You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/db/dbformat.h

662 lines
22 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdio.h>
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
6 years ago
#include <memory>
#include <string>
#include <utility>
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
6 years ago
#include "db/lookup_key.h"
#include "db/merge_context.h"
#include "monitoring/perf_context_imp.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/table.h"
#include "rocksdb/types.h"
#include "util/coding.h"
#include "util/logging.h"
#include "util/user_comparator_wrapper.h"
namespace rocksdb {
// The file declares data structures and functions that deal with internal
// keys.
// Each internal key contains a user key, a sequence number (SequenceNumber)
// and a type (ValueType), and they are usually encoded together.
// There are some related helper classes here.
class InternalKey;
// Value types encoded as the last component of internal keys.
// DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
// data structures.
// The highest bit of the value type needs to be reserved to SST tables
// for them to do more flexible encoding.
enum ValueType : unsigned char {
kTypeDeletion = 0x0,
kTypeValue = 0x1,
kTypeMerge = 0x2,
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
kTypeLogData = 0x3, // WAL only.
kTypeColumnFamilyDeletion = 0x4, // WAL only.
kTypeColumnFamilyValue = 0x5, // WAL only.
kTypeColumnFamilyMerge = 0x6, // WAL only.
kTypeSingleDeletion = 0x7,
kTypeColumnFamilySingleDeletion = 0x8, // WAL only.
kTypeBeginPrepareXID = 0x9, // WAL only.
kTypeEndPrepareXID = 0xA, // WAL only.
kTypeCommitXID = 0xB, // WAL only.
kTypeRollbackXID = 0xC, // WAL only.
kTypeNoop = 0xD, // WAL only.
kTypeColumnFamilyRangeDeletion = 0xE, // WAL only.
kTypeRangeDeletion = 0xF, // meta block
kTypeColumnFamilyBlobIndex = 0x10, // Blob DB only
kTypeBlobIndex = 0x11, // Blob DB only
// When the prepared record is also persisted in db, we use a different
// record. This is to ensure that the WAL that is generated by a WritePolicy
// is not mistakenly read by another, which would result into data
// inconsistency.
kTypeBeginPersistedPrepareXID = 0x12, // WAL only.
// Similar to kTypeBeginPersistedPrepareXID, this is to ensure that WAL
// generated by WriteUnprepared write policy is not mistakenly read by
// another.
kTypeBeginUnprepareXID = 0x13, // WAL only.
kMaxValue = 0x7F // Not used for storing records.
};
// Defined in dbformat.cc
extern const ValueType kValueTypeForSeek;
extern const ValueType kValueTypeForSeekForPrev;
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
// Checks whether a type is an inline value type
// (i.e. a type used in memtable skiplist and sst file datablock).
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
inline bool IsValueType(ValueType t) {
return t <= kTypeMerge || t == kTypeSingleDeletion || t == kTypeBlobIndex;
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
}
// Checks whether a type is from user operation
// kTypeRangeDeletion is in meta block so this API is separated from above
inline bool IsExtendedValueType(ValueType t) {
return IsValueType(t) || t == kTypeRangeDeletion;
}
// We leave eight bits empty at the bottom so a type and sequence#
// can be packed together into 64-bits.
static const SequenceNumber kMaxSequenceNumber = ((0x1ull << 56) - 1);
static const SequenceNumber kDisableGlobalSequenceNumber = port::kMaxUint64;
// The data structure that represents an internal key in the way that user_key,
// sequence number and type are stored in separated forms.
struct ParsedInternalKey {
Slice user_key;
SequenceNumber sequence;
ValueType type;
ParsedInternalKey()
: sequence(kMaxSequenceNumber) // Make code analyzer happy
{} // Intentionally left uninitialized (for speed)
ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
: user_key(u), sequence(seq), type(t) {}
std::string DebugString(bool hex = false) const;
void clear() {
user_key.clear();
sequence = 0;
type = kTypeDeletion;
}
};
// Return the length of the encoding of "key".
inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
return key.user_key.size() + 8;
}
// Pack a sequence number and a ValueType into a uint64_t
extern uint64_t PackSequenceAndType(uint64_t seq, ValueType t);
// Given the result of PackSequenceAndType, store the sequence number in *seq
// and the ValueType in *t.
extern void UnPackSequenceAndType(uint64_t packed, uint64_t* seq, ValueType* t);
EntryType GetEntryType(ValueType value_type);
// Append the serialization of "key" to *result.
extern void AppendInternalKey(std::string* result,
const ParsedInternalKey& key);
// Serialized internal key consists of user key followed by footer.
