You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/seqno_time_test.cc

996 lines
34 KiB

// Copyright (c) Meta Platforms, Inc. and affiliates.
//
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/db_test_util.h"
#include "db/periodic_task_scheduler.h"
#include "db/seqno_to_time_mapping.h"
#include "port/stack_trace.h"
#include "rocksdb/iostats_context.h"
#include "rocksdb/utilities/debug.h"
#include "test_util/mock_time_env.h"
namespace ROCKSDB_NAMESPACE {
class SeqnoTimeTest : public DBTestBase {
public:
SeqnoTimeTest() : DBTestBase("seqno_time_test", /*env_do_fsync=*/false) {
mock_clock_ = std::make_shared<MockSystemClock>(env_->GetSystemClock());
mock_env_ = std::make_unique<CompositeEnvWrapper>(env_, mock_clock_);
}
protected:
std::unique_ptr<Env> mock_env_;
std::shared_ptr<MockSystemClock> mock_clock_;
void SetUp() override {
mock_clock_->InstallTimedWaitFixCallback();
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::StartPeriodicTaskScheduler:Init", [&](void* arg) {
auto periodic_task_scheduler_ptr =
reinterpret_cast<PeriodicTaskScheduler*>(arg);
periodic_task_scheduler_ptr->TEST_OverrideTimer(mock_clock_.get());
});
}
// make sure the file is not in cache, otherwise it won't have IO info
void AssertKeyTemperature(int key_id, Temperature expected_temperature) {
get_iostats_context()->Reset();
IOStatsContext* iostats = get_iostats_context();
std::string result = Get(Key(key_id));
ASSERT_FALSE(result.empty());
ASSERT_GT(iostats->bytes_read, 0);
switch (expected_temperature) {
case Temperature::kUnknown:
ASSERT_EQ(iostats->file_io_stats_by_temperature.cold_file_read_count,
0);
ASSERT_EQ(iostats->file_io_stats_by_temperature.cold_file_bytes_read,
0);
break;
case Temperature::kCold:
ASSERT_GT(iostats->file_io_stats_by_temperature.cold_file_read_count,
0);
ASSERT_GT(iostats->file_io_stats_by_temperature.cold_file_bytes_read,
0);
break;
default:
// the test only support kCold now for the bottommost temperature
FAIL();
}
}
};
TEST_F(SeqnoTimeTest, TemperatureBasicUniversal) {
const int kNumTrigger = 4;
const int kNumLevels = 7;
const int kNumKeys = 100;
const int kKeyPerSec = 10;
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.preclude_last_level_data_seconds = 10000;
options.env = mock_env_.get();
options.bottommost_temperature = Temperature::kCold;
options.num_levels = kNumLevels;
DestroyAndReopen(options);
// pass some time first, otherwise the first a few keys write time are going
// to be zero, and internally zero has special meaning: kUnknownSeqnoTime
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(kKeyPerSec)); });
int sst_num = 0;
// Write files that are overlap and enough to trigger compaction
for (; sst_num < kNumTrigger; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun([&] {
mock_clock_->MockSleepForSeconds(static_cast<int>(kKeyPerSec));
});
}
ASSERT_OK(Flush());
}
Add WaitForCompact with WaitForCompactOptions to public API (#11436) Summary: Context: This is the first PR for WaitForCompact() Implementation with WaitForCompactOptions. In this PR, we are introducing `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` in the public API. This currently utilizes the existing internal `WaitForCompact()` implementation (with default abort_on_pause = false). `abort_on_pause` has been moved to `WaitForCompactOptions&`. In the later PRs, we will introduce the following two options in `WaitForCompactOptions` 1. `bool flush = false` by default - If true, flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB. 2. `bool close_db = false` by default - If true, will also close the DB upon compactions finishing. 1. struct `WaitForCompactOptions` added to options.h and `abort_on_pause` in the internal API moved to the option struct. 2. `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` introduced in `db.h` 3. Changed the internal WaitForCompact() to `WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` and checks for the `abort_on_pause` inside the option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11436 Test Plan: Following tests added - `DBCompactionTest::WaitForCompactWaitsOnCompactionToFinish` - `DBCompactionTest::WaitForCompactAbortOnPauseAborted` - `DBCompactionTest::WaitForCompactContinueAfterPauseNotAborted` - `DBCompactionTest::WaitForCompactShutdownWhileWaiting` - `TransactionTest::WaitForCompactAbortOnPause` NOTE: `TransactionTest::WaitForCompactAbortOnPause` was added to use `StackableDB` to ensure the wrapper function is in place. Reviewed By: pdillinger Differential Revision: D45799659 Pulled By: jaykorean fbshipit-source-id: b5b58f95957f2ab47d1221dee32a61d6cdc4685b
2 years ago
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// All data is hot, only output to penultimate level
ASSERT_EQ("0,0,0,0,0,1", FilesPerLevel());
ASSERT_GT(GetSstSizeHelper(Temperature::kUnknown), 0);
ASSERT_EQ(GetSstSizeHelper(Temperature::kCold), 0);
// read a random key, which should be hot (kUnknown)
AssertKeyTemperature(20, Temperature::kUnknown);
// Write more data, but still all hot until the 10th SST, as:
// write a key every 10 seconds, 100 keys per SST, each SST takes 1000 seconds
// The preclude_last_level_data_seconds is 10k
