|
|
|
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef GFLAGS
|
|
|
|
#include <cstdio>
|
|
|
|
int main() { fprintf(stderr, "Please install gflags to run tools\n"); }
|
|
|
|
#else
|
|
|
|
#include <atomic>
|
|
|
|
#include <functional>
|
|
|
|
#include <memory>
|
|
|
|
#include <sstream>
|
|
|
|
#include <unordered_map>
|
|
|
|
|
|
|
|
#include "monitoring/histogram.h"
|
|
|
|
#include "port/port.h"
|
|
|
|
#include "rocksdb/env.h"
|
|
|
|
#include "rocksdb/system_clock.h"
|
|
|
|
#include "table/block_based/block_builder.h"
|
|
|
|
#include "util/gflags_compat.h"
|
|
|
|
#include "util/mutexlock.h"
|
|
|
|
#include "util/stop_watch.h"
|
|
|
|
#include "utilities/persistent_cache/block_cache_tier.h"
|
|
|
|
#include "utilities/persistent_cache/persistent_cache_tier.h"
|
|
|
|
#include "utilities/persistent_cache/volatile_tier_impl.h"
|
|
|
|
|
|
|
|
DEFINE_int32(nsec, 10, "nsec");
|
|
|
|
DEFINE_int32(nthread_write, 1, "Insert threads");
|
|
|
|
DEFINE_int32(nthread_read, 1, "Lookup threads");
|
|
|
|
DEFINE_string(path, "/tmp/microbench/blkcache", "Path for cachefile");
|
|
|
|
DEFINE_string(log_path, "/tmp/log", "Path for the log file");
|
|
|
|
DEFINE_uint64(cache_size, std::numeric_limits<uint64_t>::max(), "Cache size");
|
|
|
|
DEFINE_int32(iosize, 4 * 1024, "Read IO size");
|
|
|
|
DEFINE_int32(writer_iosize, 4 * 1024, "File writer IO size");
|
|
|
|
DEFINE_int32(writer_qdepth, 1, "File writer qdepth");
|
|
|
|
DEFINE_bool(enable_pipelined_writes, false, "Enable async writes");
|
|
|
|
DEFINE_string(cache_type, "block_cache",
|
|
|
|
"Cache type. (block_cache, volatile, tiered)");
|
|
|
|
DEFINE_bool(benchmark, false, "Benchmark mode");
|
|
|
|
DEFINE_int32(volatile_cache_pct, 10, "Percentage of cache in memory tier.");
|
|
|
|
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
|
|
|
|
std::unique_ptr<PersistentCacheTier> NewVolatileCache() {
|
|
|
|
assert(FLAGS_cache_size != std::numeric_limits<uint64_t>::max());
|
|
|
|
std::unique_ptr<PersistentCacheTier> pcache(
|
|
|
|
new VolatileCacheTier(FLAGS_cache_size));
|
|
|
|
return pcache;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<PersistentCacheTier> NewBlockCache() {
|
|
|
|
std::shared_ptr<Logger> log;
|
|
|
|
if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
|
|
|
|
fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
PersistentCacheConfig opt(Env::Default(), FLAGS_path, FLAGS_cache_size, log);
|
|
|
|
opt.writer_dispatch_size = FLAGS_writer_iosize;
|
|
|
|
opt.writer_qdepth = FLAGS_writer_qdepth;
|
|
|
|
opt.pipeline_writes = FLAGS_enable_pipelined_writes;
|
|
|
|
opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
|
|
|
|
std::unique_ptr<PersistentCacheTier> cache(new BlockCacheTier(opt));
|
|
|
|
Status status = cache->Open();
|
|
|
|
return cache;
|
|
|
|
}
|
|
|
|
|
|
|
|
// create a new cache tier
|
|
|
|
// construct a tiered RAM+Block cache
|
|
|
|
std::unique_ptr<PersistentTieredCache> NewTieredCache(
|
|
|
|
const size_t mem_size, const PersistentCacheConfig& opt) {
|
|
|
|
std::unique_ptr<PersistentTieredCache> tcache(new PersistentTieredCache());
|
|
|
|
// create primary tier
|
|
|
|
assert(mem_size);
|
|
|
|
auto pcache =
|
|
|
|
std::shared_ptr<PersistentCacheTier>(new VolatileCacheTier(mem_size));
|
|
|
|
tcache->AddTier(pcache);
|
|
|
|
// create secondary tier
|
|
|
|
auto scache = std::shared_ptr<PersistentCacheTier>(new BlockCacheTier(opt));
|
|
|
|
tcache->AddTier(scache);
|
|
|
|
|
|
|
|
Status s = tcache->Open();
|
|
|
|
assert(s.ok());
|
|
|
|