// This function appends the footer to *result, assuming that *result already
// contains the user key at the end.
extern void AppendInternalKeyFooter(std::string* result, SequenceNumber s,
ValueType t);
// Attempt to parse an internal key from "internal_key". On success,
// stores the parsed data in "*result", and returns true.
//
// On error, returns false, leaves "*result" in an undefined state.
extern bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result);
// Returns the user key portion of an internal key.
inline Slice ExtractUserKey(const Slice& internal_key) {
assert(internal_key.size() >= 8);
return Slice(internal_key.data(), internal_key.size() - 8);
}
inline uint64_t ExtractInternalKeyFooter(const Slice& internal_key) {
assert(internal_key.size() >= 8);
const size_t n = internal_key.size();
return DecodeFixed64(internal_key.data() + n - 8);
}
inline ValueType ExtractValueType(const Slice& internal_key) {
uint64_t num = ExtractInternalKeyFooter(internal_key);
unsigned char c = num & 0xff;
return static_cast<ValueType>(c);
}
// A comparator for internal keys that uses a specified comparator for
// the user key portion and breaks ties by decreasing sequence number.
class InternalKeyComparator
#ifdef NDEBUG
final
#endif
: public Comparator {
private:
UserComparatorWrapper user_comparator_;
std::string name_;
public:
explicit InternalKeyComparator(const Comparator* c)
: user_comparator_(c),
name_("rocksdb.InternalKeyComparator:" +
std::string(user_comparator_.Name())) {}
virtual ~InternalKeyComparator() {}
virtual const char* Name() const override;
virtual int Compare(const Slice& a, const Slice& b) const override;
// Same as Compare except that it excludes the value type from comparison
virtual int CompareKeySeq(const Slice& a, const Slice& b) const;
virtual void FindShortestSeparator(std::string* start,
const Slice& limit) const override;
virtual void FindShortSuccessor(std::string* key) const override;
const Comparator* user_comparator() const {
return user_comparator_.user_comparator();
}
int Compare(const InternalKey& a, const InternalKey& b) const;
int Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const;
virtual const Comparator* GetRootComparator() const override {
return user_comparator_.GetRootComparator();
}
};
// The class represent the internal key in encoded form.
class InternalKey {
private:
std::string rep_;
public:
InternalKey() {} // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice& _user_key, SequenceNumber s, ValueType t) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, s, t));
}
// sets the internal key to be bigger or equal to all internal keys with this
// user key
void SetMaxPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(
&rep_, ParsedInternalKey(_user_key, 0, static_cast<ValueType>(0)));
}
// sets the internal key to be smaller or equal to all internal keys with this
// user key
void SetMinPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, kMaxSequenceNumber,
kValueTypeForSeek));
}
[fix] SIGSEGV when VersionEdit in MANIFEST is corrupted Summary: This was reported by our customers in task #4295529. Cause: * MANIFEST file contains a VersionEdit, which contains file entries whose 'smallest' and 'largest' internal keys are empty. String with zero characters. Root cause of corruption was not investigated. We should report corruption when this happens. However, we currently SIGSEGV. Here's what happens: * VersionEdit encodes zero-strings happily and stores them in smallest and largest InternalKeys. InternalKey::Encode() does assert when `rep_.empty()`, but we don't assert in production environemnts. Also, we should never assert as a result of DB corruption. * As part of our ConsistencyCheck, we call GetLiveFilesMetaData() * GetLiveFilesMetadata() calls `file->largest.user_key().ToString()` * user_key() function does: 1. assert(size > 8) (ooops, no assert), 2. returns `Slice(internal_key.data(), internal_key.size() - 8)` * since `internal_key.size()` is unsigned int, this call translates to `Slice(whatever, 1298471928561892576182756)`. Bazinga. Fix: * VersionEdit checks if InternalKey is valid in `VersionEdit::GetInternalKey()`. If it's invalid, returns corruption. Lessons learned: * Always keep in mind that even if you `assert()`, production code will continue execution even if assert fails. * Never `assert` based on DB corruption. Assert only if the code should guarantee that assert can't fail. Test Plan: dumped offending manifest. Before: assert. Now: corruption Reviewers: dhruba, haobo, sdong Reviewed By: dhruba CC: leveldb Differential Revision: https://reviews.facebook.net/D18507
11 years ago
bool Valid() const {
ParsedInternalKey parsed;
return ParseInternalKey(Slice(rep_), &parsed);
}
void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Slice Encode() const {
assert(!rep_.empty());
return rep_;
}
Slice user_key() const { return ExtractUserKey(rep_); }
