You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/compaction/compaction_job.h

501 lines
21 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <atomic>
#include <deque>
#include <functional>
#include <limits>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "db/blob/blob_file_completion_callback.h"
#include "db/column_family.h"
#include "db/compaction/compaction_iterator.h"
#include "db/compaction/compaction_outputs.h"
#include "db/flush_scheduler.h"
#include "db/internal_stats.h"
#include "db/job_context.h"
#include "db/log_writer.h"
#include "db/memtable_list.h"
#include "db/range_del_aggregator.h"
#include "db/seqno_to_time_mapping.h"
#include "db/version_edit.h"
#include "db/write_controller.h"
#include "db/write_thread.h"
#include "logging/event_logger.h"
#include "options/cf_options.h"
#include "options/db_options.h"
#include "port/port.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/compaction_job_stats.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/transaction_log.h"
#include "table/scoped_arena_iterator.h"
#include "util/autovector.h"
#include "util/stop_watch.h"
#include "util/thread_local.h"
namespace ROCKSDB_NAMESPACE {
class Arena;
class CompactionState;
class ErrorHandler;
class MemTable;
class SnapshotChecker;
class SystemClock;
class TableCache;
class Version;
class VersionEdit;
class VersionSet;
class SubcompactionState;
// CompactionJob is responsible for executing the compaction. Each (manual or
// automated) compaction corresponds to a CompactionJob object, and usually
// goes through the stages of `Prepare()`->`Run()`->`Install()`. CompactionJob
// will divide the compaction into subcompactions and execute them in parallel
// if needed.
//
// CompactionJob has 2 main stats:
// 1. CompactionJobStats compaction_job_stats_
// CompactionJobStats is a public data structure which is part of Compaction
// event listener that rocksdb share the job stats with the user.
// Internally it's an aggregation of all the compaction_job_stats from each
// `SubcompactionState`:
// +------------------------+
// | SubcompactionState |
// | |
// +--------->| compaction_job_stats |
// | | |
// | +------------------------+
// +------------------------+ |
// | CompactionJob | | +------------------------+
// | | | | SubcompactionState |
// | compaction_job_stats +-----+ | |
// | | +--------->| compaction_job_stats |
// | | | | |
// +------------------------+ | +------------------------+
// |
// | +------------------------+
// | | SubcompactionState |
// | | |
// +--------->+ compaction_job_stats |
// | | |
// | +------------------------+
// |
// | +------------------------+
// | | ... |
// +--------->+ |
// +------------------------+
//
// 2. CompactionStatsFull compaction_stats_
// `CompactionStatsFull` is an internal stats about the compaction, which
// is eventually sent to `ColumnFamilyData::internal_stats_` and used for
// logging and public metrics.
// Internally, it's an aggregation of stats_ from each `SubcompactionState`.
// It has 2 parts, normal stats about the main compaction information and
// the penultimate level output stats.
// `SubcompactionState` maintains the CompactionOutputs for normal output and
// the penultimate level output if exists, the per_level stats is
// stored with the outputs.
