Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
#!/usr/bin/env python3
|
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
import os
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
import random
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
import sys
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
|
|
|
|
from block_cache_pysim import (
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
ARCCache,
|
|
|
|
CacheEntry,
|
|
|
|
create_cache,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
GDSizeCache,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
HashTable,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
HyperbolicPolicy,
|
|
|
|
kMicrosInSecond,
|
|
|
|
kSampleSize,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
LFUPolicy,
|
|
|
|
LinUCBCache,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
LRUCache,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
LRUPolicy,
|
|
|
|
MRUPolicy,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
OPTCache,
|
|
|
|
OPTCacheEntry,
|
|
|
|
run,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
ThompsonSamplingCache,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
TraceCache,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
TraceRecord,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_hash_table():
|
|
|
|
print("Test hash table")
|
|
|
|
table = HashTable()
|
|
|
|
data_size = 10000
|
|
|
|
for i in range(data_size):
|
|
|
|
table.insert("k{}".format(i), i, "v{}".format(i))
|
|
|
|
for i in range(data_size):
|
|
|
|
assert table.lookup("k{}".format(i), i) is not None
|
|
|
|
for i in range(data_size):
|
|
|
|
table.delete("k{}".format(i), i)
|
|
|
|
for i in range(data_size):
|
|
|
|
assert table.lookup("k{}".format(i), i) is None
|
|
|
|
|
|
|
|
truth_map = {}
|
|
|
|
n = 1000000
|
|
|
|
records = 100
|
|
|
|
for i in range(n):
|
|
|
|
key_id = random.randint(0, records)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
v = random.randint(0, records)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
key = "k{}".format(key_id)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
value = CacheEntry(v, v, v, v, v, v, v)
|
|
|
|
action = random.randint(0, 10)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
assert len(truth_map) == table.elements, "{} {} {}".format(
|
|
|
|
len(truth_map), table.elements, i
|
|
|
|
)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
if action <= 8:
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
if key in truth_map:
|
|
|
|
assert table.lookup(key, key_id) is not None
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert truth_map[key].value_size == table.lookup(key, key_id).value_size
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
else:
|
|
|
|
assert table.lookup(key, key_id) is None
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
table.insert(key, key_id, value)
|
|
|
|
truth_map[key] = value
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
else:
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
deleted = table.delete(key, key_id)
|
|
|
|
if deleted:
|
|
|
|
assert key in truth_map
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
if key in truth_map:
|
|
|
|
del truth_map[key]
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
|
|
|
|
# Check all keys are unique in the sample set.
|
|
|
|
for _i in range(10):
|
|
|
|
samples = table.random_sample(kSampleSize)
|
|
|
|
unique_keys = {}
|
|
|
|
for sample in samples:
|
|
|
|
unique_keys[sample.key] = True
|
|
|
|
assert len(samples) == len(unique_keys)
|
|
|
|
|
|
|
|
assert len(table) == len(truth_map)
|
|
|
|
for key in truth_map:
|
|
|
|
assert table.lookup(key, int(key[1:])) is not None
|
|
|
|
assert truth_map[key].value_size == table.lookup(key, int(key[1:])).value_size
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test hash table: Success")
|
|
|
|
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
def assert_metrics(cache, expected_value, expected_value_size=1, custom_hashtable=True):
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
assert cache.used_size == expected_value[0], "Expected {}, Actual {}".format(
|
|
|
|
expected_value[0], cache.used_size
|
|
|
|
)
|
|
|
|
assert (
|
|
|
|
cache.miss_ratio_stats.num_accesses == expected_value[1]
|
|
|
|
), "Expected {}, Actual {}".format(
|
|
|
|
expected_value[1], cache.miss_ratio_stats.num_accesses
|
|
|
|
)
|
|
|
|
assert (
|
|
|
|
cache.miss_ratio_stats.num_misses == expected_value[2]
|
|
|
|
), "Expected {}, Actual {}".format(
|
|
|
|
expected_value[2], cache.miss_ratio_stats.num_misses
|
|
|
|
)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert len(cache.table) == len(expected_value[3]) + len(
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
expected_value[4]
|
|
|
|
), "Expected {}, Actual {}".format(
|
|
|
|
len(expected_value[3]) + len(expected_value[4]), cache.table.elements
|
|
|
|
)
|
|
|
|
for expeceted_k in expected_value[3]:
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
if custom_hashtable:
|
|
|
|
val = cache.table.lookup("b{}".format(expeceted_k), expeceted_k)
|
|
|
|
else:
|
|
|
|
val = cache.table["b{}".format(expeceted_k)]
|
|
|
|
assert val is not None, "Expected {} Actual: Not Exist {}, Table: {}".format(
|
|
|
|
expeceted_k, expected_value, cache.table
|
|
|
|
)
|
|
|
|
assert val.value_size == expected_value_size
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
for expeceted_k in expected_value[4]:
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
if custom_hashtable:
|
|
|
|
val = cache.table.lookup("g0-{}".format(expeceted_k), expeceted_k)
|
|
|
|
else:
|
|
|
|
val = cache.table["g0-{}".format(expeceted_k)]
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
assert val is not None
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert val.value_size == expected_value_size