size_t size() { return rep_.size(); }
Miscellaneous performance improvements Summary: I was investigating performance issues in the SstFileWriter and found all of the following: - The SstFileWriter::Add() function created a local InternalKey every time it was called generating a allocation and free each time. Changed to have an InternalKey member variable that can be reset with the new InternalKey::Set() function. - In SstFileWriter::Add() the smallest_key and largest_key values were assigned the result of a ToString() call, but it is simpler to just assign them directly from the user's key. - The Slice class had no move constructor so each time one was returned from a function a new one had to be allocated, the old data copied to the new, and the old one was freed. I added the move constructor which also required a copy constructor and assignment operator. - The BlockBuilder::CurrentSizeEstimate() function calculates the current estimate size, but was being called 2 or 3 times for each key added. I changed the class to maintain a running estimate (equal to the original calculation) so that the function can return an already calculated value. - The code in BlockBuilder::Add() that calculated the shared bytes between the last key and the new key duplicated what Slice::difference_offset does, so I replaced it with the standard function. - BlockBuilder::Add() had code to copy just the changed portion into the last key value (and asserted that it now matched the new key). It is more efficient just to copy the whole new key over. - Moved this same code up into the 'if (use_delta_encoding_)' since the last key value is only needed when delta encoding is on. - FlushBlockBySizePolicy::BlockAlmostFull calculated a standard deviation value each time it was called, but this information would only change if block_size of block_size_deviation changed, so I created a member variable to hold the value to avoid the calculation each time. - Each PutVarint??() function has a buffer and calls std::string::append(). Two or three calls in a row could share a buffer and a single call to std::string::append(). Some of these will be helpful outside of the SstFileWriter. I'm not 100% the addition of the move constructor is appropriate as I wonder why this wasn't done before - maybe because of compiler compatibility? I tried it on gcc 4.8 and 4.9. Test Plan: The changes should not affect the results so the existing tests should all still work and no new tests were added. The value of the changes was seen by manually testing the SstFileWriter class through MyRocks and adding timing code to identify problem areas. Reviewers: sdong, IslamAbdelRahman Reviewed By: IslamAbdelRahman Subscribers: andrewkr, dhruba Differential Revision: https://reviews.facebook.net/D59607
9 years ago
void Set(const Slice& _user_key, SequenceNumber s, ValueType t) {
SetFrom(ParsedInternalKey(_user_key, s, t));
}
void SetFrom(const ParsedInternalKey& p) {
rep_.clear();
AppendInternalKey(&rep_, p);
}
void Clear() { rep_.clear(); }
// The underlying representation.
// Intended only to be used together with ConvertFromUserKey().
std::string* rep() { return &rep_; }
// Assuming that *rep() contains a user key, this method makes internal key
// out of it in-place. This saves a memcpy compared to Set()/SetFrom().
void ConvertFromUserKey(SequenceNumber s, ValueType t) {
AppendInternalKeyFooter(&rep_, s, t);
}
std::string DebugString(bool hex = false) const;
};
inline int InternalKeyComparator::Compare(const InternalKey& a,
const InternalKey& b) const {
return Compare(a.Encode(), b.Encode());
}
inline bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result) {
const size_t n = internal_key.size();
if (n < 8) return false;
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff;
result->sequence = num >> 8;
result->type = static_cast<ValueType>(c);
assert(result->type <= ValueType::kMaxValue);
result->user_key = Slice(internal_key.data(), n - 8);
return IsExtendedValueType(result->type);
}
// Update the sequence number in the internal key.
// Guarantees not to invalidate ikey.data().
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
inline void UpdateInternalKey(std::string* ikey, uint64_t seq, ValueType t) {
size_t ikey_sz = ikey->size();
assert(ikey_sz >= 8);
uint64_t newval = (seq << 8) | t;
// Note: Since C++11, strings are guaranteed to be stored contiguously and
// string::operator[]() is guaranteed not to change ikey.data().
EncodeFixed64(&(*ikey)[ikey_sz - 8], newval);
}
// Get the sequence number from the internal key
inline uint64_t GetInternalKeySeqno(const Slice& internal_key) {
const size_t n = internal_key.size();
assert(n >= 8);
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
return num >> 8;
}
// The class to store keys in an efficient way. It allows:
// 1. Users can either copy the key into it, or have it point to an unowned
// address.
