You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/util/options_builder.cc

215 lines
7.9 KiB

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#include <math.h>
#include <algorithm>
#include "rocksdb/options.h"
namespace rocksdb {
namespace {
inline double Log2(double n) {
#ifndef OS_ANDROID
return log2(n);
#else
return log(n) / log(2);
#endif
}
// For now, always use 1-0 as level bytes multiplier.
const int kBytesForLevelMultiplier = 10;
const size_t kBytesForOneMb = 1024 * 1024;
// Pick compaction style
CompactionStyle PickCompactionStyle(size_t write_buffer_size,
int read_amp_threshold,
int write_amp_threshold,
uint64_t target_db_size) {
#ifndef ROCKSDB_LITE
// Estimate read amplification and write amplification of two compaction
// styles. If there is hard limit to force a choice, make the choice.
// Otherwise, calculate a score based on threshold and expected value of
// two styles, weighing reads 4X important than writes.
int expected_levels = static_cast<int>(ceil(
::log(target_db_size / write_buffer_size) / ::log(kBytesForLevelMultiplier)));
int expected_max_files_universal =
static_cast<int>(ceil(Log2(target_db_size / write_buffer_size)));
const int kEstimatedLevel0FilesInLevelStyle = 2;
// Estimate write amplification:
// (1) 1 for every L0 file
// (2) 2 for L1
// (3) kBytesForLevelMultiplier for the last level. It's really hard to
// predict.
// (3) kBytesForLevelMultiplier for other levels.
int expected_write_amp_level = kEstimatedLevel0FilesInLevelStyle + 2
+ (expected_levels - 2) * kBytesForLevelMultiplier
+ kBytesForLevelMultiplier;
int expected_read_amp_level =
kEstimatedLevel0FilesInLevelStyle + expected_levels;
int max_read_amp_uni = expected_max_files_universal;
if (read_amp_threshold <= max_read_amp_uni) {
return kCompactionStyleLevel;
} else if (write_amp_threshold <= expected_write_amp_level) {
return kCompactionStyleUniversal;
}
const double kReadWriteWeight = 4;
double level_ratio =
static_cast<double>(read_amp_threshold) / expected_read_amp_level *
kReadWriteWeight +
static_cast<double>(write_amp_threshold) / expected_write_amp_level;
int expected_write_amp_uni = expected_max_files_universal / 2 + 2;
int expected_read_amp_uni = expected_max_files_universal / 2 + 1;
double uni_ratio =
static_cast<double>(read_amp_threshold) / expected_read_amp_uni *
kReadWriteWeight +
static_cast<double>(write_amp_threshold) / expected_write_amp_uni;
if (level_ratio > uni_ratio) {
return kCompactionStyleLevel;
} else {
return kCompactionStyleUniversal;
}
#else
return kCompactionStyleLevel;
#endif // !ROCKSDB_LITE
}
// Pick mem table size
void PickWriteBufferSize(size_t total_write_buffer_limit, Options* options) {
const size_t kMaxWriteBufferSize = 128 * kBytesForOneMb;
const size_t kMinWriteBufferSize = 4 * kBytesForOneMb;
// Try to pick up a buffer size between 4MB and 128MB.
// And try to pick 4 as the total number of write buffers.
size_t write_buffer_size = total_write_buffer_limit / 4;
if (write_buffer_size > kMaxWriteBufferSize) {
write_buffer_size = kMaxWriteBufferSize;
} else if (write_buffer_size < kMinWriteBufferSize) {
write_buffer_size = std::min(static_cast<size_t>(kMinWriteBufferSize),
total_write_buffer_limit / 2);
}
// Truncate to multiple of 1MB.
