You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/version_builder.h

94 lines
3.1 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
#pragma once
#include <memory>
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2 years ago
#include "db/version_edit.h"
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
#include "rocksdb/file_system.h"
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2 years ago
#include "rocksdb/metadata.h"
#include "rocksdb/slice_transform.h"
namespace ROCKSDB_NAMESPACE {
struct ImmutableCFOptions;
class TableCache;
class VersionStorageInfo;
class VersionEdit;
struct FileMetaData;
class InternalStats;
class Version;
class VersionSet;
class ColumnFamilyData;
Account memory of FileMetaData in global memory limit (#9924) Summary: **Context/Summary:** As revealed by heap profiling, allocation of `FileMetaData` for [newly created file added to a Version](https://github.com/facebook/rocksdb/pull/9924/files#diff-a6aa385940793f95a2c5b39cc670bd440c4547fa54fd44622f756382d5e47e43R774) can consume significant heap memory. This PR is to account that toward our global memory limit based on block cache capacity. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9924 Test Plan: - Previous `make check` verified there are only 2 places where the memory of the allocated `FileMetaData` can be released - New unit test `TEST_P(ChargeFileMetadataTestWithParam, Basic)` - db bench (CPU cost of `charge_file_metadata` in write and compact) - **write micros/op: -0.24%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 (remove this option for pre-PR) -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'` - **compact micros/op -0.87%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 -numdistinct=1000 && ./db_bench -benchmarks=compact -db=$TEST_TMPDIR -use_existing_db=1 -charge_file_metadata=1 -disable_auto_compactions=1 | egrep 'compact'` table 1 - write #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721 20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | -0.3633711465 40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | 0.5289363078 80 | 3.87828 | 0.119007 | 3.86791 | 0.115674 | **-0.2673865734** 160 | 3.87677 | 0.162231 | 3.86739 | 0.16663 | **-0.2419539978** table 2 - compact #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 2,399,650.00 | 96,375.80 | 2,359,537.00 | 53,243.60 | -1.67 20 | 2,410,480.00 | 89,988.00 | 2,433,580.00 | 91,121.20 | 0.96 40 | 2.41E+06 | 121811 | 2.39E+06 | 131525 | **-0.96** 80 | 2.40E+06 | 134503 | 2.39E+06 | 108799 | **-0.78** - stress test: `python3 tools/db_crashtest.py blackbox --charge_file_metadata=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D36055583 Pulled By: hx235 fbshipit-source-id: b60eab94707103cb1322cf815f05810ef0232625
2 years ago
class CacheReservationManager;
// A helper class so we can efficiently apply a whole sequence
// of edits to a particular state without creating intermediate
// Versions that contain full copies of the intermediate state.
class VersionBuilder {
public:
VersionBuilder(const FileOptions& file_options,
const ImmutableCFOptions* ioptions, TableCache* table_cache,
Account memory of FileMetaData in global memory limit (#9924) Summary: **Context/Summary:** As revealed by heap profiling, allocation of `FileMetaData` for [newly created file added to a Version](https://github.com/facebook/rocksdb/pull/9924/files#diff-a6aa385940793f95a2c5b39cc670bd440c4547fa54fd44622f756382d5e47e43R774) can consume significant heap memory. This PR is to account that toward our global memory limit based on block cache capacity. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9924 Test Plan: - Previous `make check` verified there are only 2 places where the memory of the allocated `FileMetaData` can be released - New unit test `TEST_P(ChargeFileMetadataTestWithParam, Basic)` - db bench (CPU cost of `charge_file_metadata` in write and compact) - **write micros/op: -0.24%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 (remove this option for pre-PR) -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'` - **compact micros/op -0.87%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 -numdistinct=1000 && ./db_bench -benchmarks=compact -db=$TEST_TMPDIR -use_existing_db=1 -charge_file_metadata=1 -disable_auto_compactions=1 | egrep 'compact'` table 1 - write #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721 20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | -0.3633711465 40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | 0.5289363078 80 | 3.87828 | 0.119007 | 3.86791 | 0.115674 | **-0.2673865734** 160 | 3.87677 | 0.162231 | 3.86739 | 0.16663 | **-0.2419539978** table 2 - compact #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 2,399,650.00 | 96,375.80 | 2,359,537.00 | 53,243.60 | -1.67 20 | 2,410,480.00 | 89,988.00 | 2,433,580.00 | 91,121.20 | 0.96 40 | 2.41E+06 | 121811 | 2.39E+06 | 131525 | **-0.96** 80 | 2.40E+06 | 134503 | 2.39E+06 | 108799 | **-0.78** - stress test: `python3 tools/db_crashtest.py blackbox --charge_file_metadata=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D36055583 Pulled By: hx235 fbshipit-source-id: b60eab94707103cb1322cf815f05810ef0232625