// 2. For copied key, a short inline buffer is kept to reduce memory
// allocation for smaller keys.
// 3. It tracks user key or internal key, and allow conversion between them.
class IterKey {
public:
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
IterKey()
: buf_(space_),
key_(buf_),
key_size_(0),
buf_size_(sizeof(space_)),
is_user_key_(true) {}
~IterKey() { ResetBuffer(); }
// The bool will be picked up by the next calls to SetKey
void SetIsUserKey(bool is_user_key) { is_user_key_ = is_user_key; }
// Returns the key in whichever format that was provided to KeyIter
Slice GetKey() const { return Slice(key_, key_size_); }
Slice GetInternalKey() const {
assert(!IsUserKey());
return Slice(key_, key_size_);
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
Slice GetUserKey() const {
if (IsUserKey()) {
return Slice(key_, key_size_);
} else {
assert(key_size_ >= 8);
return Slice(key_, key_size_ - 8);
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
}
size_t Size() const { return key_size_; }
void Clear() { key_size_ = 0; }
// Append "non_shared_data" to its back, from "shared_len"
// This function is used in Block::Iter::ParseNextKey
// shared_len: bytes in [0, shard_len-1] would be remained
// non_shared_data: data to be append, its length must be >= non_shared_len
void TrimAppend(const size_t shared_len, const char* non_shared_data,
const size_t non_shared_len) {
assert(shared_len <= key_size_);
size_t total_size = shared_len + non_shared_len;
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
if (IsKeyPinned() /* key is not in buf_ */) {
// Copy the key from external memory to buf_ (copy shared_len bytes)
EnlargeBufferIfNeeded(total_size);
memcpy(buf_, key_, shared_len);
} else if (total_size > buf_size_) {
// Need to allocate space, delete previous space
char* p = new char[total_size];
memcpy(p, key_, shared_len);
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
if (buf_ != space_) {
delete[] buf_;
}
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
buf_ = p;
buf_size_ = total_size;
}
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
memcpy(buf_ + shared_len, non_shared_data, non_shared_len);
key_ = buf_;
key_size_ = total_size;
}
Slice SetKey(const Slice& key, bool copy = true) {
// is_user_key_ expected to be set already via SetIsUserKey
return SetKeyImpl(key, copy);
}
Slice SetUserKey(const Slice& key, bool copy = true) {
is_user_key_ = true;
return SetKeyImpl(key, copy);
}
Slice SetInternalKey(const Slice& key, bool copy = true) {
is_user_key_ = false;
return SetKeyImpl(key, copy);
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
}
// Copies the content of key, updates the reference to the user key in ikey
// and returns a Slice referencing the new copy.
Slice SetInternalKey(const Slice& key, ParsedInternalKey* ikey) {
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
size_t key_n = key.size();
assert(key_n >= 8);
SetInternalKey(key);
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
ikey->user_key = Slice(key_, key_n - 8);
return Slice(key_, key_n);
}
// Copy the key into IterKey own buf_
void OwnKey() {
assert(IsKeyPinned() == true);
Reserve(key_size_);
memcpy(buf_, key_, key_size_);
key_ = buf_;
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
// Update the sequence number in the internal key. Guarantees not to
// invalidate slices to the key (and the user key).
