|
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
//
|
|
|
|
// Copyright (c) 2012 The LevelDB Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
|
|
|
|
#ifndef GFLAGS
|
|
|
|
#include <cstdio>
|
|
|
|
int main() {
|
|
|
|
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "logging/logging.h"
|
|
|
|
#include "memory/arena.h"
|
|
|
|
#include "rocksdb/filter_policy.h"
|
|
|
|
#include "table/block_based/filter_policy_internal.h"
|
|
|
|
#include "test_util/testharness.h"
|
|
|
|
#include "test_util/testutil.h"
|
|
|
|
#include "util/gflags_compat.h"
|
|
|
|
#include "util/hash.h"
|
|
|
|
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
|
|
|
|
DEFINE_int32(bits_per_key, 10, "");
|
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
|
|
|
|
static const int kVerbose = 1;
|
|
|
|
|
|
|
|
static Slice Key(int i, char* buffer) {
|
|
|
|
std::string s;
|
|
|
|
PutFixed32(&s, static_cast<uint32_t>(i));
|
|
|
|
memcpy(buffer, s.c_str(), sizeof(i));
|
|
|
|
return Slice(buffer, sizeof(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int NextLength(int length) {
|
|
|
|
if (length < 10) {
|
|
|
|
length += 1;
|
|
|
|
} else if (length < 100) {
|
|
|
|
length += 10;
|
|
|
|
} else if (length < 1000) {
|
|
|
|
length += 100;
|
|
|
|
} else {
|
|
|
|
length += 1000;
|
|
|
|
}
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
class BloomTest : public testing::Test {
|
|
|
|
private:
|
|
|
|
std::unique_ptr<const FilterPolicy> policy_;
|
|
|
|
std::string filter_;
|
|
|
|
std::vector<std::string> keys_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
BloomTest() : policy_(
|
|
|
|
NewBloomFilterPolicy(FLAGS_bits_per_key)) {}
|
|
|
|
|
|
|
|
void Reset() {
|
|
|
|
keys_.clear();
|
|
|
|
filter_.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
void ResetPolicy(const FilterPolicy* policy = nullptr) {
|
|
|
|
if (policy == nullptr) {
|
|
|
|
policy_.reset(NewBloomFilterPolicy(FLAGS_bits_per_key));
|
|
|
|
} else {
|
|
|
|
policy_.reset(policy);
|
|
|
|
}
|
|
|
|
Reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Add(const Slice& s) {
|
|
|
|
keys_.push_back(s.ToString());
|
|
|
|
}
|
|
|
|
|
|
|
|
void Build() {
|
|
|
|
std::vector<Slice> key_slices;
|
|
|
|
for (size_t i = 0; i < keys_.size(); i++) {
|
|
|
|
key_slices.push_back(Slice(keys_[i]));
|
|
|
|
}
|
|
|
|
filter_.clear();
|
|
|
|
policy_->CreateFilter(&key_slices[0], static_cast<int>(key_slices.size()),
|
|
|
|
&filter_);
|
|
|
|
keys_.clear();
|
|
|
|
if (kVerbose >= 2) DumpFilter();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t FilterSize() const {
|
|
|
|
return filter_.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
Slice FilterData() const { return Slice(filter_); }
|
|
|
|
|
|
|
|
void DumpFilter() {
|
|
|
|
fprintf(stderr, "F(");
|
|
|
|
for (size_t i = 0; i+1 < filter_.size(); i++) {
|
|
|
|
const unsigned int c = static_cast<unsigned int>(filter_[i]);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
fprintf(stderr, "%c", (c & (1 <<j)) ? '1' : '.');
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fprintf(stderr, ")\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Matches(const Slice& s) {
|
|
|
|
if (!keys_.empty()) {
|
|
|
|
Build();
|
|
|
|
}
|
|
|
|
return policy_->KeyMayMatch(s, filter_);
|
|
|
|
}
|
|
|
|
|
|
|
|
double FalsePositiveRate() {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
int result = 0;
|
|
|
|
for (int i = 0; i < 10000; i++) {
|
|
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
|
|
result++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result / 10000.0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(BloomTest, EmptyFilter) {
|
|
|
|
ASSERT_TRUE(! Matches("hello"));
|
|
|
|
ASSERT_TRUE(! Matches("world"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BloomTest, Small) {
|
|
|
|
Add("hello");
|
|
|
|
Add("world");
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
ASSERT_TRUE(! Matches("x"));
|
|
|
|
