
|
|
|
|
|
|
// Modified only by Insert(). Read racily by readers, but stale
|
|
|
|
// values are ok.
|
|
|
|
std::atomic<int> max_height_; // Height of the entire list
|
|
|
|
|
|
|
|
// Used for optimizing sequential insert patterns. Tricky. prev_[i] for
|
|
|
|
// i up to max_height_ is the predecessor of prev_[0] and prev_height_
|
|
|
|
// is the height of prev_[0]. prev_[0] can only be equal to head before
|
|
|
|
// insertion, in which case max_height_ and prev_height_ are 1.
|
|
|
|
Node** prev_;
|
|
|
|
int32_t prev_height_;
|
|
|
|
|
|
|
|
inline int GetMaxHeight() const {
|
|
|
|
return max_height_.load(std::memory_order_relaxed);
|
|
|
|
}
|
|
|
|
|
|
|
|
Node* NewNode(const Key& key, int height);
|
|
|
|
int RandomHeight();
|
|
|
|
bool Equal(const Key& a, const Key& b) const { return (compare_(a, b) == 0); }
|
|
|
|
|
|
|
|
// Return true if key is greater than the data stored in "n"
|
|
|
|
bool KeyIsAfterNode(const Key& key, Node* n) const;
|
|
|
|
|
|
|
|
// Returns the earliest node with a key >= key.
|
|
|
|
// Return nullptr if there is no such node.
|
|
|
|
Node* FindGreaterOrEqual(const Key& key) const;
|
|
|
|
|
|
|
|
// Return the latest node with a key < key.
|
|
|
|
// Return head_ if there is no such node.
|
|
|
|
// Fills prev[level] with pointer to previous node at "level" for every
|
|
|
|
// level in [0..max_height_-1], if prev is non-null.
|
|
|
|
Node* FindLessThan(const Key& key, Node** prev = nullptr) const;
|
|
|
|
|
|
|
|
// Return the last node in the list.
|
|
|
|
// Return head_ if list is empty.
|
|
|
|
Node* FindLast() const;
|
|
|
|
|
|
|
|
// No copying allowed
|
|
|
|
SkipList(const SkipList&);
|
|
|
|
void operator=(const SkipList&);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Implementation details follow
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
struct SkipList<Key, Comparator>::Node {
|
|
|
|
explicit Node(const Key& k) : key(k) { }
|
|
|
|
|
|
|
|
Key const key;
|
|
|
|
|
|
|
|
// Accessors/mutators for links. Wrapped in methods so we can
|
|
|
|
// add the appropriate barriers as necessary.
|
|
|
|
Node* Next(int n) {
|
|
|
|
assert(n >= 0);
|
|
|
|
// Use an 'acquire load' so that we observe a fully initialized
|
|
|
|
// version of the returned Node.
|
|
|
|
return (next_[n].load(std::memory_order_acquire));
|
|
|
|
}
|
|
|
|
void SetNext(int n, Node* x) {
|
|
|
|
assert(n >= 0);
|
|
|
|
// Use a 'release store' so that anybody who reads through this
|
|
|
|
// pointer observes a fully initialized version of the inserted node.
|
|
|
|
next_[n].store(x, std::memory_order_release);
|
|
|
|
}
|
|
|
|
|
|
|
|
// No-barrier variants that can be safely used in a few locations.
|
|
|
|
Node* NoBarrier_Next(int n) {
|
|
|
|
assert(n >= 0);
|
|
|
|
return next_[n].load(std::memory_order_relaxed);
|
|
|
|
}
|
|
|
|
void NoBarrier_SetNext(int n, Node* x) {
|
|
|
|
assert(n >= 0);
|
|
|
|
next_[n].store(x, std::memory_order_relaxed);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Array of length equal to the node height. next_[0] is lowest level link.
|
|
|
|
std::atomic<Node*> next_[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
typename SkipList<Key, Comparator>::Node*
|
|
|
|
SkipList<Key, Comparator>::NewNode(const Key& key, int height) {
|
|
|
|
char* mem = allocator_->AllocateAligned(
|
|
|
|
sizeof(Node) + sizeof(std::atomic<Node*>) * (height - 1));
|
|
|
|
return new (mem) Node(key);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline SkipList<Key, Comparator>::Iterator::Iterator(const SkipList* list) {
|
|
|
|
SetList(list);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::SetList(const SkipList* list) {
|
|
|
|
list_ = list;
|
|
|
|
node_ = nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline bool SkipList<Key, Comparator>::Iterator::Valid() const {
|
|
|
|
return node_ != nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline const Key& SkipList<Key, Comparator>::Iterator::key() const {
|
|
|
|
assert(Valid());
|
|
|
|
return node_->key;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::Next() {
|
|
|
|
assert(Valid());
|
|
|
|
node_ = node_->Next(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::Prev() {
|
|
|
|
// Instead of using explicit "prev" links, we just search for the
|
|
|
|
// last node that falls before key.