for (; sst_num < kNumTrigger * 2; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun([&] {
mock_clock_->MockSleepForSeconds(static_cast<int>(kKeyPerSec));
});
}
ASSERT_OK(Flush());
Add WaitForCompact with WaitForCompactOptions to public API (#11436) Summary: Context: This is the first PR for WaitForCompact() Implementation with WaitForCompactOptions. In this PR, we are introducing `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` in the public API. This currently utilizes the existing internal `WaitForCompact()` implementation (with default abort_on_pause = false). `abort_on_pause` has been moved to `WaitForCompactOptions&`. In the later PRs, we will introduce the following two options in `WaitForCompactOptions` 1. `bool flush = false` by default - If true, flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB. 2. `bool close_db = false` by default - If true, will also close the DB upon compactions finishing. 1. struct `WaitForCompactOptions` added to options.h and `abort_on_pause` in the internal API moved to the option struct. 2. `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` introduced in `db.h` 3. Changed the internal WaitForCompact() to `WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` and checks for the `abort_on_pause` inside the option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11436 Test Plan: Following tests added - `DBCompactionTest::WaitForCompactWaitsOnCompactionToFinish` - `DBCompactionTest::WaitForCompactAbortOnPauseAborted` - `DBCompactionTest::WaitForCompactContinueAfterPauseNotAborted` - `DBCompactionTest::WaitForCompactShutdownWhileWaiting` - `TransactionTest::WaitForCompactAbortOnPause` NOTE: `TransactionTest::WaitForCompactAbortOnPause` was added to use `StackableDB` to ensure the wrapper function is in place. Reviewed By: pdillinger Differential Revision: D45799659 Pulled By: jaykorean fbshipit-source-id: b5b58f95957f2ab47d1221dee32a61d6cdc4685b
2 years ago
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(GetSstSizeHelper(Temperature::kUnknown), 0);
ASSERT_EQ(GetSstSizeHelper(Temperature::kCold), 0);
}
// Now we have both hot data and cold data
for (; sst_num < kNumTrigger * 3; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun([&] {
mock_clock_->MockSleepForSeconds(static_cast<int>(kKeyPerSec));
});
}
ASSERT_OK(Flush());
Add WaitForCompact with WaitForCompactOptions to public API (#11436) Summary: Context: This is the first PR for WaitForCompact() Implementation with WaitForCompactOptions. In this PR, we are introducing `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` in the public API. This currently utilizes the existing internal `WaitForCompact()` implementation (with default abort_on_pause = false). `abort_on_pause` has been moved to `WaitForCompactOptions&`. In the later PRs, we will introduce the following two options in `WaitForCompactOptions` 1. `bool flush = false` by default - If true, flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB. 2. `bool close_db = false` by default - If true, will also close the DB upon compactions finishing. 1. struct `WaitForCompactOptions` added to options.h and `abort_on_pause` in the internal API moved to the option struct. 2. `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` introduced in `db.h` 3. Changed the internal WaitForCompact() to `WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` and checks for the `abort_on_pause` inside the option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11436 Test Plan: Following tests added - `DBCompactionTest::WaitForCompactWaitsOnCompactionToFinish` - `DBCompactionTest::WaitForCompactAbortOnPauseAborted` - `DBCompactionTest::WaitForCompactContinueAfterPauseNotAborted` - `DBCompactionTest::WaitForCompactShutdownWhileWaiting` - `TransactionTest::WaitForCompactAbortOnPause` NOTE: `TransactionTest::WaitForCompactAbortOnPause` was added to use `StackableDB` to ensure the wrapper function is in place. Reviewed By: pdillinger Differential Revision: D45799659 Pulled By: jaykorean fbshipit-source-id: b5b58f95957f2ab47d1221dee32a61d6cdc4685b
2 years ago
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
uint64_t hot_data_size = GetSstSizeHelper(Temperature::kUnknown);
uint64_t cold_data_size = GetSstSizeHelper(Temperature::kCold);
ASSERT_GT(hot_data_size, 0);
ASSERT_GT(cold_data_size, 0);
// the first a few key should be cold
AssertKeyTemperature(20, Temperature::kCold);
for (int i = 0; i < 30; i++) {
dbfull()->TEST_WaitForPeriodicTaskRun([&] {
mock_clock_->MockSleepForSeconds(static_cast<int>(20 * kKeyPerSec));
});
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// the hot/cold data cut off range should be between i * 20 + 200 -> 250
AssertKeyTemperature(i * 20 + 250, Temperature::kUnknown);
AssertKeyTemperature(i * 20 + 200, Temperature::kCold);
}
ASSERT_LT(GetSstSizeHelper(Temperature::kUnknown), hot_data_size);
ASSERT_GT(GetSstSizeHelper(Temperature::kCold), cold_data_size);
// Wait again, the most of the data should be cold after that
// but it may not be all cold, because if there's no new data write to SST,
// the compaction will not get the new seqno->time sampling to decide the last
// a few data's time.