void UpdateInternalKey(uint64_t seq, ValueType t) {
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
assert(!IsKeyPinned());
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
10 years ago
assert(key_size_ >= 8);
uint64_t newval = (seq << 8) | t;
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
EncodeFixed64(&buf_[key_size_ - 8], newval);
}
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
bool IsKeyPinned() const { return (key_ != buf_); }
void SetInternalKey(const Slice& key_prefix, const Slice& user_key,
SequenceNumber s,
ValueType value_type = kValueTypeForSeek) {
size_t psize = key_prefix.size();
size_t usize = user_key.size();
EnlargeBufferIfNeeded(psize + usize + sizeof(uint64_t));
if (psize > 0) {
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
memcpy(buf_, key_prefix.data(), psize);
}
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
memcpy(buf_ + psize, user_key.data(), usize);
EncodeFixed64(buf_ + usize + psize, PackSequenceAndType(s, value_type));
key_ = buf_;
key_size_ = psize + usize + sizeof(uint64_t);
is_user_key_ = false;
}
void SetInternalKey(const Slice& user_key, SequenceNumber s,
ValueType value_type = kValueTypeForSeek) {
SetInternalKey(Slice(), user_key, s, value_type);
}
void Reserve(size_t size) {
EnlargeBufferIfNeeded(size);
key_size_ = size;
}
void SetInternalKey(const ParsedInternalKey& parsed_key) {
SetInternalKey(Slice(), parsed_key);
}
void SetInternalKey(const Slice& key_prefix,
const ParsedInternalKey& parsed_key_suffix) {
SetInternalKey(key_prefix, parsed_key_suffix.user_key,
parsed_key_suffix.sequence, parsed_key_suffix.type);
}
void EncodeLengthPrefixedKey(const Slice& key) {
auto size = key.size();
EnlargeBufferIfNeeded(size + static_cast<size_t>(VarintLength(size)));
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
char* ptr = EncodeVarint32(buf_, static_cast<uint32_t>(size));
memcpy(ptr, key.data(), size);
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
key_ = buf_;
is_user_key_ = true;
}
bool IsUserKey() const { return is_user_key_; }
private:
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
char* buf_;
const char* key_;
size_t key_size_;
size_t buf_size_;
char space_[32]; // Avoid allocation for short keys
bool is_user_key_;
Slice SetKeyImpl(const Slice& key, bool copy) {
size_t size = key.size();
if (copy) {
// Copy key to buf_
EnlargeBufferIfNeeded(size);
memcpy(buf_, key.data(), size);
key_ = buf_;
} else {
// Update key_ to point to external memory
key_ = key.data();
}
key_size_ = size;
return Slice(key_, key_size_);
}
void ResetBuffer() {
Introduce ReadOptions::pin_data (support zero copy for keys) Summary: This patch update the Iterator API to introduce new functions that allow users to keep the Slices returned by key() valid as long as the Iterator is not deleted ReadOptions::pin_data : If true keep loaded blocks in memory as long as the iterator is not deleted Iterator::IsKeyPinned() : If true, this mean that the Slice returned by key() is valid as long as the iterator is not deleted Also add a new option BlockBasedTableOptions::use_delta_encoding to allow users to disable delta_encoding if needed. Benchmark results (using https://phabricator.fb.com/P20083553) ``` // $ du -h /home/tec/local/normal.4K.Snappy/db10077 // 6.1G /home/tec/local/normal.4K.Snappy/db10077 // $ du -h /home/tec/local/zero.8K.LZ4/db10077 // 6.4G /home/tec/local/zero.8K.LZ4/db10077 // Benchmarks for shard db10077 // _build/opt/rocks/benchmark/rocks_copy_benchmark \ // --normal_db_path="/home/tec/local/normal.4K.Snappy/db10077" \ // --zero_db_path="/home/tec/local/zero.8K.LZ4/db10077" // First run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 1.73s 576.97m // BM_StringPiece 103.74% 1.67s 598.55m // ============================================================================ // Match rate : 1000000 / 1000000 // Second run // ============================================================================ // rocks/benchmark/RocksCopyBenchmark.cpp relative time/iter iters/s // ============================================================================ // BM_StringCopy 611.99ms 1.63 // BM_StringPiece 203.76% 300.35ms 3.33 // ============================================================================ // Match rate : 1000000 / 1000000 ``` Test Plan: Unit tests Reviewers: sdong, igor, anthony, yhchiang, rven Reviewed By: rven Subscribers: dhruba, lovro, adsharma Differential Revision: https://reviews.facebook.net/D48999
9 years ago
if (buf_ != space_) {
delete[] buf_;
buf_ = space_;
}
buf_size_ = sizeof(space_);
key_size_ = 0;
}
// Enlarge the buffer size if needed based on key_size.
// By default, static allocated buffer is used. Once there is a key
// larger than the static allocated buffer, another buffer is dynamically
// allocated, until a larger key buffer is requested. In that case, we
// reallocate buffer and delete the old one.
void EnlargeBufferIfNeeded(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the static allocated one, as default
if (key_size > buf_size_) {
EnlargeBuffer(key_size);
}
}
void EnlargeBuffer(size_t key_size);
// No copying allowed
IterKey(const IterKey&) = delete;
void operator=(const IterKey&) = delete;
};
// Convert from a SliceTranform of user keys, to a SliceTransform of
// user keys.
class InternalKeySliceTransform : public SliceTransform {
public:
explicit InternalKeySliceTransform(const SliceTransform* transform)
: transform_(transform) {}
virtual const char* Name() const override { return transform_->Name(); }
virtual Slice Transform(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->Transform(user_key);
}
virtual bool InDomain(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->InDomain(user_key);
}
virtual bool InRange(const Slice& dst) const override {
auto user_key = ExtractUserKey(dst);
return transform_->InRange(user_key);
}
const SliceTransform* user_prefix_extractor() const { return transform_; }
private:
// Like comparator, InternalKeySliceTransform will not take care of the
// deletion of transform_
const SliceTransform* const transform_;
};
// Read the key of a record from a write batch.