return tcache;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<PersistentTieredCache> NewTieredCache() {
|
|
|
|
std::shared_ptr<Logger> log;
|
|
|
|
if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
|
|
|
|
fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto pct = FLAGS_volatile_cache_pct / static_cast<double>(100);
|
|
|
|
PersistentCacheConfig opt(Env::Default(), FLAGS_path,
|
|
|
|
(1 - pct) * FLAGS_cache_size, log);
|
|
|
|
opt.writer_dispatch_size = FLAGS_writer_iosize;
|
|
|
|
opt.writer_qdepth = FLAGS_writer_qdepth;
|
|
|
|
opt.pipeline_writes = FLAGS_enable_pipelined_writes;
|
|
|
|
opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
|
|
|
|
return NewTieredCache(FLAGS_cache_size * pct, opt);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Benchmark driver
|
|
|
|
//
|
|
|
|
class CacheTierBenchmark {
|
|
|
|
public:
|
|
|
|
explicit CacheTierBenchmark(std::shared_ptr<PersistentCacheTier>&& cache)
|
|
|
|
: cache_(cache) {
|
|
|
|
if (FLAGS_nthread_read) {
|
|
|
|
fprintf(stdout, "Pre-populating\n");
|
|
|
|
Prepop();
|
|
|
|
fprintf(stdout, "Pre-population completed\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
stats_.Clear();
|
|
|
|
|
|
|
|
// Start IO threads
|
|
|
|
std::list<port::Thread> threads;
|
|
|
|
Spawn(FLAGS_nthread_write, &threads,
|
|
|
|
std::bind(&CacheTierBenchmark::Write, this));
|
|
|
|
Spawn(FLAGS_nthread_read, &threads,
|
|
|
|
std::bind(&CacheTierBenchmark::Read, this));
|
|
|
|
|
|
|
|
// Wait till FLAGS_nsec and then signal to quit
|
|
|
|
StopWatchNano t(SystemClock::Default().get(), /*auto_start=*/true);
|
|
|
|
size_t sec = t.ElapsedNanos() / 1000000000ULL;
|
|
|
|
while (!quit_) {
|
|
|
|
sec = t.ElapsedNanos() / 1000000000ULL;
|
|
|
|
quit_ = sec > size_t(FLAGS_nsec);
|
|
|
|
/* sleep override */ sleep(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait for threads to exit
|
|
|
|
Join(&threads);
|
|
|
|
// Print stats
|
|
|
|
PrintStats(sec);
|
|
|
|
// Close the cache
|
|
|
|
cache_->TEST_Flush();
|
|
|
|
cache_->Close();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void PrintStats(const size_t sec) {
|
|
|
|
std::ostringstream msg;
|
|
|
|
msg << "Test stats" << std::endl
|
|
|
|
<< "* Elapsed: " << sec << " s" << std::endl
|
|
|
|
<< "* Write Latency:" << std::endl
|
|
|
|
<< stats_.write_latency_.ToString() << std::endl
|
|
|
|
<< "* Read Latency:" << std::endl
|
|
|
|
<< stats_.read_latency_.ToString() << std::endl
|
|
|
|
<< "* Bytes written:" << std::endl
|
|
|
|
<< stats_.bytes_written_.ToString() << std::endl
|
|
|
|
<< "* Bytes read:" << std::endl
|
|
|
|
<< stats_.bytes_read_.ToString() << std::endl
|
|
|
|
<< "Cache stats:" << std::endl
|
|
|
|
<< cache_->PrintStats() << std::endl;
|
|
|
|
fprintf(stderr, "%s\n", msg.str().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Insert implementation and corresponding helper functions
|
|
|
|
//
|
|
|
|
void Prepop() {
|
|
|
|
for (uint64_t i = 0; i < 1024 * 1024; ++i) {
|
|
|
|
InsertKey(i);
|
|
|
|
insert_key_limit_++;
|
|
|
|
read_key_limit_++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until data is flushed
|
|
|
|
cache_->TEST_Flush();
|
|
|
|
// warmup the cache
|
|
|
|
for (uint64_t i = 0; i < 1024 * 1024; ReadKey(i++)) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Write() {
|
|
|
|
while (!quit_) {
|
|
|
|
InsertKey(insert_key_limit_++);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void InsertKey(const uint64_t key) {
|
|
|
|
// construct key
|
|
|
|
uint64_t k[3];
|
|
|
|
Slice block_key = FillKey(k, key);