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
|
|
|
|
|
|
|
|
# Access k1, k1, k2, k3, k3, k3, k4
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
# When k4 is inserted,
|
|
|
|
# LRU should evict k1.
|
|
|
|
# LFU should evict k2.
|
|
|
|
# MRU should evict k3.
|
|
|
|
def test_cache(cache, expected_value, custom_hashtable=True):
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
k1 = TraceRecord(
|
|
|
|
access_time=0,
|
|
|
|
block_id=1,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1,
|
|
|
|
key_id=1,
|
|
|
|
kv_size=5,
|
|
|
|
is_hit=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=0,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
k2 = TraceRecord(
|
|
|
|
access_time=1,
|
|
|
|
block_id=2,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1,
|
|
|
|
key_id=1,
|
|
|
|
kv_size=5,
|
|
|
|
is_hit=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=0,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
k3 = TraceRecord(
|
|
|
|
access_time=2,
|
|
|
|
block_id=3,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1,
|
|
|
|
key_id=1,
|
|
|
|
kv_size=5,
|
|
|
|
is_hit=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=0,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
k4 = TraceRecord(
|
|
|
|
access_time=3,
|
|
|
|
block_id=4,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1,
|
|
|
|
key_id=1,
|
|
|
|
kv_size=5,
|
|
|
|
is_hit=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=0,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
sequence = [k1, k1, k2, k3, k3, k3]
|
|
|
|
index = 0
|
|
|
|
expected_values = []
|
|
|
|
# Access k1, miss.
|
|
|
|
expected_values.append([1, 1, 1, [1], []])
|
|
|
|
# Access k1, hit.
|
|
|
|
expected_values.append([1, 2, 1, [1], []])
|
|
|
|
# Access k2, miss.
|
|
|
|
expected_values.append([2, 3, 2, [1, 2], []])
|
|
|
|
# Access k3, miss.
|
|
|
|
expected_values.append([3, 4, 3, [1, 2, 3], []])
|
|
|
|
# Access k3, hit.
|
|
|
|
expected_values.append([3, 5, 3, [1, 2, 3], []])
|
|
|
|
# Access k3, hit.
|
|
|
|
expected_values.append([3, 6, 3, [1, 2, 3], []])
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
access_time = 0
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
for access in sequence:
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
access.access_time = access_time
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
cache.access(access)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert_metrics(
|
|
|
|
cache,
|
|
|
|
expected_values[index],
|
|
|
|
expected_value_size=1,
|
|
|
|
custom_hashtable=custom_hashtable,
|
|
|
|
)
|
|
|
|
access_time += 1
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
index += 1
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
k4.access_time = access_time
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
cache.access(k4)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert_metrics(
|
|
|
|
cache, expected_value, expected_value_size=1, custom_hashtable=custom_hashtable
|
|
|
|
)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
def test_lru_cache(cache, custom_hashtable):
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test LRU cache")
|
|
|
|
# Access k4, miss. evict k1
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
test_cache(cache, [3, 7, 4, [2, 3, 4], []], custom_hashtable)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test LRU cache: Success")
|
|
|
|
|
|
|
|
|
|
|
|
def test_mru_cache():
|
|
|
|
print("Test MRU cache")
|
|
|
|
policies = []
|
|
|
|
policies.append(MRUPolicy())
|
|
|
|
# Access k4, miss. evict k3
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
test_cache(
|
|
|
|
ThompsonSamplingCache(3, False, policies, cost_class_label=None),
|
|
|
|
[3, 7, 4, [1, 2, 4], []],
|
|
|
|
)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test MRU cache: Success")