// +---------------------------+
// | SubcompactionState |
// | |
// | +----------------------+ |
// | | CompactionOutputs | |
// | | (normal output) | |
// +---->| stats_ | |
// | | +----------------------+ |
// | | |
// | | +----------------------+ |
// +--------------------------------+ | | | CompactionOutputs | |
// | CompactionJob | | | | (penultimate_level) | |
// | | +--------->| stats_ | |
// | compaction_stats_ | | | | +----------------------+ |
// | +-------------------------+ | | | | |
// | |stats (normal) |------|----+ +---------------------------+
// | +-------------------------+ | | |
// | | | |
// | +-------------------------+ | | | +---------------------------+
// | |penultimate_level_stats +------+ | | SubcompactionState |
// | +-------------------------+ | | | | |
// | | | | | +----------------------+ |
// | | | | | | CompactionOutputs | |
// +--------------------------------+ | | | | (normal output) | |
// | +---->| stats_ | |
// | | +----------------------+ |
// | | |
// | | +----------------------+ |
// | | | CompactionOutputs | |
// | | | (penultimate_level) | |
// +--------->| stats_ | |
// | +----------------------+ |
// | |
// +---------------------------+
class CompactionJob {
public:
CompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options,
const FileOptions& file_options, VersionSet* versions,
const std::atomic<bool>* shutting_down, LogBuffer* log_buffer,
FSDirectory* db_directory, FSDirectory* output_directory,
FSDirectory* blob_output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
SequenceNumber earliest_write_conflict_snapshot,
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
const SnapshotChecker* snapshot_checker, JobContext* job_context,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
bool paranoid_file_checks, bool measure_io_stats,
const std::string& dbname, CompactionJobStats* compaction_job_stats,
Env::Priority thread_pri, const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>& manual_compaction_canceled,
const std::string& db_id = "", const std::string& db_session_id = "",
std::string full_history_ts_low = "", std::string trim_ts = "",
Support subcmpct using reserved resources for round-robin priority (#10341) Summary: Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows: * Constraint 1: We can only pick consecutive files - Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files - Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys) * Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes` * Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)` * Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3 More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`. The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps: * Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()` * Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()` * Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions) More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341 Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc` Reviewed By: ajkr, hx235 Differential Revision: D37792644 Pulled By: littlepig2013 fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
2 years ago
BlobFileCompletionCallback* blob_callback = nullptr,
int* bg_compaction_scheduled = nullptr,
int* bg_bottom_compaction_scheduled = nullptr);
virtual ~CompactionJob();
// no copy/move
CompactionJob(CompactionJob&& job) = delete;
CompactionJob(const CompactionJob& job) = delete;
CompactionJob& operator=(const CompactionJob& job) = delete;
// REQUIRED: mutex held
// Prepare for the compaction by setting up boundaries for each subcompaction
void Prepare();
// REQUIRED mutex not held
// Launch threads for each subcompaction and wait for them to finish. After
// that, verify table is usable and finally do bookkeeping to unify
// subcompaction results
Status Run();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
9 years ago
// REQUIRED: mutex held
// Add compaction input/output to the current version
Status Install(const MutableCFOptions& mutable_cf_options);
// Return the IO status
IOStatus io_status() const { return io_status_; }
protected:
void UpdateCompactionStats();
void LogCompaction();
virtual void RecordCompactionIOStats();
void CleanupCompaction();
// Call compaction filter. Then iterate through input and compact the
// kv-pairs
void ProcessKeyValueCompaction(SubcompactionState* sub_compact);
CompactionState* compact_;
InternalStats::CompactionStatsFull compaction_stats_;
const ImmutableDBOptions& db_options_;
const MutableDBOptions mutable_db_options_copy_;
LogBuffer* log_buffer_;
FSDirectory* output_directory_;
Statistics* stats_;
// Is this compaction creating a file in the bottom most level?
bool bottommost_level_;
Env::WriteLifeTimeHint write_hint_;
IOStatus io_status_;
CompactionJobStats* compaction_job_stats_;
private:
Set Write rate limiter priority dynamically and pass it to FS (#9988) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one. - The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically. - For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system. ### Solution During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular. **This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush | IO_HIGH | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988 Test Plan: Add unit tests. Reviewed By: anand1976 Differential Revision: D36395159 Pulled By: gitbw95 fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
3 years ago
friend class CompactionJobTestBase;
// Generates a histogram representing potential divisions of key ranges from
// the input. It adds the starting and/or ending keys of certain input files
// to the working set and then finds the approximate size of data in between
// each consecutive pair of slices. Then it divides these ranges into
// consecutive groups such that each group has a similar size.