ASSERT_TRUE(! Matches("foo"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BloomTest, VaryingLengths) {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
|
|
int mediocre_filters = 0;
|
|
|
|
int good_filters = 0;
|
|
|
|
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
|
|
Reset();
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
Add(Key(i, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
|
|
|
|
ASSERT_LE(FilterSize(), (size_t)((length * 10 / 8) + 40)) << length;
|
|
|
|
|
|
|
|
// All added keys must match
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
|
|
<< "Length " << length << "; key " << i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check false positive rate
|
|
|
|
double rate = FalsePositiveRate();
|
|
|
|
if (kVerbose >= 1) {
|
|
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
|
|
}
|
|
|
|
ASSERT_LE(rate, 0.02); // Must not be over 2%
|
|
|
|
if (rate > 0.0125) mediocre_filters++; // Allowed, but not too often
|
|
|
|
else good_filters++;
|
|
|
|
}
|
|
|
|
if (kVerbose >= 1) {
|
|
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
|
|
good_filters, mediocre_filters);
|
|
|
|
}
|
|
|
|
ASSERT_LE(mediocre_filters, good_filters/5);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
|
|
// incompatible way
|
|
|
|
TEST_F(BloomTest, Schema) {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(8)); // num_probes = 5
|
|
|
|
for (int key = 0; key < 87; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 3589896109U);
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(9)); // num_probes = 6
|
|
|
|
for (int key = 0; key < 87; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 969445585);
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(11)); // num_probes = 7
|
|
|
|
for (int key = 0; key < 87; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 1694458207);
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10)); // num_probes = 6
|
|
|
|
for (int key = 0; key < 87; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 2373646410U);
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10));
|
|
|
|
for (int key = 1; key < 87; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 1908442116);
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10));
|
|
|
|
for (int key = 1; key < 88; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()), 3057004015U);
|
|
|
|
|
|
|
|
ResetPolicy();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Different bits-per-byte
|
|
|
|
|
|
|
|
class FullBloomTest : public testing::Test {
|
|
|
|
private:
|
|
|
|
std::unique_ptr<const FilterPolicy> policy_;
|
|
|
|
std::unique_ptr<FilterBitsBuilder> bits_builder_;
|
|
|
|
std::unique_ptr<FilterBitsReader> bits_reader_;
|
|
|
|
std::unique_ptr<const char[]> buf_;
|
|
|
|
size_t filter_size_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
FullBloomTest() :
|
|
|
|
policy_(NewBloomFilterPolicy(FLAGS_bits_per_key, false)),
|
|
|
|
filter_size_(0) {
|
|
|
|
Reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
FullFilterBitsBuilder* GetFullFilterBitsBuilder() {
|
|
|
|
return dynamic_cast<FullFilterBitsBuilder*>(bits_builder_.get());
|
|
|
|
}
|
|
|
|
|
|
|
|
void Reset() {
|
|
|
|
bits_builder_.reset(policy_->GetFilterBitsBuilder());
|
|
|
|
bits_reader_.reset(nullptr);
|
|
|
|
buf_.reset(nullptr);
|
|
|
|
filter_size_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ResetPolicy(const FilterPolicy* policy = nullptr) {
|
|
|
|
if (policy == nullptr) {
|
|
|
|
policy_.reset(NewBloomFilterPolicy(FLAGS_bits_per_key, false));
|
|
|
|
} else {
|
|
|
|
policy_.reset(policy);
|
|
|
|
}
|
|
|
|
Reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Add(const Slice& s) {
|
|
|
|
bits_builder_->AddKey(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
void OpenRaw(const Slice& s) {
|
|
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(s));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Build() {
|
|
|
|
Slice filter = bits_builder_->Finish(&buf_);
|
|