2 years ago
VersionStorageInfo* base_vstorage, VersionSet* version_set,
std::shared_ptr<CacheReservationManager>
file_metadata_cache_res_mgr = nullptr);
~VersionBuilder();
bool CheckConsistencyForNumLevels();
Status Apply(const VersionEdit* edit);
Status SaveTo(VersionStorageInfo* vstorage) const;
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
3 years ago
Status LoadTableHandlers(
InternalStats* internal_stats, int max_threads,
bool prefetch_index_and_filter_in_cache, bool is_initial_load,
const std::shared_ptr<const SliceTransform>& prefix_extractor,
Block per key-value checksum (#11287) Summary: add option `block_protection_bytes_per_key` and implementation for block per key-value checksum. The main changes are 1. checksum construction and verification in block.cc/h 2. pass the option `block_protection_bytes_per_key` around (mainly for methods defined in table_cache.h) 3. unit tests/crash test updates Tests: * Added unit tests * Crash test: `python3 tools/db_crashtest.py blackbox --simple --block_protection_bytes_per_key=1 --write_buffer_size=1048576` Follow up (maybe as a separate PR): make sure corruption status returned from BlockIters are correctly handled. Performance: Turning on block per KV protection has a non-trivial negative impact on read performance and costs additional memory. For memory, each block includes additional 24 bytes for checksum-related states beside checksum itself. For CPU, I set up a DB of size ~1.2GB with 5M keys (32 bytes key and 200 bytes value) which compacts to ~5 SST files (target file size 256 MB) in L6 without compression. I tested readrandom performance with various block cache size (to mimic various cache hit rates): ``` SETUP make OPTIMIZE_LEVEL="-O3" USE_LTO=1 DEBUG_LEVEL=0 -j32 db_bench ./db_bench -benchmarks=fillseq,compact0,waitforcompaction,compact,waitforcompaction -write_buffer_size=33554432 -level_compaction_dynamic_level_bytes=true -max_background_jobs=8 -target_file_size_base=268435456 --num=5000000 --key_size=32 --value_size=200 --compression_type=none BENCHMARK ./db_bench --use_existing_db -benchmarks=readtocache,readrandom[-X10] --num=5000000 --key_size=32 --disable_auto_compactions --reads=1000000 --block_protection_bytes_per_key=[0|1] --cache_size=$CACHESIZE The readrandom ops/sec looks like the following: Block cache size: 2GB 1.2GB * 0.9 1.2GB * 0.8 1.2GB * 0.5 8MB Main 240805 223604 198176 161653 139040 PR prot_bytes=0 238691 226693 200127 161082 141153 PR prot_bytes=1 214983 193199 178532 137013 108211 prot_bytes=1 vs -10% -15% -10.8% -15% -23% prot_bytes=0 ``` The benchmark has a lot of variance, but there was a 5% to 25% regression in this benchmark with different cache hit rates. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11287 Reviewed By: ajkr Differential Revision: D43970708 Pulled By: cbi42 fbshipit-source-id: ef98d898b71779846fa74212b9ec9e08b7183940
2 years ago
size_t max_file_size_for_l0_meta_pin, const ReadOptions& read_options,
uint8_t block_protection_bytes_per_key);
uint64_t GetMinOldestBlobFileNumber() const;
private:
class Rep;
std::unique_ptr<Rep> rep_;
};
// A wrapper of version builder which references the current version in
// constructor and unref it in the destructor.
// Both of the constructor and destructor need to be called inside DB Mutex.
class BaseReferencedVersionBuilder {
public:
explicit BaseReferencedVersionBuilder(ColumnFamilyData* cfd);
BaseReferencedVersionBuilder(ColumnFamilyData* cfd, Version* v);
~BaseReferencedVersionBuilder();
VersionBuilder* version_builder() const { return version_builder_.get(); }
private:
std::unique_ptr<VersionBuilder> version_builder_;
Version* version_;
};
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2 years ago
class NewestFirstBySeqNo {
public:
bool operator()(const FileMetaData* lhs, const FileMetaData* rhs) const {
assert(lhs);
assert(rhs);
if (lhs->fd.largest_seqno != rhs->fd.largest_seqno) {
return lhs->fd.largest_seqno > rhs->fd.largest_seqno;
}
if (lhs->fd.smallest_seqno != rhs->fd.smallest_seqno) {
return lhs->fd.smallest_seqno > rhs->fd.smallest_seqno;
}
// Break ties by file number
return lhs->fd.GetNumber() > rhs->fd.GetNumber();
}
};
} // namespace ROCKSDB_NAMESPACE