|
|
|
// Copyright (c) 2014, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under the BSD-style license found in the
|
|
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
#include "table/cuckoo_table_builder.h"
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "db/dbformat.h"
|
|
|
|
#include "rocksdb/env.h"
|
|
|
|
#include "rocksdb/table.h"
|
|
|
|
#include "table/block_builder.h"
|
|
|
|
#include "table/format.h"
|
|
|
|
#include "table/meta_blocks.h"
|
|
|
|
#include "util/autovector.h"
|
|
|
|
#include "util/random.h"
|
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
const std::string CuckooTablePropertyNames::kEmptyKey =
|
|
|
|
"rocksdb.cuckoo.bucket.empty.key";
|
|
|
|
const std::string CuckooTablePropertyNames::kNumHashTable =
|
|
|
|
"rocksdb.cuckoo.hash.num";
|
|
|
|
const std::string CuckooTablePropertyNames::kMaxNumBuckets =
|
|
|
|
"rocksdb.cuckoo.bucket.maxnum";
|
|
|
|
const std::string CuckooTablePropertyNames::kValueLength =
|
|
|
|
"rocksdb.cuckoo.value.length";
|
|
|
|
const std::string CuckooTablePropertyNames::kIsLastLevel =
|
|
|
|
"rocksdb.cuckoo.file.islastlevel";
|
|
|
|
|
|
|
|
// Obtained by running echo rocksdb.table.cuckoo | sha1sum
|
|
|
|
extern const uint64_t kCuckooTableMagicNumber = 0x926789d0c5f17873ull;
|
|
|
|
|
|
|
|
CuckooTableBuilder::CuckooTableBuilder(
|
|
|
|
WritableFile* file, uint32_t fixed_key_length,
|
|
|
|
uint32_t fixed_value_length, double hash_table_ratio,
|
|
|
|
uint64_t file_size, uint32_t max_num_hash_table,
|
|
|
|
uint32_t max_search_depth, bool is_last_level,
|
|
|
|
uint64_t (*GetSliceHashPtr)(const Slice&, uint32_t, uint64_t))
|
|
|
|
: num_hash_table_(2),
|
|
|
|
file_(file),
|
|
|
|
value_length_(fixed_value_length),
|
|
|
|
// 8 is the difference between sizes of user key and InternalKey.
|
|
|
|
bucket_size_(fixed_key_length +
|
|
|
|
fixed_value_length - (is_last_level ? 8 : 0)),
|
|
|
|
hash_table_ratio_(hash_table_ratio),
|
|
|
|
max_num_buckets_(file_size / bucket_size_),
|
|
|
|
max_num_hash_table_(max_num_hash_table),
|
|
|
|
max_search_depth_(max_search_depth),
|
|
|
|
is_last_level_file_(is_last_level),
|
|
|
|
buckets_(max_num_buckets_),
|
|
|
|
make_space_for_key_call_id_(0),
|
|
|
|
GetSliceHash(GetSliceHashPtr) {
|
|
|
|
properties_.num_entries = 0;
|
|
|
|
// Data is in a huge block.
|
|
|
|
properties_.num_data_blocks = 1;
|
|
|
|
properties_.index_size = 0;
|
|
|
|
properties_.filter_size = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
CuckooTableBuilder::~CuckooTableBuilder() {
|
|
|
|
}
|
|
|
|
|
|
|
|
void CuckooTableBuilder::Add(const Slice& key, const Slice& value) {
|
|
|
|
if (NumEntries() == max_num_buckets_) {
|
|
|
|
status_ = Status::Corruption("Hash Table is full.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint64_t bucket_id;
|
|
|
|
bool bucket_found = false;
|
|
|
|
autovector<uint64_t> hash_vals;
|
|
|
|
ParsedInternalKey ikey;
|
|
|
|
if (!ParseInternalKey(key, &ikey)) {
|
|
|
|
status_ = Status::Corruption("Unable to parse key into inernal key.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Slice user_key = ikey.user_key;
|
|
|
|
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_table_; ++hash_cnt) {
|
|
|
|
uint64_t hash_val = GetSliceHash(user_key, hash_cnt, max_num_buckets_);
|
|
|
|
if (buckets_[hash_val].is_empty) {
|
|
|
|
bucket_id = hash_val;
|
|
|
|
bucket_found = true;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
if (user_key.compare(ExtractUserKey(buckets_[hash_val].key)) == 0) {
|
|
|
|
status_ = Status::Corruption("Same key is being inserted again.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
hash_vals.push_back(hash_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (!bucket_found && !MakeSpaceForKey(key, &bucket_id, hash_vals)) {
|
|
|
|
// Rehash by increashing number of hash tables.