void GenSubcompactionBoundaries();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
9 years ago
Support subcmpct using reserved resources for round-robin priority (#10341) Summary: Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows: * Constraint 1: We can only pick consecutive files - Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files - Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys) * Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes` * Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)` * Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3 More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`. The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps: * Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()` * Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()` * Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions) More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341 Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc` Reviewed By: ajkr, hx235 Differential Revision: D37792644 Pulled By: littlepig2013 fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
2 years ago
// Get the number of planned subcompactions based on max_subcompactions and
// extra reserved resources
uint64_t GetSubcompactionsLimit();
// Additional reserved threads are reserved and the number is stored in
// extra_num_subcompaction_threads_reserved__. For now, this happens only if
// the compaction priority is round-robin and max_subcompactions is not
// sufficient (extra resources may be needed)
void AcquireSubcompactionResources(int num_extra_required_subcompactions);
// Additional threads may be reserved during IncreaseSubcompactionResources()
// if num_actual_subcompactions is less than num_planned_subcompactions.
// Additional threads will be released and the bg_compaction_scheduled_ or
// bg_bottom_compaction_scheduled_ will be updated if they are used.
// DB Mutex lock is required.
void ShrinkSubcompactionResources(uint64_t num_extra_resources);
// Release all reserved threads and update the compaction limits.
void ReleaseSubcompactionResources();
CompactionServiceJobStatus ProcessKeyValueCompactionWithCompactionService(
SubcompactionState* sub_compact);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
// update the thread status for starting a compaction.
void ReportStartedCompaction(Compaction* compaction);
Status FinishCompactionOutputFile(const Status& input_status,
SubcompactionState* sub_compact,
CompactionOutputs& outputs,
const Slice& next_table_min_key);
Status InstallCompactionResults(const MutableCFOptions& mutable_cf_options);
Status OpenCompactionOutputFile(SubcompactionState* sub_compact,
CompactionOutputs& outputs);
void UpdateCompactionJobStats(
const InternalStats::CompactionStats& stats) const;
void RecordDroppedKeys(const CompactionIterationStats& c_iter_stats,
CompactionJobStats* compaction_job_stats = nullptr);
void UpdateCompactionInputStatsHelper(
int* num_files, uint64_t* bytes_read, int input_level);
void NotifyOnSubcompactionBegin(SubcompactionState* sub_compact);
void NotifyOnSubcompactionCompleted(SubcompactionState* sub_compact);
uint32_t job_id_;
// DBImpl state
const std::string& dbname_;
const std::string db_id_;
const std::string db_session_id_;
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
const FileOptions file_options_;
Env* env_;
std::shared_ptr<IOTracer> io_tracer_;
FileSystemPtr fs_;
// env_option optimized for compaction table reads
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
FileOptions file_options_for_read_;
VersionSet* versions_;
const std::atomic<bool>* shutting_down_;
const std::atomic<bool>& manual_compaction_canceled_;
FSDirectory* db_directory_;
FSDirectory* blob_output_directory_;
InstrumentedMutex* db_mutex_;
ErrorHandler* db_error_handler_;
// If there were two snapshots with seq numbers s1 and
// s2 and s1 < s2, and if we find two instances of a key k1 then lies
// entirely within s1 and s2, then the earlier version of k1 can be safely
// deleted because that version is not visible in any snapshot.
std::vector<SequenceNumber> existing_snapshots_;
// This is the earliest snapshot that could be used for write-conflict
// checking by a transaction. For any user-key newer than this snapshot, we
// should make sure not to remove evidence that a write occurred.