if (write_buffer_size % kBytesForOneMb != 0) {
write_buffer_size =
(write_buffer_size / kBytesForOneMb + 1) * kBytesForOneMb;
}
options->write_buffer_size = write_buffer_size;
options->max_write_buffer_number =
static_cast<int>(total_write_buffer_limit / write_buffer_size);
options->min_write_buffer_number_to_merge = 1;
}
#ifndef ROCKSDB_LITE
void OptimizeForUniversal(Options* options) {
options->level0_file_num_compaction_trigger = 2;
options->level0_slowdown_writes_trigger = 30;
options->level0_stop_writes_trigger = 40;
options->max_open_files = -1;
}
#endif
// Optimize parameters for level-based compaction
void OptimizeForLevel(int read_amplification_threshold,
int write_amplification_threshold,
uint64_t target_db_size, Options* options) {
int expected_levels_one_level0_file =
static_cast<int>(ceil(::log(target_db_size / options->write_buffer_size) /
::log(kBytesForLevelMultiplier)));
int level0_stop_writes_trigger =
read_amplification_threshold - expected_levels_one_level0_file;
const size_t kInitialLevel0TotalSize = 128 * kBytesForOneMb;
const int kMaxFileNumCompactionTrigger = 4;
const int kMinLevel0StopTrigger = 3;
int file_num_buffer =
kInitialLevel0TotalSize / options->write_buffer_size + 1;
if (level0_stop_writes_trigger > file_num_buffer) {
// Have sufficient room for multiple level 0 files
// Try enlarge the buffer up to 1GB
// Try to enlarge the buffer up to 1GB, if still have sufficient headroom.
file_num_buffer *=
1 << std::max(0, std::min(3, level0_stop_writes_trigger -
file_num_buffer - 2));
options->level0_stop_writes_trigger = level0_stop_writes_trigger;
options->level0_slowdown_writes_trigger = level0_stop_writes_trigger - 2;
options->level0_file_num_compaction_trigger =
std::min(kMaxFileNumCompactionTrigger, file_num_buffer / 2);
} else {
options->level0_stop_writes_trigger =
std::max(kMinLevel0StopTrigger, file_num_buffer);
options->level0_slowdown_writes_trigger =
options->level0_stop_writes_trigger - 1;
options->level0_file_num_compaction_trigger = 1;
}
// This doesn't consider compaction and overheads of mem tables. But usually
// it is in the same order of magnitude.
size_t expected_level0_compaction_size =
options->level0_file_num_compaction_trigger * options->write_buffer_size;
// Enlarge level1 target file size if level0 compaction size is larger.
uint64_t max_bytes_for_level_base = 10 * kBytesForOneMb;
if (expected_level0_compaction_size > max_bytes_for_level_base) {
max_bytes_for_level_base = expected_level0_compaction_size;
}
options->max_bytes_for_level_base = max_bytes_for_level_base;
// Now always set level multiplier to be 10
options->max_bytes_for_level_multiplier = kBytesForLevelMultiplier;
const uint64_t kMinFileSize = 2 * kBytesForOneMb;
// Allow at least 3-way parallelism for compaction between level 1 and 2.
uint64_t max_file_size = max_bytes_for_level_base / 3;
if (max_file_size < kMinFileSize) {
options->target_file_size_base = kMinFileSize;
} else {
if (max_file_size % kBytesForOneMb != 0) {
max_file_size = (max_file_size / kBytesForOneMb + 1) * kBytesForOneMb;
}
options->target_file_size_base = max_file_size;
}
// TODO: consider to tune num_levels too.
}
} // namespace
Options GetOptions(size_t total_write_buffer_limit,
int read_amplification_threshold,
int write_amplification_threshold, uint64_t target_db_size) {
Options options;
PickWriteBufferSize(total_write_buffer_limit, &options);
size_t write_buffer_size = options.write_buffer_size;
options.compaction_style =
PickCompactionStyle(write_buffer_size, read_amplification_threshold,
write_amplification_threshold, target_db_size);
#ifndef ROCKSDB_LITE
if (options.compaction_style == kCompactionStyleUniversal) {
OptimizeForUniversal(&options);
} else {
#else
{
#endif // !ROCKSDB_LITE
OptimizeForLevel(read_amplification_threshold,
write_amplification_threshold, target_db_size, &options);
}
return options;
}
} // namespace rocksdb