|
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
#include "table/cuckoo/cuckoo_table_factory.h"
|
|
|
|
|
|
|
|
#include "db/dbformat.h"
|
|
|
|
#include "table/cuckoo/cuckoo_table_builder.h"
|
|
|
|
#include "table/cuckoo/cuckoo_table_reader.h"
|
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
|
Move rate_limiter, write buffering, most perf context instrumentation and most random kill out of Env
Summary: We want to keep Env a think layer for better portability. Less platform dependent codes should be moved out of Env. In this patch, I create a wrapper of file readers and writers, and put rate limiting, write buffering, as well as most perf context instrumentation and random kill out of Env. It will make it easier to maintain multiple Env in the future.
Test Plan: Run all existing unit tests.
Reviewers: anthony, kradhakrishnan, IslamAbdelRahman, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D42321
10 years ago
|
|
|
Status CuckooTableFactory::NewTableReader(
|
|
|
|
const TableReaderOptions& table_reader_options,
|
|
|
|
std::unique_ptr<RandomAccessFileReader>&& file, uint64_t file_size,
|
|
|
|
std::unique_ptr<TableReader>* table,
|
|
|
|
bool /*prefetch_index_and_filter_in_cache*/) const {
|
|
|
|
std::unique_ptr<CuckooTableReader> new_reader(new CuckooTableReader(
|
|
|
|
table_reader_options.ioptions, std::move(file), file_size,
|
|
|
|
table_reader_options.internal_comparator.user_comparator(), nullptr));
|
|
|
|
Status s = new_reader->status();
|
|
|
|
if (s.ok()) {
|
|
|
|
*table = std::move(new_reader);
|
|
|
|
}
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
TableBuilder* CuckooTableFactory::NewTableBuilder(
|
|
|
|
const TableBuilderOptions& table_builder_options, uint32_t column_family_id,
|
Move rate_limiter, write buffering, most perf context instrumentation and most random kill out of Env
Summary: We want to keep Env a think layer for better portability. Less platform dependent codes should be moved out of Env. In this patch, I create a wrapper of file readers and writers, and put rate limiting, write buffering, as well as most perf context instrumentation and random kill out of Env. It will make it easier to maintain multiple Env in the future.
Test Plan: Run all existing unit tests.
Reviewers: anthony, kradhakrishnan, IslamAbdelRahman, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D42321
10 years ago
|
|
|
WritableFileWriter* file) const {
|
|
|
|
// Ignore the skipFIlters flag. Does not apply to this file format
|
|
|
|
//
|
|
|
|
|
|
|
|
// TODO: change builder to take the option struct
|
A new call back to TablePropertiesCollector to allow users know the entry is add, delete or merge
Summary:
Currently users have no idea a key is add, delete or merge from TablePropertiesCollector call back. Add a new function to add it.
Also refactor the codes so that
(1) make table property collector and internal table property collector two separate data structures with the later one now exposed
(2) table builders only receive internal table properties
Test Plan: Add cases in table_properties_collector_test to cover both of old and new ways of using TablePropertiesCollector.
Reviewers: yhchiang, igor.sugak, rven, igor
Reviewed By: rven, igor
Subscribers: meyering, yoshinorim, maykov, leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D35373
10 years ago
|
|
|
return new CuckooTableBuilder(
|
|
|
|
file, table_options_.hash_table_ratio, 64,
|
|
|
|
table_options_.max_search_depth,
|
|
|
|
table_builder_options.internal_comparator.user_comparator(),
|
|
|
|
table_options_.cuckoo_block_size, table_options_.use_module_hash,
|
|
|
|
table_options_.identity_as_first_hash, nullptr /* get_slice_hash */,
|
|
|
|
column_family_id, table_builder_options.column_family_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CuckooTableFactory::GetPrintableTableOptions() const {
|
|
|
|
std::string ret;
|
|
|
|
ret.reserve(2000);
|
|
|
|
const int kBufferSize = 200;
|
|
|
|
char buffer[kBufferSize];
|
|
|
|
|
|
|
|
snprintf(buffer, kBufferSize, " hash_table_ratio: %lf\n",
|
CuckooTable: add one option to allow identity function for the first hash function
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451
10 years ago
|
|
|
table_options_.hash_table_ratio);
|
|
|
|
ret.append(buffer);
|
|
|
|
snprintf(buffer, kBufferSize, " max_search_depth: %u\n",
|
CuckooTable: add one option to allow identity function for the first hash function
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451
10 years ago
|
|
|
table_options_.max_search_depth);
|
|
|
|
ret.append(buffer);
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
snprintf(buffer, kBufferSize, " cuckoo_block_size: %u\n",
|
CuckooTable: add one option to allow identity function for the first hash function
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451
10 years ago
|
|
|
table_options_.cuckoo_block_size);
|
|
|
|
ret.append(buffer);
|
|
|
|
snprintf(buffer, kBufferSize, " identity_as_first_hash: %d\n",
|
|
|
|
table_options_.identity_as_first_hash);
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
ret.append(buffer);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
CuckooTable: add one option to allow identity function for the first hash function
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451
10 years ago
|
|
|
TableFactory* NewCuckooTableFactory(const CuckooTableOptions& table_options) {
|
|
|
|
return new CuckooTableFactory(table_options);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace rocksdb
|
|
|
|
#endif // ROCKSDB_LITE
|