You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/compaction/compaction_job.h

376 lines
14 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <atomic>
#include <deque>
#include <functional>
#include <limits>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "db/blob/blob_file_completion_callback.h"
#include "db/column_family.h"
#include "db/compaction/compaction_iterator.h"
#include "db/flush_scheduler.h"
#include "db/internal_stats.h"
#include "db/job_context.h"
#include "db/log_writer.h"
#include "db/memtable_list.h"
#include "db/range_del_aggregator.h"
#include "db/version_edit.h"
#include "db/write_controller.h"
#include "db/write_thread.h"
#include "logging/event_logger.h"
#include "options/cf_options.h"
#include "options/db_options.h"
#include "port/port.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/compaction_job_stats.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/transaction_log.h"
#include "table/scoped_arena_iterator.h"
#include "util/autovector.h"
#include "util/stop_watch.h"
#include "util/thread_local.h"
namespace ROCKSDB_NAMESPACE {
class Arena;
class ErrorHandler;
class MemTable;
class SnapshotChecker;
class SystemClock;
class TableCache;
class Version;
class VersionEdit;
class VersionSet;
// CompactionJob is responsible for executing the compaction. Each (manual or
// automated) compaction corresponds to a CompactionJob object, and usually
// goes through the stages of `Prepare()`->`Run()`->`Install()`. CompactionJob
// will divide the compaction into subcompactions and execute them in parallel
// if needed.
class CompactionJob {
public:
CompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options,
const FileOptions& file_options, VersionSet* versions,
const std::atomic<bool>* shutting_down, LogBuffer* log_buffer,
FSDirectory* db_directory, FSDirectory* output_directory,
FSDirectory* blob_output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
SequenceNumber earliest_write_conflict_snapshot,
const SnapshotChecker* snapshot_checker,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
bool paranoid_file_checks, bool measure_io_stats,
const std::string& dbname, CompactionJobStats* compaction_job_stats,
Env::Priority thread_pri, const std::shared_ptr<IOTracer>& io_tracer,
Disable manual compaction during `ReFitLevel()` (#7250) Summary: Manual compaction with `CompactRangeOptions::change_levels` set could refit to a level targeted by another manual compaction. If force_consistency_checks were disabled, it could be possible for overlapping files to be written at that target level. This PR prevents the possibility by calling `DisableManualCompaction()` prior to `ReFitLevel()`. It also improves the manual compaction disabling mechanism to wait for pending manual compactions to complete before returning, and support disabling from multiple threads. Fixes https://github.com/facebook/rocksdb/issues/6432. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7250 Test Plan: crash test command that repro'd the bug reliably: ``` $ TEST_TMPDIR=/dev/shm python tools/db_crashtest.py blackbox --simple -target_file_size_base=524288 -write_buffer_size=1048576 -clear_column_family_one_in=0 -reopen=0 -max_key=10000000 -column_families=1 -max_background_compactions=8 -compact_range_one_in=100000 -compression_type=none -compaction_style=1 -num_levels=5 -universal_min_merge_width=4 -universal_max_merge_width=8 -level0_file_num_compaction_trigger=12 -rate_limiter_bytes_per_sec=1048576000 -universal_max_size_amplification_percent=100 --duration=3600 --interval=60 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --enable_compaction_filter=0 ``` Reviewed By: ltamasi Differential Revision: D23090800 Pulled By: ajkr fbshipit-source-id: afcbcd51b42ce76789fdb907d8b9ada790709c13
5 years ago
const std::atomic<int>* manual_compaction_paused = nullptr,
const std::atomic<bool>* manual_compaction_canceled = nullptr,
const std::string& db_id = "", const std::string& db_session_id = "",
std::string full_history_ts_low = "", std::string trim_ts = "",
BlobFileCompletionCallback* blob_callback = nullptr);
virtual ~CompactionJob();
// no copy/move
CompactionJob(CompactionJob&& job) = delete;
CompactionJob(const CompactionJob& job) = delete;
CompactionJob& operator=(const CompactionJob& job) = delete;
// REQUIRED: mutex held
// Prepare for the compaction by setting up boundaries for each subcompaction
void Prepare();
// REQUIRED mutex not held
// Launch threads for each subcompaction and wait for them to finish. After
// that, verify table is usable and finally do bookkeeping to unify
// subcompaction results
Status Run();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
// REQUIRED: mutex held
// Add compaction input/output to the current version
Status Install(const MutableCFOptions& mutable_cf_options);
// Return the IO status
IOStatus io_status() const { return io_status_; }
protected:
struct SubcompactionState;
// CompactionJob state
struct CompactionState;
void AggregateStatistics();
void UpdateCompactionStats();
void LogCompaction();
virtual void RecordCompactionIOStats();
void CleanupCompaction();
// Call compaction filter. Then iterate through input and compact the
// kv-pairs
void ProcessKeyValueCompaction(SubcompactionState* sub_compact);
CompactionState* compact_;
InternalStats::CompactionStats compaction_stats_;
const ImmutableDBOptions& db_options_;
const MutableDBOptions mutable_db_options_copy_;
LogBuffer* log_buffer_;
FSDirectory* output_directory_;
Statistics* stats_;
// Is this compaction creating a file in the bottom most level?