|
|
|
|
if (num_hash_table_ >= max_num_hash_table_) {
|
|
|
|
status_ = Status::Corruption("Too many collissions. Unable to hash.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// We don't really need to rehash the entire table because old hashes are
|
|
|
|
// still valid and we only increased the number of hash functions.
|
|
|
|
uint64_t hash_val = GetSliceHash(user_key,
|
|
|
|
num_hash_table_, max_num_buckets_);
|
|
|
|
++num_hash_table_;
|
|
|
|
if (buckets_[hash_val].is_empty) {
|
|
|
|
bucket_found = true;
|
|
|
|
bucket_id = hash_val;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
hash_vals.push_back(hash_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
buckets_[bucket_id].key = key;
|
|
|
|
buckets_[bucket_id].value = value;
|
|
|
|
buckets_[bucket_id].is_empty = false;
|
|
|
|
|
|
|
|
properties_.num_entries++;
|
|
|
|
|
|
|
|
// We assume that the keys are inserted in sorted order. To identify an
|
|
|
|
// unused key, which will be used in filling empty buckets in the table,
|
|
|
|
// we try to find gaps between successive keys inserted. This is done by
|
|
|
|
// maintaining the previous key and comparing it with next key.
|
|
|
|
if (unused_user_key_.empty()) {
|
|
|
|
if (prev_key_.empty()) {
|
|
|
|
prev_key_ = user_key.ToString();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string new_user_key = prev_key_;
|
|
|
|
new_user_key.back()++;
|
|
|
|
// We ignore carry-overs and check that it is larger than previous key.
|
|
|
|
if ((new_user_key > prev_key_) &&
|
|
|
|
(new_user_key < user_key.ToString())) {
|
|
|
|
unused_user_key_ = new_user_key;
|
|
|
|
} else {
|
|
|
|
prev_key_ = user_key.ToString();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Status CuckooTableBuilder::status() const { return status_; }
|
|
|
|
|
|
|
|
Status CuckooTableBuilder::Finish() {
|
|
|
|
assert(!closed_);
|
|
|
|
closed_ = true;
|
|
|
|
|
|
|
|
if (unused_user_key_.empty()) {
|
|
|
|
if (prev_key_.empty()) {
|
|
|
|
return Status::Corruption("Unable to find unused key");
|
|
|
|
}
|
|
|
|
std::string new_user_key = prev_key_;
|
|
|
|
new_user_key.back()++;
|
|
|
|
// We ignore carry-overs and check that it is larger than previous key.
|
|
|
|
if (new_user_key > prev_key_) {
|
|
|
|
unused_user_key_ = new_user_key;
|
|
|
|
} else {
|
|
|
|
return Status::Corruption("Unable to find unused key");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::string unused_bucket;
|
|
|
|
if (is_last_level_file_) {
|
|
|
|
unused_bucket = unused_user_key_;
|
|
|
|
} else {
|
|
|
|
ParsedInternalKey ikey(unused_user_key_, 0, kTypeValue);
|
|
|
|
AppendInternalKey(&unused_bucket, ikey);
|
|
|
|
}
|
|
|
|
properties_.fixed_key_len = unused_bucket.size();
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kValueLength].assign(
|
|
|
|
reinterpret_cast<const char*>(&value_length_), sizeof(value_length_));
|
|
|
|
|
|
|
|
unused_bucket.resize(bucket_size_, 'a');
|
|
|
|
// Write the table.