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(filter));
|
|
|
|
filter_size_ = filter.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t FilterSize() const {
|
|
|
|
return filter_size_;
|
|
|
|
}
|
|
|
|
|
|
|
|
Slice FilterData() { return Slice(buf_.get(), filter_size_); }
|
|
|
|
|
|
|
|
bool Matches(const Slice& s) {
|
|
|
|
if (bits_reader_ == nullptr) {
|
|
|
|
Build();
|
|
|
|
}
|
|
|
|
return bits_reader_->MayMatch(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t PackedMatches() {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
uint64_t result = 0;
|
|
|
|
for (int i = 0; i < 64; i++) {
|
|
|
|
if (Matches(Key(i + 12345, buffer))) {
|
|
|
|
result |= uint64_t{1} << i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
double FalsePositiveRate() {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
int result = 0;
|
|
|
|
for (int i = 0; i < 10000; i++) {
|
|
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
|
|
result++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result / 10000.0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, FilterSize) {
|
|
|
|
uint32_t dont_care1, dont_care2;
|
|
|
|
auto full_bits_builder = GetFullFilterBitsBuilder();
|
|
|
|
for (int n = 1; n < 100; n++) {
|
|
|
|
auto space = full_bits_builder->CalculateSpace(n, &dont_care1, &dont_care2);
|
|
|
|
auto n2 = full_bits_builder->CalculateNumEntry(space);
|
|
|
|
ASSERT_GE(n2, n);
|
|
|
|
auto space2 =
|
|
|
|
full_bits_builder->CalculateSpace(n2, &dont_care1, &dont_care2);
|
|
|
|
ASSERT_EQ(space, space2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, FullEmptyFilter) {
|
|
|
|
// Empty filter is not match, at this level
|
|
|
|
ASSERT_TRUE(!Matches("hello"));
|
|
|
|
ASSERT_TRUE(!Matches("world"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, FullSmall) {
|
|
|
|
Add("hello");
|
|
|
|
Add("world");
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
ASSERT_TRUE(!Matches("x"));
|
|
|
|
ASSERT_TRUE(!Matches("foo"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, FullVaryingLengths) {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
|
|
int mediocre_filters = 0;
|
|
|
|
int good_filters = 0;
|
|
|
|
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
|
|
Reset();
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
Add(Key(i, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
|
|
|
|
ASSERT_LE(FilterSize(),
|
|
|
|
(size_t)((length * 10 / 8) + CACHE_LINE_SIZE * 2 + 5));
|
|
|
|
|
|
|
|
// All added keys must match
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
|
|
<< "Length " << length << "; key " << i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check false positive rate
|
|
|
|
double rate = FalsePositiveRate();
|
|
|
|
if (kVerbose >= 1) {
|
|
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
|
|
}
|
|
|
|
ASSERT_LE(rate, 0.02); // Must not be over 2%
|
|
|
|
if (rate > 0.0125)
|
|
|
|
mediocre_filters++; // Allowed, but not too often
|
|
|
|
else
|
|
|
|
good_filters++;
|
|
|
|
}
|
|
|
|
if (kVerbose >= 1) {
|
|
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
|
|
good_filters, mediocre_filters);
|
|
|
|
}
|
|
|
|
ASSERT_LE(mediocre_filters, good_filters/5);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
inline uint32_t SelectByCacheLineSize(uint32_t for64, uint32_t for128,
|
|
|
|
uint32_t for256) {
|
|
|
|
(void)for64;
|
|
|
|
(void)for128;
|
|
|
|
(void)for256;
|
|
|
|
#if CACHE_LINE_SIZE == 64
|
|
|
|
return for64;
|
|
|
|
#elif CACHE_LINE_SIZE == 128
|
|
|
|
return for128;
|
|
|
|
#elif CACHE_LINE_SIZE == 256
|
|
|
|
return for256;
|
|
|
|
#else
|
|
|
|
#error "CACHE_LINE_SIZE unknown or unrecognized"
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
|
|
// incompatible way
|
|
|
|
TEST_F(FullBloomTest, Schema) {
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
|
|
|
|
// Use enough keys so that changing bits / key by 1 is guaranteed to
|
|
|
|
// change number of allocated cache lines. So keys > max cache line bits.