|
|
|
|
|
|
|
|
// construct value
|
|
|
|
auto block = NewBlock(key);
|
|
|
|
|
|
|
|
// insert
|
|
|
|
StopWatchNano timer(SystemClock::Default().get(), /*auto_start=*/true);
|
|
|
|
while (true) {
|
|
|
|
Status status = cache_->Insert(block_key, block.get(), FLAGS_iosize);
|
|
|
|
if (status.ok()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// transient error is possible if we run without pipelining
|
|
|
|
assert(!FLAGS_enable_pipelined_writes);
|
|
|
|
}
|
|
|
|
|
|
|
|
// adjust stats
|
|
|
|
const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
|
|
|
|
stats_.write_latency_.Add(elapsed_micro);
|
|
|
|
stats_.bytes_written_.Add(FLAGS_iosize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Read implementation
|
|
|
|
//
|
|
|
|
void Read() {
|
|
|
|
while (!quit_) {
|
|
|
|
ReadKey(random() % read_key_limit_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ReadKey(const uint64_t val) {
|
|
|
|
// construct key
|
|
|
|
uint64_t k[3];
|
|
|
|
Slice key = FillKey(k, val);
|
|
|
|
|
|
|
|
// Lookup in cache
|
|
|
|
StopWatchNano timer(SystemClock::Default().get(), /*auto_start=*/true);
|
|
|
|
std::unique_ptr<char[]> block;
|
|
|
|
size_t size;
|
|
|
|
Status status = cache_->Lookup(key, &block, &size);
|
|
|
|
if (!status.ok()) {
|
|
|
|
fprintf(stderr, "%s\n", status.ToString().c_str());
|
|
|
|
}
|
|
|
|
assert(status.ok());
|
|
|
|
assert(size == (size_t)FLAGS_iosize);
|
|
|
|
|
|
|
|
// adjust stats
|
|
|
|
const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
|
|
|
|
stats_.read_latency_.Add(elapsed_micro);
|
|
|
|
stats_.bytes_read_.Add(FLAGS_iosize);
|
|
|
|
|
|
|
|
// verify content
|
|
|
|
if (!FLAGS_benchmark) {
|
|
|
|
auto expected_block = NewBlock(val);
|
|
|
|
assert(memcmp(block.get(), expected_block.get(), FLAGS_iosize) == 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// create data for a key by filling with a certain pattern
|
|
|
|
std::unique_ptr<char[]> NewBlock(const uint64_t val) {
|
|
|
|
std::unique_ptr<char[]> data(new char[FLAGS_iosize]);
|
|
|
|
memset(data.get(), val % 255, FLAGS_iosize);
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
|
|
|
|
// spawn threads
|
|
|
|
void Spawn(const size_t n, std::list<port::Thread>* threads,
|
|
|
|
const std::function<void()>& fn) {
|
|
|
|
for (size_t i = 0; i < n; ++i) {
|
|
|
|
threads->emplace_back(fn);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// join threads
|
|
|
|
void Join(std::list<port::Thread>* threads) {
|
|
|
|
for (auto& th : *threads) {
|
|
|
|
th.join();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// construct key
|
|
|
|
Slice FillKey(uint64_t (&k)[3], const uint64_t val) {
|
|
|
|
k[0] = k[1] = 0;
|
|
|
|
k[2] = val;
|
|
|
|
void* p = static_cast<void*>(&k);
|
|
|
|
return Slice(static_cast<char*>(p), sizeof(k));
|
|
|
|
}
|
|
|
|
|
|
|
|
// benchmark stats
|
|
|
|
struct Stats {
|
|
|
|
void Clear() {
|
|
|
|
bytes_written_.Clear();
|
|
|
|
bytes_read_.Clear();
|
|
|
|
read_latency_.Clear();
|
|
|
|
write_latency_.Clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
HistogramImpl bytes_written_;
|
|
|
|
HistogramImpl bytes_read_;
|
|
|
|
HistogramImpl read_latency_;
|
|
|
|
HistogramImpl write_latency_;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::shared_ptr<PersistentCacheTier> cache_; // cache implementation
|
|
|
|
std::atomic<uint64_t> insert_key_limit_{0}; // data inserted upto
|
|
|
|
std::atomic<uint64_t> read_key_limit_{0}; // data can be read safely upto
|
|
|
|
bool quit_ = false; // Quit thread ?