|
|
|
|
assert(Valid());
|
|
|
|
node_ = list_->FindLessThan(node_->key);
|
|
|
|
if (node_ == list_->head_) {
|
|
|
|
node_ = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::Seek(const Key& target) {
|
|
|
|
node_ = list_->FindGreaterOrEqual(target);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::SeekToFirst() {
|
|
|
|
node_ = list_->head_->Next(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
inline void SkipList<Key, Comparator>::Iterator::SeekToLast() {
|
|
|
|
node_ = list_->FindLast();
|
|
|
|
if (node_ == list_->head_) {
|
|
|
|
node_ = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
int SkipList<Key, Comparator>::RandomHeight() {
|
|
|
|
auto rnd = Random::GetTLSInstance();
|
|
|
|
|
|
|
|
// Increase height with probability 1 in kBranching
|
|
|
|
int height = 1;
|
|
|
|
while (height < kMaxHeight_ && rnd->Next() < kScaledInverseBranching_) {
|
|
|
|
height++;
|
|
|
|
}
|
|
|
|
assert(height > 0);
|
|
|
|
assert(height <= kMaxHeight_);
|
|
|
|
return height;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
bool SkipList<Key, Comparator>::KeyIsAfterNode(const Key& key, Node* n) const {
|
|
|
|
// nullptr n is considered infinite
|
|
|
|
return (n != nullptr) && (compare_(n->key, key) < 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::
|
|
|
|
FindGreaterOrEqual(const Key& key) const {
|
|
|
|
// Note: It looks like we could reduce duplication by implementing
|
|
|
|
// this function as FindLessThan(key)->Next(0), but we wouldn't be able
|
|
|
|
// to exit early on equality and the result wouldn't even be correct.
|
|
|
|
// A concurrent insert might occur after FindLessThan(key) but before
|
|
|
|
// we get a chance to call Next(0).
|
|
|
|
Node* x = head_;
|
|
|
|
int level = GetMaxHeight() - 1;
|
|
|
|
Node* last_bigger = nullptr;
|
|
|
|
while (true) {
|
|
|
|
Node* next = x->Next(level);
|
|
|
|
// Make sure the lists are sorted
|
|
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->key, x));
|
|
|
|
// Make sure we haven't overshot during our search
|
|
|
|
assert(x == head_ || KeyIsAfterNode(key, x));
|
|
|
|
int cmp = (next == nullptr || next == last_bigger)
|
|
|
|
? 1 : compare_(next->key, key);
|
|
|
|
if (cmp == 0 || (cmp > 0 && level == 0)) {
|
|
|
|
return next;
|
|
|
|
} else if (cmp < 0) {
|
|
|
|
// Keep searching in this list
|
|
|
|
x = next;
|
|
|
|
} else {
|
|
|
|
// Switch to next list, reuse compare_() result
|
|
|
|
last_bigger = next;
|
|
|
|
level--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
typename SkipList<Key, Comparator>::Node*
|
|
|
|
SkipList<Key, Comparator>::FindLessThan(const Key& key, Node** prev) const {
|
|
|
|
Node* x = head_;
|
|
|
|
int level = GetMaxHeight() - 1;
|
|
|
|
// KeyIsAfter(key, last_not_after) is definitely false
|
|
|
|
Node* last_not_after = nullptr;
|
|
|
|
while (true) {
|
|
|
|
Node* next = x->Next(level);
|
|
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->key, x));
|
|
|
|
assert(x == head_ || KeyIsAfterNode(key, x));
|
|
|
|
if (next != last_not_after && KeyIsAfterNode(key, next)) {
|
|
|
|
// Keep searching in this list
|
|
|
|
x = next;
|
|
|
|
} else {
|
|
|
|
if (prev != nullptr) {
|
|
|
|
prev[level] = x;
|
|
|
|
}
|
|
|
|
if (level == 0) {
|
|
|
|
return x;
|
|
|
|
} else {
|
|
|
|
// Switch to next list, reuse KeyIUsAfterNode() result
|
|
|
|
last_not_after = next;
|
|
|
|
level--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::FindLast()
|
|
|
|
const {
|
|
|
|
Node* x = head_;
|
|
|
|
int level = GetMaxHeight() - 1;
|
|
|
|
while (true) {
|
|
|
|
Node* next = x->Next(level);
|
|
|
|
if (next == nullptr) {
|
|
|
|
if (level == 0) {
|
|
|
|
return x;
|
|
|
|
} else {
|
|
|
|
// Switch to next list
|
|
|
|
level--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
x = next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Key, class Comparator>
|
|
|
|
uint64_t SkipList<Key, Comparator>::EstimateCount(const Key& key) const {
|
|
|
|
uint64_t count = 0;
|
|
|
|
|
|
|
|
Node* x = head_;
|
|
|
|
int level = GetMaxHeight() - 1;
|
|
|
|
while (true) {
|
|
|
|
assert(x == head_ || compare_(x->key, key) < 0);
|
|
|
|
Node* next = x->Next(level);
|
|
|
|
if (next == nullptr || compare_(next->key, key) >= 0) {
|
|
|
|
if (level == 0) {
|
|
|
|
return count;
|
|
|
|
} else {
|
|
|
|
// Switch to next list
|
|
|
|
count *= kBranching_;
|
|
|
|
level--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
x = next;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Key, class Comparator>
|
|
|
|
SkipList<Key, Comparator>::SkipList(const Comparator cmp, Allocator* allocator,
|
|
|
|
int32_t max_height,
|
|
|
|
int32_t branching_factor)
|
|
|
|
: kMaxHeight_(max_height),
|
|
|
|
kBranching_(branching_factor),
|
|
|
|
kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
|
|
|
|
compare_(cmp),
|
|
|
|
allocator_(allocator),
|
|
|
|
head_(NewNode(0 /* any key will do */, max_height)),
|
|
|
|
max_height_(1),
|
|
|
|
prev_height_(1) {
|
|
|
|
assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
|
|
|
|
assert(branching_factor > 0 &&
|
|
|
|
kBranching_ == static_cast<uint32_t>(branching_factor));
|
|
|
|
assert(kScaledInverseBranching_ > 0);
|
|
|
|
// Allocate the prev_ Node* array, directly from the passed-in allocator.