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(8)); // num_probes = 5
|
|
|
|
for (int key = 0; key < 2087; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(1302145999, 2811644657U, 756553699));
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(9)); // num_probes = 6
|
|
|
|
for (int key = 0; key < 2087; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(2092755149, 661139132, 1182970461));
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(11)); // num_probes = 7
|
|
|
|
for (int key = 0; key < 2087; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(3755609649U, 1812694762, 1449142939));
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10)); // num_probes = 6
|
|
|
|
for (int key = 0; key < 2087; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(1478976371, 2910591341U, 1182970461));
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10));
|
|
|
|
for (int key = 1; key < 2087; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(4205696321U, 1132081253U, 2385981855U));
|
|
|
|
|
|
|
|
ResetPolicy(NewBloomFilterPolicy(10));
|
|
|
|
for (int key = 1; key < 2088; key++) {
|
|
|
|
Add(Key(key, buffer));
|
|
|
|
}
|
|
|
|
Build();
|
|
|
|
ASSERT_EQ(BloomHash(FilterData()),
|
|
|
|
SelectByCacheLineSize(2885052954U, 769447944, 4175124908U));
|
|
|
|
|
|
|
|
ResetPolicy();
|
|
|
|
}
|
|
|
|
|
|
|
|
// A helper class for testing custom or corrupt filter bits as read by
|
|
|
|
// FullFilterBitsReader.
|
|
|
|
struct RawFilterTester {
|
|
|
|
// Buffer, from which we always return a tail Slice, so the
|
|
|
|
// last five bytes are always the metadata bytes.
|
|
|
|
std::array<char, 3000> data_;
|
|
|
|
// Points five bytes from the end
|
|
|
|
char* metadata_ptr_;
|
|
|
|
|
|
|
|
RawFilterTester() : metadata_ptr_(&*(data_.end() - 5)) {}
|
|
|
|
|
|
|
|
Slice ResetNoFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
|
|
uint32_t num_probes) {
|
|
|
|
metadata_ptr_[0] = static_cast<char>(num_probes);
|
|
|
|
EncodeFixed32(metadata_ptr_ + 1, num_lines);
|
|
|
|
uint32_t len = len_without_metadata + /*metadata*/ 5;
|
|
|
|
assert(len <= data_.size());
|
|
|
|
return Slice(metadata_ptr_ - len_without_metadata, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
Slice Reset(uint32_t len_without_metadata, uint32_t num_lines,
|
|
|
|
uint32_t num_probes, bool fill_ones) {
|
|
|
|
data_.fill(fill_ones ? 0xff : 0);
|
|
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
|
|
}
|
|
|
|
|
|
|
|
Slice ResetWeirdFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
|
|
uint32_t num_probes) {
|
|
|
|
for (uint32_t i = 0; i < data_.size(); ++i) {
|
|
|
|
data_[i] = static_cast<char>(0x7b7b >> (i % 7));
|
|
|
|
}
|
|
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, RawSchema) {
|
|
|
|
RawFilterTester cft;
|
|
|
|
// Two probes, about 3/4 bits set: ~50% "FP" rate
|
|
|
|
// One 256-byte cache line.
|
|
|
|
OpenRaw(cft.ResetWeirdFill(256, 1, 2));
|
|
|
|
ASSERT_EQ(uint64_t{11384799501900898790U}, PackedMatches());
|
|
|
|
|
|
|
|
// Two 128-byte cache lines.
|
|
|
|
OpenRaw(cft.ResetWeirdFill(256, 2, 2));
|
|
|
|
ASSERT_EQ(uint64_t{10157853359773492589U}, PackedMatches());
|
|
|
|
|
|
|
|
// Four 64-byte cache lines.