|
|
|
|
|
|
|
|
|
|
|
|
def test_lfu_cache():
|
|
|
|
print("Test LFU cache")
|
|
|
|
policies = []
|
|
|
|
policies.append(LFUPolicy())
|
|
|
|
# Access k4, miss. evict k2
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
test_cache(
|
|
|
|
ThompsonSamplingCache(3, False, policies, cost_class_label=None),
|
|
|
|
[3, 7, 4, [1, 3, 4], []],
|
|
|
|
)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test LFU cache: Success")
|
|
|
|
|
|
|
|
|
|
|
|
def test_mix(cache):
|
|
|
|
print("Test Mix {} cache".format(cache.cache_name()))
|
|
|
|
n = 100000
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
records = 100
|
|
|
|
block_size_table = {}
|
|
|
|
trace_num_misses = 0
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
for i in range(n):
|
|
|
|
key_id = random.randint(0, records)
|
|
|
|
vs = random.randint(0, 10)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
now = i * kMicrosInSecond
|
|
|
|
block_size = vs
|
|
|
|
if key_id in block_size_table:
|
|
|
|
block_size = block_size_table[key_id]
|
|
|
|
else:
|
|
|
|
block_size_table[key_id] = block_size
|
|
|
|
is_hit = key_id % 2
|
|
|
|
if is_hit == 0:
|
|
|
|
trace_num_misses += 1
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
k = TraceRecord(
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
access_time=now,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
block_id=key_id,
|
|
|
|
block_type=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
block_size=block_size,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=key_id,
|
|
|
|
key_id=key_id,
|
|
|
|
kv_size=5,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
is_hit=is_hit,
|
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=vs,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
cache.access(k)
|
|
|
|
assert cache.miss_ratio_stats.miss_ratio() > 0
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
if cache.cache_name() == "Trace":
|
|
|
|
assert cache.miss_ratio_stats.num_accesses == n
|
|
|
|
assert cache.miss_ratio_stats.num_misses == trace_num_misses
|
|
|
|
else:
|
|
|
|
assert cache.used_size <= cache.cache_size
|
|
|
|
all_values = cache.table.values()
|
|
|
|
cached_size = 0
|
|
|
|
for value in all_values:
|
|
|
|
cached_size += value.value_size
|
|
|
|
assert cached_size == cache.used_size, "Expeced {} Actual {}".format(
|
|
|
|
cache.used_size, cached_size
|
|
|
|
)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test Mix {} cache: Success".format(cache.cache_name()))
|
|
|
|
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
def test_end_to_end():
|
|
|
|
print("Test All caches")
|
|
|
|
n = 100000
|
|
|
|
nblocks = 1000
|
|
|
|
block_size = 16 * 1024
|
|
|
|
ncfs = 7
|
|
|
|
nlevels = 6
|
|
|
|
nfds = 100000
|
|
|
|
trace_file_path = "test_trace"
|
|
|
|
# All blocks are of the same size so that OPT must achieve the lowest miss
|
|
|
|
# ratio.
|
|
|
|
with open(trace_file_path, "w+") as trace_file:
|
|
|
|
access_records = ""
|
|
|
|
for i in range(n):
|
|
|
|
key_id = random.randint(0, nblocks)
|
|
|
|
cf_id = random.randint(0, ncfs)
|
|
|
|
level = random.randint(0, nlevels)
|
|
|
|
fd = random.randint(0, nfds)
|
|
|
|
now = i * kMicrosInSecond
|
|
|
|
access_record = ""
|
|
|
|
access_record += "{},".format(now)
|
|
|
|
access_record += "{},".format(key_id)
|
|
|
|
access_record += "{},".format(9) # block type
|
|
|
|
access_record += "{},".format(block_size) # block size
|
|
|
|
access_record += "{},".format(cf_id)
|
|
|
|
access_record += "cf_{},".format(cf_id)
|
|
|
|
access_record += "{},".format(level)
|
|
|
|
access_record += "{},".format(fd)
|
|
|
|
access_record += "{},".format(key_id % 3) # caller
|
|
|
|
access_record += "{},".format(0) # no insert
|
|
|
|
access_record += "{},".format(i) # get_id
|
|
|
|