bool bottommost_level_;
Env::WriteLifeTimeHint write_hint_;
IOStatus io_status_;
private:
// Generates a histogram representing potential divisions of key ranges from
// the input. It adds the starting and/or ending keys of certain input files
// to the working set and then finds the approximate size of data in between
// each consecutive pair of slices. Then it divides these ranges into
// consecutive groups such that each group has a similar size.
void GenSubcompactionBoundaries();
Parallelize L0-L1 Compaction: Restructure Compaction Job Summary: As of now compactions involving files from Level 0 and Level 1 are single threaded because the files in L0, although sorted, are not range partitioned like the other levels. This means that during L0-L1 compaction each file from L1 needs to be merged with potentially all the files from L0. This attempt to parallelize the L0-L1 compaction assigns a thread and a corresponding iterator to each L1 file that then considers only the key range found in that L1 file and only the L0 files that have those keys (and only the specific portion of those L0 files in which those keys are found). In this way the overlap is minimized and potentially eliminated between different iterators focusing on the same files. The first step is to restructure the compaction logic to break L0-L1 compactions into multiple, smaller, sequential compactions. Eventually each of these smaller jobs will be run simultaneously. Areas to pay extra attention to are # Correct aggregation of compaction job statistics across multiple threads # Proper opening/closing of output files (make sure each thread's is unique) # Keys that span multiple L1 files # Skewed distributions of keys within L0 files Test Plan: Make and run db_test (newer version has separate compaction tests) and compaction_job_stats_test Reviewers: igor, noetzli, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: MarkCallaghan, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D42699
10 years ago
CompactionServiceJobStatus ProcessKeyValueCompactionWithCompactionService(
SubcompactionState* sub_compact);
Allow GetThreadList() to report basic compaction operation properties. Summary: Now we're able to show more details about a compaction in GetThreadList() :) This patch allows GetThreadList() to report basic compaction operation properties. Basic compaction properties include: 1. job id 2. compaction input / output level 3. compaction property flags (is_manual, is_deletion, .. etc) 4. total input bytes 5. the number of bytes has been read currently. 6. the number of bytes has been written currently. Flush operation properties will be done in a seperate diff. Test Plan: /db_bench --threads=30 --num=1000000 --benchmarks=fillrandom --thread_status_per_interval=1 Sample output of tracking same job: ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 31.357 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 59.440 ms CompactionJob::FinishCompactionOutputFile BaseInputLevel 1 | BytesRead 2264663 | BytesWritten 1934241 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | ThreadID ThreadType cfName Operation ElapsedTime Stage State OperationProperties 140664171987072 Low Pri default Compaction 226.375 ms CompactionJob::Install BaseInputLevel 1 | BytesRead 3958013 | BytesWritten 3621940 | IsDeletion 0 | IsManual 0 | IsTrivialMove 0 | JobID 277 | OutputLevel 2 | TotalInputBytes 3964158 | Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37653
10 years ago
// update the thread status for starting a compaction.