for (int i = 0; i < 5; i++) {
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(1000)); });
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
}
// any random data close to the end should be cold
AssertKeyTemperature(1000, Temperature::kCold);
// close explicitly, because the env is local variable which will be released
// first.
Close();
}
TEST_F(SeqnoTimeTest, TemperatureBasicLevel) {
const int kNumLevels = 7;
const int kNumKeys = 100;
Options options = CurrentOptions();
options.preclude_last_level_data_seconds = 10000;
options.env = mock_env_.get();
options.bottommost_temperature = Temperature::kCold;
options.num_levels = kNumLevels;
options.level_compaction_dynamic_level_bytes = true;
// TODO(zjay): for level compaction, auto-compaction may stuck in deadloop, if
// the penultimate level score > 1, but the hot is not cold enough to compact
// to last level, which will keep triggering compaction.
options.disable_auto_compactions = true;
DestroyAndReopen(options);
// pass some time first, otherwise the first a few keys write time are going
// to be zero, and internally zero has special meaning: kUnknownSeqnoTime
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
int sst_num = 0;
// Write files that are overlap
for (; sst_num < 4; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
ASSERT_OK(Flush());
}
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// All data is hot, only output to penultimate level
ASSERT_EQ("0,0,0,0,0,1", FilesPerLevel());
ASSERT_GT(GetSstSizeHelper(Temperature::kUnknown), 0);
ASSERT_EQ(GetSstSizeHelper(Temperature::kCold), 0);
// read a random key, which should be hot (kUnknown)
AssertKeyTemperature(20, Temperature::kUnknown);
// Adding more data to have mixed hot and cold data
for (; sst_num < 14; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
ASSERT_OK(Flush());
}
`CompactRange()` always compacts to bottommost level for leveled compaction (#11468) Summary: currently for leveled compaction, the max output level of a call to `CompactRange()` is pre-computed before compacting each level. This max output level is the max level whose key range overlaps with the manual compaction key range. However, during manual compaction, files in the max output level may be compacted down further by some background compaction. When this background compaction is a trivial move, there is a race condition and the manual compaction may not be able to compact all keys in the specified key range. This PR updates `CompactRange()` to always compact to the bottommost level to make this race condition more unlikely (it can still happen, see more in comment here: https://github.com/cbi42/rocksdb/blob/796f58f42ad1bdbf49e5fcf480763f11583b790e/db/db_impl/db_impl_compaction_flush.cc#L1180C29-L1184). This PR also changes the behavior of CompactRange() when `bottommost_level_compaction=kIfHaveCompactionFilter` (the default option). The old behavior is that, if a compaction filter is provided, CompactRange() always does an intra-level compaction at the final output level for all files in the manual compaction key range. The only exception when `first_overlapped_level = 0` and `max_overlapped_level = 0`. It’s awkward to maintain the same behavior after this PR since we do not compute max_overlapped_level anymore. So the new behavior is similar to kForceOptimized: always does intra-level compaction at the bottommost level, but not including new files generated during this manual compaction. Several unit tests are updated to work with this new manual compaction behavior. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11468 Test Plan: Add new unit tests `DBCompactionTest.ManualCompactionCompactAllKeysInRange*` Reviewed By: ajkr Differential Revision: D46079619 Pulled By: cbi42 fbshipit-source-id: 19d844ba4ec8dc1a0b8af5d2f36ff15820c6e76f