|
|
|
|
OpenRaw(cft.ResetWeirdFill(256, 4, 2));
|
|
|
|
ASSERT_EQ(uint64_t{7123594913907464682U}, PackedMatches());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(FullBloomTest, CorruptFilters) {
|
|
|
|
RawFilterTester cft;
|
|
|
|
|
|
|
|
for (bool fill : {false, true}) {
|
|
|
|
// Good filter bits - returns same as fill
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 6, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Good filter bits - returns same as fill
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE * 3, 3, 6, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Good filter bits - returns same as fill
|
|
|
|
// 256 is unusual but legal cache line size
|
|
|
|
OpenRaw(cft.Reset(256 * 3, 3, 6, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Good filter bits - returns same as fill
|
|
|
|
// 30 should be max num_probes
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 30, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Good filter bits - returns same as fill
|
|
|
|
// 1 should be min num_probes
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 1, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Type 1 trivial filter bits - returns true as if FP by zero probes
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 0, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
|
|
OpenRaw(cft.Reset(0, 0, 6, fill));
|
|
|
|
ASSERT_FALSE(Matches("hello"));
|
|
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
|
|
OpenRaw(cft.Reset(0, 37, 6, fill));
|
|
|
|
ASSERT_FALSE(Matches("hello"));
|
|
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
|
|
|
|
// Type 2 trivial filter bits - returns false as 0 size trumps 0 probes
|
|
|
|
OpenRaw(cft.Reset(0, 0, 0, fill));
|
|
|
|
ASSERT_FALSE(Matches("hello"));
|
|
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
|
|
|
|
// Bad filter bits - returns true for safety
|
|
|
|
// No solution to 0 * x == CACHE_LINE_SIZE
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 0, 6, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
|
|
|
// Bad filter bits - returns true for safety
|
|
|
|
// Can't have 3 * x == 4 for integer x
|
|
|
|
OpenRaw(cft.Reset(4, 3, 6, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
|
|
|
// Bad filter bits - returns true for safety
|
|
|
|
// 97 bytes is not a power of two, so not a legal cache line size
|
|
|
|
OpenRaw(cft.Reset(97 * 3, 3, 6, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
Refactor / clean up / optimize FullFilterBitsReader (#5941)
Summary:
FullFilterBitsReader, after creating in BloomFilterPolicy, was
responsible for decoding metadata bits. This meant that
FullFilterBitsReader::MayMatch had some metadata checks in order to
implement "always true" or "always false" functionality in the case
of inconsistent or trivial metadata. This made for ugly
mixing-of-concerns code and probably had some runtime cost. It also
didn't really support plugging in alternative filter implementations
with extensions to the existing metadata schema.
BloomFilterPolicy::GetFilterBitsReader is now (exclusively) responsible
for decoding filter metadata bits and constructing appropriate instances
deriving from FilterBitsReader. "Always false" and "always true" derived
classes allow FullFilterBitsReader not to be concerned with handling of
trivial or inconsistent metadata. This also makes for easy expansion
to alternative filter implementations in new, alternative derived
classes. This change makes calls to FilterBitsReader::MayMatch
*necessarily* virtual because there's now more than one built-in
implementation. Compared with the previous implementation's extra
'if' checks in MayMatch, there's no consistent performance difference,
measured by (an older revision of) filter_bench (differences here seem
to be within noise):
Inside queries...
- Dry run (407) ns/op: 35.9996
+ Dry run (407) ns/op: 35.2034
- Single filter ns/op: 47.5483
+ Single filter ns/op: 47.4034
- Batched, prepared ns/op: 43.1559
+ Batched, prepared ns/op: 42.2923
...
- Random filter ns/op: 150.697
+ Random filter ns/op: 149.403
----------------------------
Outside queries...
- Dry run (980) ns/op: 34.6114
+ Dry run (980) ns/op: 34.0405
- Single filter ns/op: 56.8326
+ Single filter ns/op: 55.8414
- Batched, prepared ns/op: 48.2346
+ Batched, prepared ns/op: 47.5667
- Random filter ns/op: 155.377
+ Random filter ns/op: 153.942
Average FP rate %: 1.1386
Also, the FullFilterBitsReader ctor was responsible for a surprising
amount of CPU in production, due in part to inefficient determination of
the CACHE_LINE_SIZE used to construct the filter being read. The
overwhelming common case (same as my CACHE_LINE_SIZE) is now
substantially optimized, as shown with filter_bench with
-new_reader_every=1 (old option - see below) (repeatable result):
Inside queries...
- Dry run (453) ns/op: 118.799
+ Dry run (453) ns/op: 105.869
- Single filter ns/op: 82.5831
+ Single filter ns/op: 74.2509
...
- Random filter ns/op: 224.936
+ Random filter ns/op: 194.833
----------------------------
Outside queries...