access_record += "{},".format(i) # key_id
|
|
|
|
access_record += "{},".format(100) # kv_size
|
|
|
|
access_record += "{},".format(1) # is_hit
|
|
|
|
access_record += "{},".format(1) # referenced_key_exist_in_block
|
|
|
|
access_record += "{},".format(10) # num_keys_in_block
|
|
|
|
access_record += "{},".format(1) # table_id
|
|
|
|
access_record += "{},".format(0) # seq_number
|
|
|
|
access_record += "{},".format(10) # block key size
|
|
|
|
access_record += "{},".format(20) # key size
|
|
|
|
access_record += "{},".format(0) # block offset
|
|
|
|
access_record = access_record[:-1]
|
|
|
|
access_records += access_record + "\n"
|
|
|
|
trace_file.write(access_records)
|
|
|
|
|
|
|
|
print("Test All caches: Start testing caches")
|
|
|
|
cache_size = block_size * nblocks / 10
|
|
|
|
downsample_size = 1
|
|
|
|
cache_ms = {}
|
|
|
|
for cache_type in [
|
|
|
|
"ts",
|
|
|
|
"opt",
|
|
|
|
"lru",
|
|
|
|
"pylru",
|
|
|
|
"linucb",
|
|
|
|
"gdsize",
|
|
|
|
"pyccbt",
|
|
|
|
"pycctbbt",
|
|
|
|
]:
|
|
|
|
cache = create_cache(cache_type, cache_size, downsample_size)
|
|
|
|
run(trace_file_path, cache_type, cache, 0, -1, "all")
|
|
|
|
cache_ms[cache_type] = cache
|
|
|
|
assert cache.miss_ratio_stats.num_accesses == n
|
|
|
|
|
|
|
|
for cache_type in cache_ms:
|
|
|
|
cache = cache_ms[cache_type]
|
|
|
|
ms = cache.miss_ratio_stats.miss_ratio()
|
|
|
|
assert ms <= 100.0 and ms >= 0.0
|
|
|
|
# OPT should perform the best.
|
|
|
|
assert cache_ms["opt"].miss_ratio_stats.miss_ratio() <= ms
|
|
|
|
assert cache.used_size <= cache.cache_size
|
|
|
|
all_values = cache.table.values()
|
|
|
|
cached_size = 0
|
|
|
|
for value in all_values:
|
|
|
|
cached_size += value.value_size
|
|
|
|
assert cached_size == cache.used_size, "Expeced {} Actual {}".format(
|
|
|
|
cache.used_size, cached_size
|
|
|
|
)
|
|
|
|
print("Test All {}: Success".format(cache.cache_name()))
|
|
|
|
|
|
|
|
os.remove(trace_file_path)
|
|
|
|
print("Test All: Success")
|
|
|
|
|
|
|
|
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
def test_hybrid(cache):
|
|
|
|
print("Test {} cache".format(cache.cache_name()))
|
|
|
|
k = TraceRecord(
|
|
|
|
access_time=0,
|
|
|
|
block_id=1,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1, # the first get request.
|
|
|
|
key_id=1,
|
|
|
|
kv_size=0, # no size.
|
|
|
|
is_hit=1,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=0,
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
)
|
|
|
|
cache.access(k) # Expect a miss.
|
|
|
|
# used size, num accesses, num misses, hash table size, blocks, get keys.
|
|
|
|
assert_metrics(cache, [1, 1, 1, [1], []])
|
|
|
|
k.access_time += 1
|
|
|
|
k.kv_size = 1
|
|
|
|
k.block_id = 2
|
|
|
|
cache.access(k) # k should be inserted.
|
|
|
|
assert_metrics(cache, [3, 2, 2, [1, 2], [1]])
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 3
|
|
|
|
cache.access(k) # k should not be inserted again.
|
|
|
|
assert_metrics(cache, [4, 3, 3, [1, 2, 3], [1]])
|
|
|
|
# A second get request referencing the same key.
|
|
|
|
k.access_time += 1
|
|
|
|
k.get_id = 2
|
|
|
|
k.block_id = 4
|
|
|
|
k.kv_size = 0
|
|
|
|
cache.access(k) # k should observe a hit. No block access.
|
|
|
|
assert_metrics(cache, [4, 4, 3, [1, 2, 3], [1]])
|
|
|
|
|
|
|
|
# A third get request searches three files, three different keys.
|
|
|
|
# And the second key observes a hit.
|
|
|
|
k.access_time += 1
|
|
|
|
k.kv_size = 1
|
|
|
|
k.get_id = 3
|
|
|
|
k.block_id = 3
|
|
|
|
k.key_id = 2
|
|
|
|
cache.access(k) # k should observe a miss. block 3 observes a hit.
|
|
|
|
assert_metrics(cache, [5, 5, 3, [1, 2, 3], [1, 2]])
|
|
|
|
|
|
|
|
k.access_time += 1
|
|
|
|
k.kv_size = 1
|
|
|
|
k.get_id = 3
|
|
|
|
k.block_id = 4
|
|
|
|
k.kv_size = 1
|
|
|
|
k.key_id = 1
|
|
|
|
cache.access(k) # k1 should observe a hit.