2 years ago
// Second to last level
MoveFilesToLevel(5);
ASSERT_GT(GetSstSizeHelper(Temperature::kUnknown), 0);
ASSERT_EQ(GetSstSizeHelper(Temperature::kCold), 0);
// Compact the files to the last level which should split the hot/cold data
MoveFilesToLevel(6);
uint64_t hot_data_size = GetSstSizeHelper(Temperature::kUnknown);
uint64_t cold_data_size = GetSstSizeHelper(Temperature::kCold);
ASSERT_GT(hot_data_size, 0);
ASSERT_GT(cold_data_size, 0);
// the first a few key should be cold
AssertKeyTemperature(20, Temperature::kCold);
// Wait some time, with each wait, the cold data is increasing and hot data is
// decreasing
for (int i = 0; i < 30; i++) {
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(200)); });
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
uint64_t pre_hot = hot_data_size;
uint64_t pre_cold = cold_data_size;
hot_data_size = GetSstSizeHelper(Temperature::kUnknown);
cold_data_size = GetSstSizeHelper(Temperature::kCold);
ASSERT_LT(hot_data_size, pre_hot);
ASSERT_GT(cold_data_size, pre_cold);
// the hot/cold cut_off key should be around i * 20 + 400 -> 450
AssertKeyTemperature(i * 20 + 450, Temperature::kUnknown);
AssertKeyTemperature(i * 20 + 400, Temperature::kCold);
}
// Wait again, the most of the data should be cold after that
// hot data might not be empty, because if we don't write new data, there's
// no seqno->time sampling available to the compaction
for (int i = 0; i < 5; i++) {
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(1000)); });
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
}
// any random data close to the end should be cold
AssertKeyTemperature(1000, Temperature::kCold);
Close();
}
enum class SeqnoTimeTestType : char {
kTrackInternalTimeSeconds = 0,
kPrecludeLastLevel = 1,
kBothSetTrackSmaller = 2,
};
class SeqnoTimeTablePropTest
: public SeqnoTimeTest,
public ::testing::WithParamInterface<SeqnoTimeTestType> {
public:
SeqnoTimeTablePropTest() : SeqnoTimeTest() {}
void SetTrackTimeDurationOptions(uint64_t track_time_duration,
Options& options) const {
// either option set will enable the time tracking feature
switch (GetParam()) {
case SeqnoTimeTestType::kTrackInternalTimeSeconds:
options.preclude_last_level_data_seconds = 0;
options.preserve_internal_time_seconds = track_time_duration;
break;
case SeqnoTimeTestType::kPrecludeLastLevel:
options.preclude_last_level_data_seconds = track_time_duration;
options.preserve_internal_time_seconds = 0;
break;
case SeqnoTimeTestType::kBothSetTrackSmaller:
options.preclude_last_level_data_seconds = track_time_duration;
options.preserve_internal_time_seconds = track_time_duration / 10;
break;
}
}
};
INSTANTIATE_TEST_CASE_P(
SeqnoTimeTablePropTest, SeqnoTimeTablePropTest,
::testing::Values(SeqnoTimeTestType::kTrackInternalTimeSeconds,
SeqnoTimeTestType::kPrecludeLastLevel,
SeqnoTimeTestType::kBothSetTrackSmaller));
TEST_P(SeqnoTimeTablePropTest, BasicSeqnoToTimeMapping) {
Options options = CurrentOptions();
SetTrackTimeDurationOptions(10000, options);
options.env = mock_env_.get();
options.disable_auto_compactions = true;
DestroyAndReopen(options);
std::set<uint64_t> checked_file_nums;
SequenceNumber start_seq = dbfull()->GetLatestSequenceNumber();
// Write a key every 10 seconds
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
ASSERT_OK(Flush());
TablePropertiesCollection tables_props;
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 1);
auto it = tables_props.begin();
SeqnoToTimeMapping tp_mapping;
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
ASSERT_FALSE(tp_mapping.Empty());
auto seqs = tp_mapping.TEST_GetInternalMapping();
// about ~20 seqs->time entries, because the sample rate is 10000/100, and it
// passes 2k time.