void ReportStartedCompaction(Compaction* compaction);
void AllocateCompactionOutputFileNumbers();
Status FinishCompactionOutputFile(
const Status& input_status, SubcompactionState* sub_compact,
CompactionRangeDelAggregator* range_del_agg,
CompactionIterationStats* range_del_out_stats,
const Slice* next_table_min_key = nullptr);
Status InstallCompactionResults(const MutableCFOptions& mutable_cf_options);
Status OpenCompactionOutputFile(SubcompactionState* sub_compact);
void UpdateCompactionJobStats(
const InternalStats::CompactionStats& stats) const;
void RecordDroppedKeys(const CompactionIterationStats& c_iter_stats,
CompactionJobStats* compaction_job_stats = nullptr);
void UpdateCompactionInputStatsHelper(
int* num_files, uint64_t* bytes_read, int input_level);
#ifndef ROCKSDB_LITE
void BuildSubcompactionJobInfo(
SubcompactionState* sub_compact,
SubcompactionJobInfo* subcompaction_job_info) const;
#endif // ROCKSDB_LITE
void NotifyOnSubcompactionBegin(SubcompactionState* sub_compact);
void NotifyOnSubcompactionCompleted(SubcompactionState* sub_compact);
uint32_t job_id_;
CompactionJobStats* compaction_job_stats_;
// DBImpl state
const std::string& dbname_;
const std::string db_id_;
const std::string db_session_id_;
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
const FileOptions file_options_;
Env* env_;
std::shared_ptr<IOTracer> io_tracer_;
FileSystemPtr fs_;
// env_option optimized for compaction table reads
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
5 years ago
FileOptions file_options_for_read_;
VersionSet* versions_;
const std::atomic<bool>* shutting_down_;
Disable manual compaction during `ReFitLevel()` (#7250) Summary: Manual compaction with `CompactRangeOptions::change_levels` set could refit to a level targeted by another manual compaction. If force_consistency_checks were disabled, it could be possible for overlapping files to be written at that target level. This PR prevents the possibility by calling `DisableManualCompaction()` prior to `ReFitLevel()`. It also improves the manual compaction disabling mechanism to wait for pending manual compactions to complete before returning, and support disabling from multiple threads. Fixes https://github.com/facebook/rocksdb/issues/6432. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7250 Test Plan: crash test command that repro'd the bug reliably: ``` $ TEST_TMPDIR=/dev/shm python tools/db_crashtest.py blackbox --simple -target_file_size_base=524288 -write_buffer_size=1048576 -clear_column_family_one_in=0 -reopen=0 -max_key=10000000 -column_families=1 -max_background_compactions=8 -compact_range_one_in=100000 -compression_type=none -compaction_style=1 -num_levels=5 -universal_min_merge_width=4 -universal_max_merge_width=8 -level0_file_num_compaction_trigger=12 -rate_limiter_bytes_per_sec=1048576000 -universal_max_size_amplification_percent=100 --duration=3600 --interval=60 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --enable_compaction_filter=0 ``` Reviewed By: ltamasi Differential Revision: D23090800 Pulled By: ajkr fbshipit-source-id: afcbcd51b42ce76789fdb907d8b9ada790709c13
5 years ago
const std::atomic<int>* manual_compaction_paused_;
const std::atomic<bool>* manual_compaction_canceled_;
FSDirectory* db_directory_;
FSDirectory* blob_output_directory_;
InstrumentedMutex* db_mutex_;
ErrorHandler* db_error_handler_;
// If there were two snapshots with seq numbers s1 and
// s2 and s1 < s2, and if we find two instances of a key k1 then lies
// entirely within s1 and s2, then the earlier version of k1 can be safely
// deleted because that version is not visible in any snapshot.
std::vector<SequenceNumber> existing_snapshots_;
// This is the earliest snapshot that could be used for write-conflict
// checking by a transaction. For any user-key newer than this snapshot, we
// should make sure not to remove evidence that a write occurred.
SequenceNumber earliest_write_conflict_snapshot_;
const SnapshotChecker* const snapshot_checker_;
std::shared_ptr<Cache> table_cache_;
EventLogger* event_logger_;
bool paranoid_file_checks_;
bool measure_io_stats_;
// Stores the Slices that designate the boundaries for each subcompaction
std::vector<Slice> boundaries_;
// Stores the approx size of keys covered in the range of each subcompaction
std::vector<uint64_t> sizes_;
Env::Priority thread_pri_;
std::string full_history_ts_low_;
std::string trim_ts_;
BlobFileCompletionCallback* blob_callback_;
uint64_t GetCompactionId(SubcompactionState* sub_compact);
// Get table file name in where it's outputting to, which should also be in
// `output_directory_`.
virtual std::string GetTableFileName(uint64_t file_number);
};
// CompactionServiceInput is used the pass compaction information between two
// db instances. It contains the information needed to do a compaction. It
// doesn't contain the LSM tree information, which is passed though MANIFEST
// file.