|
|
|
|
assert_metrics(cache, [5, 6, 3, [1, 2, 3], [1, 2]])
|
|
|
|
|
|
|
|
k.access_time += 1
|
|
|
|
k.kv_size = 1
|
|
|
|
k.get_id = 3
|
|
|
|
k.block_id = 4
|
|
|
|
k.kv_size = 1
|
|
|
|
k.key_id = 3
|
|
|
|
# k3 should observe a miss.
|
|
|
|
# However, as the get already complete, we should not access k3 any more.
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(cache, [5, 7, 3, [1, 2, 3], [1, 2]])
|
|
|
|
|
|
|
|
# A fourth get request searches one file and two blocks. One row key.
|
|
|
|
k.access_time += 1
|
|
|
|
k.get_id = 4
|
|
|
|
k.block_id = 5
|
|
|
|
k.key_id = 4
|
|
|
|
k.kv_size = 1
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(cache, [7, 8, 4, [1, 2, 3, 5], [1, 2, 4]])
|
|
|
|
|
|
|
|
# A bunch of insertions which evict cached row keys.
|
|
|
|
for i in range(6, 100):
|
|
|
|
k.access_time += 1
|
|
|
|
k.get_id = 0
|
|
|
|
k.block_id = i
|
|
|
|
cache.access(k)
|
|
|
|
|
|
|
|
k.get_id = 4
|
|
|
|
k.block_id = 100 # A different block.
|
|
|
|
k.key_id = 4 # Same row key and should not be inserted again.
|
|
|
|
k.kv_size = 1
|
|
|
|
cache.access(k)
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
assert_metrics(
|
|
|
|
cache, [kSampleSize, 103, 99, [i for i in range(101 - kSampleSize, 101)], []]
|
|
|
|
)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
print("Test {} cache: Success".format(cache.cache_name()))
|
|
|
|
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
def test_opt_cache():
|
|
|
|
print("Test OPT cache")
|
|
|
|
cache = OPTCache(3)
|
|
|
|
# seq: 0, 1, 2, 3, 4, 5, 6, 7, 8
|
|
|
|
# key: k1, k2, k3, k4, k5, k6, k7, k1, k8
|
|
|
|
# next_access: 7, 19, 18, M, M, 17, 16, 25, M
|
|
|
|
k = TraceRecord(
|
|
|
|
access_time=0,
|
|
|
|
block_id=1,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1, # the first get request.
|
|
|
|
key_id=1,
|
|
|
|
kv_size=0, # no size.
|
|
|
|
is_hit=1,
|
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=7,
|
|
|
|
)
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(
|
|
|
|
cache, [1, 1, 1, [1], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 2
|
|
|
|
k.next_access_seq_no = 19
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(
|
|
|
|
cache, [2, 2, 2, [1, 2], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 3
|
|
|
|
k.next_access_seq_no = 18
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 3, 3, [1, 2, 3], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 4
|
|
|
|
k.next_access_seq_no = sys.maxsize # Never accessed again.
|
|
|
|
cache.access(k)
|
|
|
|
# Evict 2 since its next access 19 is the furthest in the future.
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 4, 4, [1, 3, 4], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 5
|
|
|
|
k.next_access_seq_no = sys.maxsize # Never accessed again.
|
|
|
|
cache.access(k)
|
|
|
|
# Evict 4 since its next access MAXINT is the furthest in the future.
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 5, 5, [1, 3, 5], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 6
|
|
|
|
k.next_access_seq_no = 17
|
|
|
|
cache.access(k)
|
|
|
|
# Evict 5 since its next access MAXINT is the furthest in the future.
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 6, 6, [1, 3, 6], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 7
|
|
|
|
k.next_access_seq_no = 16
|
|
|
|
cache.access(k)
|
|
|
|
# Evict 3 since its next access 18 is the furthest in the future.
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 7, 7, [1, 6, 7], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 1
|
|
|
|
k.next_access_seq_no = 25
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 8, 7, [1, 6, 7], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 8
|
|
|
|
k.next_access_seq_no = sys.maxsize
|
|
|
|
cache.access(k)