ASSERT_GE(seqs.size(), 19);
ASSERT_LE(seqs.size(), 21);
SequenceNumber seq_end = dbfull()->GetLatestSequenceNumber();
for (auto i = start_seq; i < start_seq + 10; i++) {
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i), (i + 1) * 10);
}
start_seq += 10;
for (auto i = start_seq; i < seq_end; i++) {
// The result is within the range
ASSERT_GE(tp_mapping.GetOldestApproximateTime(i), (i - 10) * 10);
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i), (i + 10) * 10);
}
checked_file_nums.insert(it->second->orig_file_number);
start_seq = seq_end;
// Write a key every 1 seconds
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i + 190), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(1)); });
}
seq_end = dbfull()->GetLatestSequenceNumber();
ASSERT_OK(Flush());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 2);
it = tables_props.begin();
while (it != tables_props.end()) {
if (!checked_file_nums.count(it->second->orig_file_number)) {
break;
}
it++;
}
ASSERT_TRUE(it != tables_props.end());
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
// There only a few time sample
ASSERT_GE(seqs.size(), 1);
ASSERT_LE(seqs.size(), 3);
for (auto i = start_seq; i < seq_end; i++) {
// The result is not very accurate, as there is more data write within small
// range of time
ASSERT_GE(tp_mapping.GetOldestApproximateTime(i), (i - start_seq) + 1000);
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i), (i - start_seq) + 3000);
}
checked_file_nums.insert(it->second->orig_file_number);
start_seq = seq_end;
// Write a key every 200 seconds
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i + 380), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(200)); });
}
seq_end = dbfull()->GetLatestSequenceNumber();
ASSERT_OK(Flush());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 3);
it = tables_props.begin();
while (it != tables_props.end()) {
if (!checked_file_nums.count(it->second->orig_file_number)) {
break;
}
it++;
}
ASSERT_TRUE(it != tables_props.end());
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
// The sequence number -> time entries should be maxed
ASSERT_GE(seqs.size(), 99);
ASSERT_LE(seqs.size(), 101);
for (auto i = start_seq; i < seq_end - 99; i++) {
// likely the first 100 entries reports 0
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i), (i - start_seq) + 3000);
}
start_seq += 101;
for (auto i = start_seq; i < seq_end; i++) {
ASSERT_GE(tp_mapping.GetOldestApproximateTime(i),
(i - start_seq) * 200 + 22200);
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i),
(i - start_seq) * 200 + 22600);
}
checked_file_nums.insert(it->second->orig_file_number);
start_seq = seq_end;
// Write a key every 100 seconds
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i + 570), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
seq_end = dbfull()->GetLatestSequenceNumber();
ASSERT_OK(Flush());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 4);
it = tables_props.begin();
while (it != tables_props.end()) {
if (!checked_file_nums.count(it->second->orig_file_number)) {
break;
}
it++;
}
ASSERT_TRUE(it != tables_props.end());
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 99);
ASSERT_LE(seqs.size(), 101);
checked_file_nums.insert(it->second->orig_file_number);
// re-enable compaction
ASSERT_OK(dbfull()->SetOptions({
{"disable_auto_compactions", "false"},
}));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_GE(tables_props.size(), 1);
it = tables_props.begin();
while (it != tables_props.end()) {
if (!checked_file_nums.count(it->second->orig_file_number)) {
break;
}
it++;
}
ASSERT_TRUE(it != tables_props.end());
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 99);
ASSERT_LE(seqs.size(), 101);
for (auto i = start_seq; i < seq_end - 99; i++) {
// likely the first 100 entries reports 0
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i),
(i - start_seq) * 100 + 50000);
}
start_seq += 101;
for (auto i = start_seq; i < seq_end; i++) {
ASSERT_GE(tp_mapping.GetOldestApproximateTime(i),
(i - start_seq) * 100 + 52200);
ASSERT_LE(tp_mapping.GetOldestApproximateTime(i),
(i - start_seq) * 100 + 52400);
}
ASSERT_OK(db_->Close());
}
TEST_P(SeqnoTimeTablePropTest, MultiCFs) {
Options options = CurrentOptions();
options.preclude_last_level_data_seconds = 0;
options.preserve_internal_time_seconds = 0;
options.env = mock_env_.get();
options.stats_dump_period_sec = 0;
options.stats_persist_period_sec = 0;