|
|
|
|
// prev_ does not need to be freed, as its life cycle is tied up with
|
|
|
|
// the allocator as a whole.
|
|
|
|
prev_ = reinterpret_cast<Node**>(
|
|
|
|
allocator_->AllocateAligned(sizeof(Node*) * kMaxHeight_));
|
|
|
|
for (int i = 0; i < kMaxHeight_; i++) {
|
|
|
|
head_->SetNext(i, nullptr);
|
|
|
|
prev_[i] = head_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
void SkipList<Key, Comparator>::Insert(const Key& key) {
|
|
|
|
// fast path for sequential insertion
|
|
|
|
if (!KeyIsAfterNode(key, prev_[0]->NoBarrier_Next(0)) &&
|
|
|
|
(prev_[0] == head_ || KeyIsAfterNode(key, prev_[0]))) {
|
|
|
|
assert(prev_[0] != head_ || (prev_height_ == 1 && GetMaxHeight() == 1));
|
|
|
|
|
|
|
|
// Outside of this method prev_[1..max_height_] is the predecessor
|
|
|
|
// of prev_[0], and prev_height_ refers to prev_[0]. Inside Insert
|
|
|
|
// prev_[0..max_height - 1] is the predecessor of key. Switch from
|
|
|
|
// the external state to the internal
|
|
|
|
for (int i = 1; i < prev_height_; i++) {
|
|
|
|
prev_[i] = prev_[0];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// TODO(opt): we could use a NoBarrier predecessor search as an
|
|
|
|
// optimization for architectures where memory_order_acquire needs
|
|
|
|
// a synchronization instruction. Doesn't matter on x86
|
|
|
|
FindLessThan(key, prev_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Our data structure does not allow duplicate insertion
|
|
|
|
assert(prev_[0]->Next(0) == nullptr || !Equal(key, prev_[0]->Next(0)->key));
|
|
|
|
|
|
|
|
int height = RandomHeight();
|
|
|
|
if (height > GetMaxHeight()) {
|
|
|
|
for (int i = GetMaxHeight(); i < height; i++) {
|
|
|
|
prev_[i] = head_;
|
|
|
|
}
|
|
|
|
//fprintf(stderr, "Change height from %d to %d\n", max_height_, height);
|
|
|
|
|
|
|
|
// It is ok to mutate max_height_ without any synchronization
|
|
|
|
// with concurrent readers. A concurrent reader that observes
|
|
|
|
// the new value of max_height_ will see either the old value of
|
|
|
|
// new level pointers from head_ (nullptr), or a new value set in
|
|
|
|
// the loop below. In the former case the reader will
|
|
|
|
// immediately drop to the next level since nullptr sorts after all
|
|
|
|
// keys. In the latter case the reader will use the new node.
|
|
|
|
max_height_.store(height, std::memory_order_relaxed);
|
|
|
|
}
|
|
|
|
|
|
|
|
Node* x = NewNode(key, height);
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
|
|
// NoBarrier_SetNext() suffices since we will add a barrier when
|
|
|
|
// we publish a pointer to "x" in prev[i].
|
|
|
|
x->NoBarrier_SetNext(i, prev_[i]->NoBarrier_Next(i));
|
|
|
|
prev_[i]->SetNext(i, x);
|
|
|
|
}
|
|
|
|
prev_[0] = x;
|
|
|
|
prev_height_ = height;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Key, class Comparator>
|
|
|
|
bool SkipList<Key, Comparator>::Contains(const Key& key) const {
|
|
|
|
Node* x = FindGreaterOrEqual(key);
|
|
|
|
if (x != nullptr && Equal(key, x->key)) {
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace rocksdb
|