SequenceNumber earliest_write_conflict_snapshot_;
const SnapshotChecker* const snapshot_checker_;
CompactionIterator sees consistent view of which keys are committed (#9830) Summary: **This PR does not affect the functionality of `DB` and write-committed transactions.** `CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed. As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if it is committed. In fact, the implementation of `KeyCommitted()` is as follows: ``` inline bool KeyCommitted(SequenceNumber seq) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot; } ``` With that being said, we focus on write-prepared/write-unprepared transactions. A few notes: - A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database. - `CompactionIterator` outputs a key as long as the key is uncommitted. Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`. Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone. To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot to determine whether a key is committed or not with minor change to `KeyCommitted()`. ``` inline bool KeyCommitted(SequenceNumber sequence) { // For non-txn-db and write-committed, snapshot_checker_ is always nullptr. return snapshot_checker_ == nullptr || snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) == SnapshotCheckerResult::kInSnapshot; } ``` As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble for `CompactionIterator`s assertions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830 Test Plan: make check Reviewed By: ltamasi Differential Revision: D35561162 Pulled By: riversand963 fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
3 years ago
JobContext* job_context_;
std::shared_ptr<Cache> table_cache_;
EventLogger* event_logger_;
bool paranoid_file_checks_;
bool measure_io_stats_;
// Stores the Slices that designate the boundaries for each subcompaction
std::vector<std::string> boundaries_;
Env::Priority thread_pri_;
std::string full_history_ts_low_;
std::string trim_ts_;
BlobFileCompletionCallback* blob_callback_;
uint64_t GetCompactionId(SubcompactionState* sub_compact) const;
Support subcmpct using reserved resources for round-robin priority (#10341) Summary: Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows: * Constraint 1: We can only pick consecutive files - Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files - Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys) * Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes` * Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)` * Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3 More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`. The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps: * Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()` * Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()` * Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions) More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341 Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc` Reviewed By: ajkr, hx235 Differential Revision: D37792644 Pulled By: littlepig2013 fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
2 years ago
// Stores the number of reserved threads in shared env_ for the number of
// extra subcompaction in kRoundRobin compaction priority
int extra_num_subcompaction_threads_reserved_;
// Stores the pointer to bg_compaction_scheduled_,
// bg_bottom_compaction_scheduled_ in DBImpl. Mutex is required when accessing
// or updating it.
int* bg_compaction_scheduled_;
int* bg_bottom_compaction_scheduled_;
// Stores the sequence number to time mapping gathered from all input files
// it also collects the smallest_seqno -> oldest_ancester_time from the SST.
SeqnoToTimeMapping seqno_time_mapping_;
// Minimal sequence number for preserving the time information. The time info
// older than this sequence number won't be preserved after the compaction and
// if it's bottommost compaction, the seq num will be zeroed out.
SequenceNumber preserve_time_min_seqno_ = kMaxSequenceNumber;
// Minimal sequence number to preclude the data from the last level. If the
// key has bigger (newer) sequence number than this, it will be precluded from
// the last level (output to penultimate level).
SequenceNumber preclude_last_level_min_seqno_ = kMaxSequenceNumber;
// Get table file name in where it's outputting to, which should also be in
// `output_directory_`.
virtual std::string GetTableFileName(uint64_t file_number);
Set Write rate limiter priority dynamically and pass it to FS (#9988) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one. - The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically. - For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system. ### Solution During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular. **This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush | IO_HIGH | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988 Test Plan: Add unit tests. Reviewed By: anand1976 Differential Revision: D36395159 Pulled By: gitbw95 fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
3 years ago
// The rate limiter priority (io_priority) is determined dynamically here.
// The Compaction Read and Write priorities are the same for different
// scenarios, such as write stalled.
Env::IOPriority GetRateLimiterPriority();
};
// CompactionServiceInput is used the pass compaction information between two
// db instances. It contains the information needed to do a compaction. It
// doesn't contain the LSM tree information, which is passed though MANIFEST
// file.
struct CompactionServiceInput {
ColumnFamilyDescriptor column_family;
DBOptions db_options;
std::vector<SequenceNumber> snapshots;
// SST files for compaction, it should already be expended to include all the
// files needed for this compaction, for both input level files and output
// level files.