ReopenWithColumnFamilies({"default"}, options);
const PeriodicTaskScheduler& scheduler =
dbfull()->TEST_GetPeriodicTaskScheduler();
ASSERT_FALSE(scheduler.TEST_HasTask(PeriodicTaskType::kRecordSeqnoTime));
// Write some data and increase the current time
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
ASSERT_OK(Flush());
TablePropertiesCollection tables_props;
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 1);
auto it = tables_props.begin();
ASSERT_TRUE(it->second->seqno_to_time_mapping.empty());
ASSERT_TRUE(dbfull()->TEST_GetSeqnoToTimeMapping().Empty());
Options options_1 = options;
SetTrackTimeDurationOptions(10000, options_1);
CreateColumnFamilies({"one"}, options_1);
ASSERT_TRUE(scheduler.TEST_HasTask(PeriodicTaskType::kRecordSeqnoTime));
// Write some data to the default CF (without preclude_last_level feature)
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
ASSERT_OK(Flush());
// Write some data to the CF one
for (int i = 0; i < 20; i++) {
ASSERT_OK(Put(1, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
ASSERT_OK(Flush(1));
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(handles_[1], &tables_props));
ASSERT_EQ(tables_props.size(), 1);
it = tables_props.begin();
SeqnoToTimeMapping tp_mapping;
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
ASSERT_FALSE(tp_mapping.Empty());
auto seqs = tp_mapping.TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 1);
ASSERT_LE(seqs.size(), 4);
// Create one more CF with larger preclude_last_level time
Options options_2 = options;
SetTrackTimeDurationOptions(1000000, options_2); // 1m
CreateColumnFamilies({"two"}, options_2);
// Add more data to CF "two" to fill the in memory mapping
for (int i = 0; i < 2000; i++) {
ASSERT_OK(Put(2, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
seqs = dbfull()->TEST_GetSeqnoToTimeMapping().TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 1000 - 1);
ASSERT_LE(seqs.size(), 1000 + 1);
ASSERT_OK(Flush(2));
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(handles_[2], &tables_props));
ASSERT_EQ(tables_props.size(), 1);
it = tables_props.begin();
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
// the max encoded entries is 100
ASSERT_GE(seqs.size(), 100 - 1);
ASSERT_LE(seqs.size(), 100 + 1);
// Write some data to default CF, as all memtable with preclude_last_level
// enabled have flushed, the in-memory seqno->time mapping should be cleared
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(0, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
seqs = dbfull()->TEST_GetSeqnoToTimeMapping().TEST_GetInternalMapping();
ASSERT_OK(Flush(0));
// trigger compaction for CF "two" and make sure the compaction output has
// seqno_to_time_mapping
for (int j = 0; j < 3; j++) {
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(2, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
ASSERT_OK(Flush(2));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(handles_[2], &tables_props));
ASSERT_EQ(tables_props.size(), 1);
it = tables_props.begin();
tp_mapping.Clear();
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
seqs = tp_mapping.TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 99);
ASSERT_LE(seqs.size(), 101);
for (int j = 0; j < 2; j++) {
for (int i = 0; i < 200; i++) {
ASSERT_OK(Put(0, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
ASSERT_OK(Flush(0));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(handles_[0], &tables_props));
ASSERT_EQ(tables_props.size(), 1);
it = tables_props.begin();
ASSERT_TRUE(it->second->seqno_to_time_mapping.empty());
// Write some data to CF "two", but don't flush to accumulate
for (int i = 0; i < 1000; i++) {
ASSERT_OK(Put(2, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
ASSERT_GE(
dbfull()->TEST_GetSeqnoToTimeMapping().TEST_GetInternalMapping().size(),
500);
// After dropping CF "one", the in-memory mapping will be change to only
// follow CF "two" options.
ASSERT_OK(db_->DropColumnFamily(handles_[1]));
ASSERT_LE(
dbfull()->TEST_GetSeqnoToTimeMapping().TEST_GetInternalMapping().size(),
100 + 5);
// After dropping CF "two", the in-memory mapping is also clear.
ASSERT_OK(db_->DropColumnFamily(handles_[2]));
ASSERT_EQ(
dbfull()->TEST_GetSeqnoToTimeMapping().TEST_GetInternalMapping().size(),
0);
// And the timer worker is stopped
ASSERT_FALSE(scheduler.TEST_HasTask(PeriodicTaskType::kRecordSeqnoTime));
Close();
}
TEST_P(SeqnoTimeTablePropTest, MultiInstancesBasic) {