|
|
|
|
# Evict 1 since its next access 25 is the furthest in the future.
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 9, 8, [6, 7, 8], []], expected_value_size=1, custom_hashtable=False
|
|
|
|
)
|
|
|
|
|
|
|
|
# Insert a large kv pair to evict all keys.
|
|
|
|
k.access_time += 1
|
|
|
|
k.block_id = 10
|
|
|
|
k.block_size = 3
|
|
|
|
k.next_access_seq_no = sys.maxsize
|
|
|
|
cache.access(k)
|
|
|
|
assert_metrics(
|
|
|
|
cache, [3, 10, 9, [10], []], expected_value_size=3, custom_hashtable=False
|
|
|
|
)
|
|
|
|
print("Test OPT cache: Success")
|
|
|
|
|
|
|
|
|
|
|
|
def test_trace_cache():
|
|
|
|
print("Test trace cache")
|
|
|
|
cache = TraceCache(0)
|
|
|
|
k = TraceRecord(
|
|
|
|
access_time=0,
|
|
|
|
block_id=1,
|
|
|
|
block_type=1,
|
|
|
|
block_size=1,
|
|
|
|
cf_id=0,
|
|
|
|
cf_name="",
|
|
|
|
level=0,
|
|
|
|
fd=0,
|
|
|
|
caller=1,
|
|
|
|
no_insert=0,
|
|
|
|
get_id=1,
|
|
|
|
key_id=1,
|
|
|
|
kv_size=0,
|
|
|
|
is_hit=1,
|
|
|
|
referenced_key_exist_in_block=1,
|
|
|
|
num_keys_in_block=0,
|
|
|
|
table_id=0,
|
|
|
|
seq_number=0,
|
|
|
|
block_key_size=0,
|
|
|
|
key_size=0,
|
|
|
|
block_offset_in_file=0,
|
|
|
|
next_access_seq_no=7,
|
|
|
|
)
|
|
|
|
cache.access(k)
|
|
|
|
assert cache.miss_ratio_stats.num_accesses == 1
|
|
|
|
assert cache.miss_ratio_stats.num_misses == 0
|
|
|
|
k.is_hit = 0
|
|
|
|
cache.access(k)
|
|
|
|
assert cache.miss_ratio_stats.num_accesses == 2
|
|
|
|
assert cache.miss_ratio_stats.num_misses == 1
|
|
|
|
print("Test trace cache: Success")
|
|
|
|
|
|
|
|
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
if __name__ == "__main__":
|
|
|
|
test_hash_table()
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
test_trace_cache()
|
|
|
|
test_opt_cache()
|
|
|
|
test_lru_cache(
|
|
|
|
ThompsonSamplingCache(
|
|
|
|
3, enable_cache_row_key=0, policies=[LRUPolicy()], cost_class_label=None
|
|
|
|
),
|
|
|
|
custom_hashtable=True,
|
|
|
|
)
|
|
|
|
test_lru_cache(LRUCache(3, enable_cache_row_key=0), custom_hashtable=False)
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
6 years ago
|
|
|
test_mru_cache()
|
|
|
|
test_lfu_cache()
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
6 years ago
|
|
|
test_hybrid(
|
|
|
|
ThompsonSamplingCache(
|
|
|
|
kSampleSize,
|
|
|
|
enable_cache_row_key=1,
|
|
|
|
policies=[LRUPolicy()],
|
|
|
|
cost_class_label=None,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
test_hybrid(
|
|
|
|
LinUCBCache(
|
|
|
|
kSampleSize,
|
|
|
|
enable_cache_row_key=1,
|
|
|
|
policies=[LRUPolicy()],
|
|
|
|
cost_class_label=None,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
for cache_type in [
|
|
|
|
"ts",
|
|
|
|
"opt",
|
|
|
|
"arc",
|
|
|
|
"pylfu",
|
|
|
|
"pymru",
|
|
|
|
"trace",
|
|
|
|
"pyhb",
|
|
|
|
"lru",
|
|
|
|
"pylru",
|
|
|
|
"linucb",
|
|
|
|
"gdsize",
|
|
|
|
"pycctbbt",
|
|
|
|
"pycctb",
|
|
|
|
"pyccbt",
|
|
|
|
]:
|
|
|
|
for enable_row_cache in [0, 1, 2]:
|
|
|
|
cache_type_str = cache_type
|
|
|
|
if cache_type != "opt" and cache_type != "trace":
|
|
|
|
if enable_row_cache == 1:
|
|
|
|
cache_type_str += "_hybrid"
|
|
|
|
elif enable_row_cache == 2:
|
|
|
|
cache_type_str += "_hybridn"
|
|
|
|
test_mix(create_cache(cache_type_str, cache_size=100, downsample_size=1))
|
|
|
|
test_end_to_end()
|