|
|
|
|
uint32_t num_added = 0;
|
|
|
|
for (auto& bucket : buckets_) {
|
|
|
|
Status s;
|
|
|
|
if (bucket.is_empty) {
|
|
|
|
s = file_->Append(Slice(unused_bucket));
|
|
|
|
} else {
|
|
|
|
++num_added;
|
|
|
|
if (is_last_level_file_) {
|
|
|
|
Slice user_key = ExtractUserKey(bucket.key);
|
|
|
|
s = file_->Append(user_key);
|
|
|
|
if (s.ok()) {
|
|
|
|
s = file_->Append(bucket.value);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
s = file_->Append(bucket.key);
|
|
|
|
if (s.ok()) {
|
|
|
|
s = file_->Append(bucket.value);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(num_added == NumEntries());
|
|
|
|
|
|
|
|
uint64_t offset = buckets_.size() * bucket_size_;
|
|
|
|
unused_bucket.resize(properties_.fixed_key_len);
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kEmptyKey] = unused_bucket;
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kNumHashTable].assign(
|
|
|
|
reinterpret_cast<char*>(&num_hash_table_), sizeof(num_hash_table_));
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kMaxNumBuckets].assign(
|
|
|
|
reinterpret_cast<const char*>(&max_num_buckets_),
|
|
|
|
sizeof(max_num_buckets_));
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kIsLastLevel].assign(
|
|
|
|
reinterpret_cast<const char*>(&is_last_level_file_),
|
|
|
|
sizeof(is_last_level_file_));
|
|
|
|
|
|
|
|
// Write meta blocks.
|
|
|
|
MetaIndexBuilder meta_index_builder;
|
|
|
|
PropertyBlockBuilder property_block_builder;
|
|
|
|
|
|
|
|
property_block_builder.AddTableProperty(properties_);
|
|
|
|
property_block_builder.Add(properties_.user_collected_properties);
|
|
|
|
Slice property_block = property_block_builder.Finish();
|
|
|
|
BlockHandle property_block_handle;
|
|
|
|
property_block_handle.set_offset(offset);
|
|
|
|
property_block_handle.set_size(property_block.size());
|
|
|
|
Status s = file_->Append(property_block);
|
|
|
|
offset += property_block.size();
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
meta_index_builder.Add(kPropertiesBlock, property_block_handle);
|
|
|
|
Slice meta_index_block = meta_index_builder.Finish();
|
|
|
|
|
|
|
|
BlockHandle meta_index_block_handle;
|
|
|
|
meta_index_block_handle.set_offset(offset);
|
|
|
|
meta_index_block_handle.set_size(meta_index_block.size());
|
|
|
|
s = file_->Append(meta_index_block);
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
Footer footer(kCuckooTableMagicNumber);
|
|
|
|
footer.set_metaindex_handle(meta_index_block_handle);
|
|
|
|
footer.set_index_handle(BlockHandle::NullBlockHandle());
|
|
|
|
std::string footer_encoding;
|
|
|
|
footer.EncodeTo(&footer_encoding);
|
|
|
|
s = file_->Append(footer_encoding);
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CuckooTableBuilder::Abandon() {
|
|
|
|
assert(!closed_);
|
|
|
|
closed_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t CuckooTableBuilder::NumEntries() const {
|
|
|
|
return properties_.num_entries;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t CuckooTableBuilder::FileSize() const {
|
|
|
|
if (closed_) {
|
|
|
|
return file_->GetFileSize();
|
|
|
|
} else {
|
|
|
|
// This is not the actual size of the file as we need to account for
|
|
|
|
// hash table ratio. This returns the size of filled buckets in the table
|
|
|
|
// scaled up by a factor of 1/hash table ratio.