// if this record represent the default column family then cf_record
// must be passed as false, otherwise it must be passed as true.
extern bool ReadKeyFromWriteBatchEntry(Slice* input, Slice* key,
bool cf_record);
// Read record from a write batch piece from input.
// tag, column_family, key, value and blob are return values. Callers own the
// Slice they point to.
// Tag is defined as ValueType.
// input will be advanced to after the record.
extern Status ReadRecordFromWriteBatch(Slice* input, char* tag,
uint32_t* column_family, Slice* key,
Slice* value, Slice* blob, Slice* xid);
// When user call DeleteRange() to delete a range of keys,
// we will store a serialized RangeTombstone in MemTable and SST.
// the struct here is a easy-understood form
// start/end_key_ is the start/end user key of the range to be deleted
struct RangeTombstone {
Slice start_key_;
Slice end_key_;
SequenceNumber seq_;
RangeTombstone() = default;
RangeTombstone(Slice sk, Slice ek, SequenceNumber sn)
: start_key_(sk), end_key_(ek), seq_(sn) {}
RangeTombstone(ParsedInternalKey parsed_key, Slice value) {
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
start_key_ = parsed_key.user_key;
seq_ = parsed_key.sequence;
end_key_ = value;
}
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
// be careful to use Serialize(), allocates new memory
std::pair<InternalKey, Slice> Serialize() const {
auto key = InternalKey(start_key_, seq_, kTypeRangeDeletion);
Slice value = end_key_;
return std::make_pair(std::move(key), std::move(value));
}
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
// be careful to use SerializeKey(), allocates new memory
InternalKey SerializeKey() const {
return InternalKey(start_key_, seq_, kTypeRangeDeletion);
}
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
// The tombstone end-key is exclusive, so we generate an internal-key here
// which has a similar property. Using kMaxSequenceNumber guarantees that
// the returned internal-key will compare less than any other internal-key
// with the same user-key. This in turn guarantees that the serialized
// end-key for a tombstone such as [a-b] will compare less than the key "b".
//
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
// be careful to use SerializeEndKey(), allocates new memory
InternalKey SerializeEndKey() const {
return InternalKey(end_key_, kMaxSequenceNumber, kTypeRangeDeletion);
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
8 years ago
}
};
inline int InternalKeyComparator::Compare(const Slice& akey,
const Slice& bkey) const {
// Order by:
// increasing user key (according to user-supplied comparator)
// decreasing sequence number
// decreasing type (though sequence# should be enough to disambiguate)
int r = user_comparator_.Compare(ExtractUserKey(akey), ExtractUserKey(bkey));
if (r == 0) {
const uint64_t anum = DecodeFixed64(akey.data() + akey.size() - 8);
const uint64_t bnum = DecodeFixed64(bkey.data() + bkey.size() - 8);
if (anum > bnum) {
r = -1;
} else if (anum < bnum) {
r = +1;
}
}
return r;
}
inline int InternalKeyComparator::CompareKeySeq(const Slice& akey,
const Slice& bkey) const {
// Order by:
// increasing user key (according to user-supplied comparator)
// decreasing sequence number
int r = user_comparator_.Compare(ExtractUserKey(akey), ExtractUserKey(bkey));
if (r == 0) {
// Shift the number to exclude the last byte which contains the value type
const uint64_t anum = DecodeFixed64(akey.data() + akey.size() - 8) >> 8;
const uint64_t bnum = DecodeFixed64(bkey.data() + bkey.size() - 8) >> 8;
if (anum > bnum) {
r = -1;
} else if (anum < bnum) {
r = +1;
}
}
return r;
}
// Wrap InternalKeyComparator as a comparator class for ParsedInternalKey.
struct ParsedInternalKeyComparator {
explicit ParsedInternalKeyComparator(const InternalKeyComparator* c)
: cmp(c) {}
bool operator()(const ParsedInternalKey& a,
const ParsedInternalKey& b) const {
return cmp->Compare(a, b) < 0;
}
const InternalKeyComparator* cmp;
};
} // namespace rocksdb