const int kInstanceNum = 2;
Options options = CurrentOptions();
SetTrackTimeDurationOptions(10000, options);
options.env = mock_env_.get();
options.stats_dump_period_sec = 0;
options.stats_persist_period_sec = 0;
auto dbs = std::vector<DB*>(kInstanceNum);
for (int i = 0; i < kInstanceNum; i++) {
ASSERT_OK(
DB::Open(options, test::PerThreadDBPath(std::to_string(i)), &(dbs[i])));
}
// Make sure the second instance has the worker enabled
auto dbi = static_cast_with_check<DBImpl>(dbs[1]);
WriteOptions wo;
for (int i = 0; i < 200; i++) {
ASSERT_OK(dbi->Put(wo, Key(i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(100)); });
}
SeqnoToTimeMapping seqno_to_time_mapping = dbi->TEST_GetSeqnoToTimeMapping();
ASSERT_GT(seqno_to_time_mapping.Size(), 10);
for (int i = 0; i < kInstanceNum; i++) {
ASSERT_OK(dbs[i]->Close());
delete dbs[i];
}
}
TEST_P(SeqnoTimeTablePropTest, SeqnoToTimeMappingUniversal) {
const int kNumTrigger = 4;
const int kNumLevels = 7;
const int kNumKeys = 100;
Options options = CurrentOptions();
SetTrackTimeDurationOptions(10000, options);
options.compaction_style = kCompactionStyleUniversal;
options.num_levels = kNumLevels;
options.env = mock_env_.get();
DestroyAndReopen(options);
std::atomic_uint64_t num_seqno_zeroing{0};
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"CompactionIterator::PrepareOutput:ZeroingSeq",
[&](void* /*arg*/) { num_seqno_zeroing++; });
SyncPoint::GetInstance()->EnableProcessing();
int sst_num = 0;
for (; sst_num < kNumTrigger - 1; sst_num++) {
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
ASSERT_OK(Flush());
}
TablePropertiesCollection tables_props;
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 3);
for (const auto& props : tables_props) {
ASSERT_FALSE(props.second->seqno_to_time_mapping.empty());
SeqnoToTimeMapping tp_mapping;
ASSERT_OK(tp_mapping.Add(props.second->seqno_to_time_mapping));
ASSERT_OK(tp_mapping.Sort());
ASSERT_FALSE(tp_mapping.Empty());
auto seqs = tp_mapping.TEST_GetInternalMapping();
ASSERT_GE(seqs.size(), 10 - 1);
ASSERT_LE(seqs.size(), 10 + 1);
}
// Trigger a compaction
for (int i = 0; i < kNumKeys; i++) {
ASSERT_OK(Put(Key(sst_num * (kNumKeys - 1) + i), "value"));
dbfull()->TEST_WaitForPeriodicTaskRun(
[&] { mock_clock_->MockSleepForSeconds(static_cast<int>(10)); });
}
sst_num++;
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
tables_props.clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 1);
auto it = tables_props.begin();
SeqnoToTimeMapping tp_mapping;
ASSERT_FALSE(it->second->seqno_to_time_mapping.empty());
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
// compact to the last level
CompactRangeOptions cro;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// make sure the data is all compacted to penultimate level if the feature is
// on, otherwise, compacted to the last level.
if (options.preclude_last_level_data_seconds > 0) {
ASSERT_GT(NumTableFilesAtLevel(5), 0);
ASSERT_EQ(NumTableFilesAtLevel(6), 0);
} else {
ASSERT_EQ(NumTableFilesAtLevel(5), 0);
ASSERT_GT(NumTableFilesAtLevel(6), 0);
}
// regardless the file is on the last level or not, it should keep the time
// information and sequence number are not set
tables_props.clear();
tp_mapping.Clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
ASSERT_EQ(tables_props.size(), 1);
ASSERT_EQ(num_seqno_zeroing, 0);
it = tables_props.begin();
ASSERT_FALSE(it->second->seqno_to_time_mapping.empty());
ASSERT_OK(tp_mapping.Add(it->second->seqno_to_time_mapping));
// make half of the data expired
mock_clock_->MockSleepForSeconds(static_cast<int>(8000));
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
tables_props.clear();
tp_mapping.Clear();
ASSERT_OK(dbfull()->GetPropertiesOfAllTables(&tables_props));
if (options.preclude_last_level_data_seconds > 0) {
ASSERT_EQ(tables_props.size(), 2);
} else {
ASSERT_EQ(tables_props.size(), 1);
}
ASSERT_GT(num_seqno_zeroing, 0);
std::vector<KeyVersion> key_versions;
ASSERT_OK(GetAllKeyVersions(db_, Slice(), Slice(),
std::numeric_limits<size_t>::max(),
&key_versions));
// make sure there're more than 300 keys and first 100 keys are having seqno
// zeroed out, the last 100 key seqno not zeroed out
ASSERT_GT(key_versions.size(), 300);
for (int i = 0; i < 100; i++) {
ASSERT_EQ(key_versions[i].sequence, 0);
}
auto rit = key_versions.rbegin();
for (int i = 0; i < 100; i++) {
ASSERT_GT(rit->sequence, 0);
rit++;
}