|
|
|
|
return (properties_.num_entries * bucket_size_) / hash_table_ratio_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CuckooTableBuilder::MakeSpaceForKey(const Slice& key,
|
|
|
|
uint64_t *bucket_id, autovector<uint64_t> hash_vals) {
|
|
|
|
struct CuckooNode {
|
|
|
|
uint64_t bucket_id;
|
|
|
|
uint32_t depth;
|
|
|
|
uint32_t parent_pos;
|
|
|
|
CuckooNode(uint64_t bucket_id, uint32_t depth, int parent_pos)
|
|
|
|
: bucket_id(bucket_id), depth(depth), parent_pos(parent_pos) {}
|
|
|
|
};
|
|
|
|
// This is BFS search tree that is stored simply as a vector.
|
|
|
|
// Each node stores the index of parent node in the vector.
|
|
|
|
std::vector<CuckooNode> tree;
|
|
|
|
// We want to identify already visited buckets in the current method call so
|
|
|
|
// that we don't add same buckets again for exploration in the tree.
|
|
|
|
// We do this by maintaining a count of current method call, which acts as a
|
|
|
|
// unique id for this invocation of the method. We store this number into
|
|
|
|
// the nodes that we explore in current method call.
|
|
|
|
// It is unlikely for the increment operation to overflow because the maximum
|
|
|
|
// number of times this will be called is <= max_num_hash_table_ +
|
|
|
|
// max_num_buckets_.
|
|
|
|
++make_space_for_key_call_id_;
|
|
|
|
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_table_; ++hash_cnt) {
|
|
|
|
uint64_t bucket_id = hash_vals[hash_cnt];
|
|
|
|
buckets_[bucket_id].make_space_for_key_call_id =
|
|
|
|
make_space_for_key_call_id_;
|
|
|
|
tree.push_back(CuckooNode(bucket_id, 0, 0));
|
|
|
|
}
|
|
|
|
bool null_found = false;
|
|
|
|
uint32_t curr_pos = 0;
|
|
|
|
while (!null_found && curr_pos < tree.size()) {
|
|
|
|
CuckooNode& curr_node = tree[curr_pos];
|
|
|
|
if (curr_node.depth >= max_search_depth_) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
CuckooBucket& curr_bucket = buckets_[curr_node.bucket_id];
|
|
|
|
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_table_; ++hash_cnt) {
|
|
|
|
uint64_t child_bucket_id = GetSliceHash(
|
|
|
|
ExtractUserKey(curr_bucket.key), hash_cnt, max_num_buckets_);
|
|
|
|
if (buckets_[child_bucket_id].make_space_for_key_call_id ==
|
|
|
|
make_space_for_key_call_id_) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
buckets_[child_bucket_id].make_space_for_key_call_id =
|
|
|
|
make_space_for_key_call_id_;
|
|
|
|
tree.push_back(CuckooNode(child_bucket_id, curr_node.depth + 1,
|
|
|
|
curr_pos));
|
|
|
|
if (buckets_[child_bucket_id].is_empty) {
|
|
|
|
null_found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
++curr_pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (null_found) {
|
|
|
|
uint32_t bucket_to_replace_pos = tree.size()-1;
|
|
|
|
while (bucket_to_replace_pos >= 0) {
|
|
|
|
CuckooNode& curr_node = tree[bucket_to_replace_pos];
|
|
|
|
if (bucket_to_replace_pos >= num_hash_table_) {
|
|
|
|
buckets_[curr_node.bucket_id] =
|
|
|
|
buckets_[tree[curr_node.parent_pos].bucket_id];
|
|
|
|
bucket_to_replace_pos = curr_node.parent_pos;
|
|
|
|
} else {
|
|
|
|
*bucket_id = curr_node.bucket_id;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(false);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace rocksdb
|
|
|
|
#endif // ROCKSDB_LITE
|