std::vector<std::string> input_files;
int output_level;
// db_id is used to generate unique id of sst on the remote compactor
std::string db_id;
// information for subcompaction
bool has_begin = false;
std::string begin;
bool has_end = false;
std::string end;
// serialization interface to read and write the object
static Status Read(const std::string& data_str, CompactionServiceInput* obj);
Status Write(std::string* output);
// Initialize a dummy ColumnFamilyDescriptor
CompactionServiceInput() : column_family("", ColumnFamilyOptions()) {}
#ifndef NDEBUG
bool TEST_Equals(CompactionServiceInput* other);
bool TEST_Equals(CompactionServiceInput* other, std::string* mismatch);
#endif // NDEBUG
};
// CompactionServiceOutputFile is the metadata for the output SST file
struct CompactionServiceOutputFile {
std::string file_name;
SequenceNumber smallest_seqno;
SequenceNumber largest_seqno;
std::string smallest_internal_key;
std::string largest_internal_key;
uint64_t oldest_ancester_time;
uint64_t file_creation_time;
uint64_t paranoid_hash;
bool marked_for_compaction;
UniqueId64x2 unique_id;
CompactionServiceOutputFile() = default;
CompactionServiceOutputFile(
const std::string& name, SequenceNumber smallest, SequenceNumber largest,
std::string _smallest_internal_key, std::string _largest_internal_key,
uint64_t _oldest_ancester_time, uint64_t _file_creation_time,
uint64_t _paranoid_hash, bool _marked_for_compaction,
UniqueId64x2 _unique_id)
: file_name(name),
smallest_seqno(smallest),
largest_seqno(largest),
smallest_internal_key(std::move(_smallest_internal_key)),
largest_internal_key(std::move(_largest_internal_key)),
oldest_ancester_time(_oldest_ancester_time),
file_creation_time(_file_creation_time),
paranoid_hash(_paranoid_hash),
marked_for_compaction(_marked_for_compaction),
unique_id(std::move(_unique_id)) {}
};
// CompactionServiceResult contains the compaction result from a different db
// instance, with these information, the primary db instance with write
// permission is able to install the result to the DB.
struct CompactionServiceResult {
Status status;
std::vector<CompactionServiceOutputFile> output_files;
int output_level;
// location of the output files
std::string output_path;
// some statistics about the compaction
uint64_t num_output_records = 0;
uint64_t total_bytes = 0;
uint64_t bytes_read = 0;
uint64_t bytes_written = 0;
CompactionJobStats stats;
// serialization interface to read and write the object
static Status Read(const std::string& data_str, CompactionServiceResult* obj);
Status Write(std::string* output);
#ifndef NDEBUG
bool TEST_Equals(CompactionServiceResult* other);
bool TEST_Equals(CompactionServiceResult* other, std::string* mismatch);
#endif // NDEBUG
};
// CompactionServiceCompactionJob is an read-only compaction job, it takes
// input information from `compaction_service_input` and put result information
// in `compaction_service_result`, the SST files are generated to `output_path`.
class CompactionServiceCompactionJob : private CompactionJob {
public:
CompactionServiceCompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options,
const FileOptions& file_options, VersionSet* versions,
const std::atomic<bool>* shutting_down, LogBuffer* log_buffer,
FSDirectory* output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
const std::string& dbname, const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>& manual_compaction_canceled,
const std::string& db_id, const std::string& db_session_id,
std::string output_path,
const CompactionServiceInput& compaction_service_input,
CompactionServiceResult* compaction_service_result);
// Run the compaction in current thread and return the result
Status Run();
void CleanupCompaction();
IOStatus io_status() const { return CompactionJob::io_status(); }
protected:
void RecordCompactionIOStats() override;
private:
// Get table file name in output_path
std::string GetTableFileName(uint64_t file_number) override;
// Specific the compaction output path, otherwise it uses default DB path
const std::string output_path_;
// Compaction job input
const CompactionServiceInput& compaction_input_;
// Compaction job result
CompactionServiceResult* compaction_result_;
};
} // namespace ROCKSDB_NAMESPACE