struct CompactionServiceInput {
ColumnFamilyDescriptor column_family;
DBOptions db_options;
std::vector<SequenceNumber> snapshots;
// SST files for compaction, it should already be expended to include all the
// files needed for this compaction, for both input level files and output
// level files.
std::vector<std::string> input_files;
int output_level;
// information for subcompaction
bool has_begin = false;
std::string begin;
bool has_end = false;
std::string end;
uint64_t approx_size = 0;
// serialization interface to read and write the object
static Status Read(const std::string& data_str, CompactionServiceInput* obj);
Status Write(std::string* output);
// Initialize a dummy ColumnFamilyDescriptor
CompactionServiceInput() : column_family("", ColumnFamilyOptions()) {}
#ifndef NDEBUG
bool TEST_Equals(CompactionServiceInput* other);
bool TEST_Equals(CompactionServiceInput* other, std::string* mismatch);
#endif // NDEBUG
};
// CompactionServiceOutputFile is the metadata for the output SST file
struct CompactionServiceOutputFile {
std::string file_name;
SequenceNumber smallest_seqno;
SequenceNumber largest_seqno;
std::string smallest_internal_key;
std::string largest_internal_key;
uint64_t oldest_ancester_time;
uint64_t file_creation_time;
uint64_t paranoid_hash;
bool marked_for_compaction;
CompactionServiceOutputFile() = default;
CompactionServiceOutputFile(
const std::string& name, SequenceNumber smallest, SequenceNumber largest,
std::string _smallest_internal_key, std::string _largest_internal_key,
uint64_t _oldest_ancester_time, uint64_t _file_creation_time,
uint64_t _paranoid_hash, bool _marked_for_compaction)
: file_name(name),
smallest_seqno(smallest),
largest_seqno(largest),
smallest_internal_key(std::move(_smallest_internal_key)),
largest_internal_key(std::move(_largest_internal_key)),
oldest_ancester_time(_oldest_ancester_time),
file_creation_time(_file_creation_time),
paranoid_hash(_paranoid_hash),
marked_for_compaction(_marked_for_compaction) {}
};
// CompactionServiceResult contains the compaction result from a different db
// instance, with these information, the primary db instance with write
// permission is able to install the result to the DB.
struct CompactionServiceResult {
Status status;
std::vector<CompactionServiceOutputFile> output_files;
int output_level;
// location of the output files
std::string output_path;
// some statistics about the compaction
uint64_t num_output_records = 0;
uint64_t total_bytes = 0;
uint64_t bytes_read = 0;
uint64_t bytes_written = 0;
CompactionJobStats stats;
// serialization interface to read and write the object
static Status Read(const std::string& data_str, CompactionServiceResult* obj);
Status Write(std::string* output);
#ifndef NDEBUG
bool TEST_Equals(CompactionServiceResult* other);
bool TEST_Equals(CompactionServiceResult* other, std::string* mismatch);
#endif // NDEBUG
};
// CompactionServiceCompactionJob is an read-only compaction job, it takes
// input information from `compaction_service_input` and put result information
// in `compaction_service_result`, the SST files are generated to `output_path`.
class CompactionServiceCompactionJob : private CompactionJob {
public:
CompactionServiceCompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options,
const FileOptions& file_options, VersionSet* versions,
const std::atomic<bool>* shutting_down, LogBuffer* log_buffer,
FSDirectory* output_directory, Statistics* stats,
InstrumentedMutex* db_mutex, ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
const std::string& dbname, const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>* manual_compaction_canceled,
const std::string& db_id, const std::string& db_session_id,
const std::string& output_path,
const CompactionServiceInput& compaction_service_input,
CompactionServiceResult* compaction_service_result);
// Run the compaction in current thread and return the result
Status Run();
void CleanupCompaction();
IOStatus io_status() const { return CompactionJob::io_status(); }
protected:
void RecordCompactionIOStats() override;
private:
// Get table file name in output_path
std::string GetTableFileName(uint64_t file_number) override;
// Specific the compaction output path, otherwise it uses default DB path
const std::string output_path_;
// Compaction job input
const CompactionServiceInput& compaction_input_;
// Compaction job result
CompactionServiceResult* compaction_result_;
};
} // namespace ROCKSDB_NAMESPACE