|
|
|
|
mutable Stats stats_; // Stats
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
|
|
|
|
//
|
|
|
|
// main
|
|
|
|
//
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
GFLAGS_NAMESPACE::SetUsageMessage(std::string("\nUSAGE:\n") +
|
|
|
|
std::string(argv[0]) + " [OPTIONS]...");
|
|
|
|
GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, false);
|
|
|
|
|
|
|
|
std::ostringstream msg;
|
|
|
|
msg << "Config" << std::endl
|
|
|
|
<< "======" << std::endl
|
|
|
|
<< "* nsec=" << FLAGS_nsec << std::endl
|
|
|
|
<< "* nthread_write=" << FLAGS_nthread_write << std::endl
|
|
|
|
<< "* path=" << FLAGS_path << std::endl
|
|
|
|
<< "* cache_size=" << FLAGS_cache_size << std::endl
|
|
|
|
<< "* iosize=" << FLAGS_iosize << std::endl
|
|
|
|
<< "* writer_iosize=" << FLAGS_writer_iosize << std::endl
|
|
|
|
<< "* writer_qdepth=" << FLAGS_writer_qdepth << std::endl
|
|
|
|
<< "* enable_pipelined_writes=" << FLAGS_enable_pipelined_writes
|
|
|
|
<< std::endl
|
|
|
|
<< "* cache_type=" << FLAGS_cache_type << std::endl
|
|
|
|
<< "* benchmark=" << FLAGS_benchmark << std::endl
|
|
|
|
<< "* volatile_cache_pct=" << FLAGS_volatile_cache_pct << std::endl;
|
|
|
|
|
|
|
|
fprintf(stderr, "%s\n", msg.str().c_str());
|
|
|
|
|
|
|
|
std::shared_ptr<ROCKSDB_NAMESPACE::PersistentCacheTier> cache;
|
|
|
|
if (FLAGS_cache_type == "block_cache") {
|
|
|
|
fprintf(stderr, "Using block cache implementation\n");
|
|
|
|
cache = ROCKSDB_NAMESPACE::NewBlockCache();
|
|
|
|
} else if (FLAGS_cache_type == "volatile") {
|
|
|
|
fprintf(stderr, "Using volatile cache implementation\n");
|
|
|
|
cache = ROCKSDB_NAMESPACE::NewVolatileCache();
|
|
|
|
} else if (FLAGS_cache_type == "tiered") {
|
|
|
|
fprintf(stderr, "Using tiered cache implementation\n");
|
|
|
|
cache = ROCKSDB_NAMESPACE::NewTieredCache();
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Unknown option for cache\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(cache);
|
|
|
|
if (!cache) {
|
|
|
|
fprintf(stderr, "Error creating cache\n");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<ROCKSDB_NAMESPACE::CacheTierBenchmark> benchmark(
|
|
|
|
new ROCKSDB_NAMESPACE::CacheTierBenchmark(std::move(cache)));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif // #ifndef GFLAGS
|