// make all data expired and compact again to push it to the last level
// regardless if the tiering feature is enabled or not
mock_clock_->MockSleepForSeconds(static_cast<int>(20000));
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_GT(num_seqno_zeroing, 0);
ASSERT_GT(NumTableFilesAtLevel(6), 0);
Close();
}
TEST_F(SeqnoTimeTest, MappingAppend) {
SeqnoToTimeMapping test(/*max_time_duration=*/100, /*max_capacity=*/10);
// ignore seqno == 0, as it may mean the seqno is zeroed out
ASSERT_FALSE(test.Append(0, 9));
ASSERT_TRUE(test.Append(3, 10));
auto size = test.Size();
// normal add
ASSERT_TRUE(test.Append(10, 11));
size++;
ASSERT_EQ(size, test.Size());
// Append unsorted
ASSERT_FALSE(test.Append(8, 12));
ASSERT_EQ(size, test.Size());
// Append with the same seqno, newer time will be accepted
ASSERT_TRUE(test.Append(10, 12));
ASSERT_EQ(size, test.Size());
// older time will be ignored
ASSERT_FALSE(test.Append(10, 9));
ASSERT_EQ(size, test.Size());
// new seqno with old time will be ignored
ASSERT_FALSE(test.Append(12, 8));
ASSERT_EQ(size, test.Size());
}
TEST_F(SeqnoTimeTest, GetOldestApproximateTime) {
SeqnoToTimeMapping test(/*max_time_duration=*/100, /*max_capacity=*/10);
ASSERT_EQ(test.GetOldestApproximateTime(10), kUnknownSeqnoTime);
test.Append(3, 10);
ASSERT_EQ(test.GetOldestApproximateTime(2), kUnknownSeqnoTime);
ASSERT_EQ(test.GetOldestApproximateTime(3), 10);
ASSERT_EQ(test.GetOldestApproximateTime(10), 10);
test.Append(10, 100);
test.Append(100, 1000);
ASSERT_EQ(test.GetOldestApproximateTime(10), 100);
ASSERT_EQ(test.GetOldestApproximateTime(40), 100);
ASSERT_EQ(test.GetOldestApproximateTime(111), 1000);
}
TEST_F(SeqnoTimeTest, Sort) {
SeqnoToTimeMapping test;
// single entry
test.Add(10, 11);
ASSERT_OK(test.Sort());
ASSERT_EQ(test.Size(), 1);
// duplicate, should be removed by sort
test.Add(10, 11);
// same seqno, but older time, should be removed
test.Add(10, 9);
// unuseful ones, should be removed by sort
test.Add(11, 9);
test.Add(9, 8);
// Good ones
test.Add(1, 10);
test.Add(100, 100);
ASSERT_OK(test.Sort());
auto seqs = test.TEST_GetInternalMapping();
std::deque<SeqnoToTimeMapping::SeqnoTimePair> expected;
expected.emplace_back(1, 10);
expected.emplace_back(10, 11);
expected.emplace_back(100, 100);
ASSERT_EQ(expected, seqs);
}
TEST_F(SeqnoTimeTest, EncodeDecodeBasic) {
SeqnoToTimeMapping test(0, 1000);
std::string output;
test.Encode(output, 0, 1000, 100);
ASSERT_TRUE(output.empty());
for (int i = 1; i <= 1000; i++) {
ASSERT_TRUE(test.Append(i, i * 10));
}
test.Encode(output, 0, 1000, 100);
ASSERT_FALSE(output.empty());
SeqnoToTimeMapping decoded;
ASSERT_OK(decoded.Add(output));
ASSERT_OK(decoded.Sort());
ASSERT_EQ(decoded.Size(), SeqnoToTimeMapping::kMaxSeqnoTimePairsPerSST);
ASSERT_EQ(test.Size(), 1000);
for (SequenceNumber seq = 0; seq <= 1000; seq++) {
// test has the more accurate time mapping, encode only pick
// kMaxSeqnoTimePairsPerSST number of entries, which is less accurate
uint64_t target_time = test.GetOldestApproximateTime(seq);
ASSERT_GE(decoded.GetOldestApproximateTime(seq),
target_time < 200 ? 0 : target_time - 200);
ASSERT_LE(decoded.GetOldestApproximateTime(seq), target_time);
}
}
TEST_F(SeqnoTimeTest, EncodeDecodePerferNewTime) {
SeqnoToTimeMapping test(0, 10);
test.Append(1, 10);
test.Append(5, 17);
test.Append(6, 25);
test.Append(8, 30);
std::string output;
test.Encode(output, 1, 10, 0, 3);
SeqnoToTimeMapping decoded;
ASSERT_OK(decoded.Add(output));
ASSERT_OK(decoded.Sort());
ASSERT_EQ(decoded.Size(), 3);
auto seqs = decoded.TEST_GetInternalMapping();
std::deque<SeqnoToTimeMapping::SeqnoTimePair> expected;
expected.emplace_back(1, 10);
expected.emplace_back(6, 25);
expected.emplace_back(8, 30);
ASSERT_EQ(expected, seqs);
// Add a few large time number
test.Append(10, 100);
test.Append(13, 200);
test.Append(16, 300);
output.clear();
test.Encode(output, 1, 20, 0, 4);
decoded.Clear();
ASSERT_OK(decoded.Add(output));
ASSERT_OK(decoded.Sort());
ASSERT_EQ(decoded.Size(), 4);
expected.clear();
expected.emplace_back(1, 10);
// entry #6, #8 are skipped as they are too close to #1.
// entry #100 is also within skip range, but if it's skipped, there not enough
// number to fill 4 entries, so select it.
expected.emplace_back(10, 100);
expected.emplace_back(13, 200);
expected.emplace_back(16, 300);
seqs = decoded.TEST_GetInternalMapping();
ASSERT_EQ(expected, seqs);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}