- Dry run (aa1) ns/op: 118.503
+ Dry run (aa1) ns/op: 104.925
- Single filter ns/op: 90.3023
+ Single filter ns/op: 83.425
...
- Random filter ns/op: 220.455
+ Random filter ns/op: 175.7
Average FP rate %: 1.13886
However PR#5936 has/will reclaim most of this cost. After that PR, the optimization of this code path is likely negligible, but nonetheless it's clear we aren't making performance any worse.
Also fixed inadequate check of consistency between filter data size and
num_lines. (Unit test updated.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5941
Test Plan:
previously added unit tests FullBloomTest.CorruptFilters and
FullBloomTest.RawSchema
Differential Revision: D18018353
Pulled By: pdillinger
fbshipit-source-id: 8e04c2b4a7d93223f49a237fd52ef2483929ed9c
5 years ago
|
|
|
// Bad filter bits - returns true for safety
|
|
|
|
// 65 bytes is not a power of two, so not a legal cache line size
|
|
|
|
OpenRaw(cft.Reset(65 * 3, 3, 6, fill));
|
Refactor / clean up / optimize FullFilterBitsReader (#5941)
Summary:
FullFilterBitsReader, after creating in BloomFilterPolicy, was
responsible for decoding metadata bits. This meant that
FullFilterBitsReader::MayMatch had some metadata checks in order to
implement "always true" or "always false" functionality in the case
of inconsistent or trivial metadata. This made for ugly
mixing-of-concerns code and probably had some runtime cost. It also
didn't really support plugging in alternative filter implementations
with extensions to the existing metadata schema.
BloomFilterPolicy::GetFilterBitsReader is now (exclusively) responsible
for decoding filter metadata bits and constructing appropriate instances
deriving from FilterBitsReader. "Always false" and "always true" derived
classes allow FullFilterBitsReader not to be concerned with handling of
trivial or inconsistent metadata. This also makes for easy expansion
to alternative filter implementations in new, alternative derived
classes. This change makes calls to FilterBitsReader::MayMatch
*necessarily* virtual because there's now more than one built-in
implementation. Compared with the previous implementation's extra
'if' checks in MayMatch, there's no consistent performance difference,
measured by (an older revision of) filter_bench (differences here seem
to be within noise):
Inside queries...
- Dry run (407) ns/op: 35.9996
+ Dry run (407) ns/op: 35.2034
- Single filter ns/op: 47.5483
+ Single filter ns/op: 47.4034
- Batched, prepared ns/op: 43.1559
+ Batched, prepared ns/op: 42.2923
...
- Random filter ns/op: 150.697
+ Random filter ns/op: 149.403
----------------------------
Outside queries...
- Dry run (980) ns/op: 34.6114
+ Dry run (980) ns/op: 34.0405
- Single filter ns/op: 56.8326
+ Single filter ns/op: 55.8414
- Batched, prepared ns/op: 48.2346
+ Batched, prepared ns/op: 47.5667
- Random filter ns/op: 155.377
+ Random filter ns/op: 153.942
Average FP rate %: 1.1386
Also, the FullFilterBitsReader ctor was responsible for a surprising
amount of CPU in production, due in part to inefficient determination of
the CACHE_LINE_SIZE used to construct the filter being read. The
overwhelming common case (same as my CACHE_LINE_SIZE) is now
substantially optimized, as shown with filter_bench with
-new_reader_every=1 (old option - see below) (repeatable result):
Inside queries...
- Dry run (453) ns/op: 118.799
+ Dry run (453) ns/op: 105.869
- Single filter ns/op: 82.5831
+ Single filter ns/op: 74.2509
...
- Random filter ns/op: 224.936
+ Random filter ns/op: 194.833
----------------------------
Outside queries...
- Dry run (aa1) ns/op: 118.503
+ Dry run (aa1) ns/op: 104.925
- Single filter ns/op: 90.3023
+ Single filter ns/op: 83.425
...
- Random filter ns/op: 220.455
+ Random filter ns/op: 175.7
Average FP rate %: 1.13886
However PR#5936 has/will reclaim most of this cost. After that PR, the optimization of this code path is likely negligible, but nonetheless it's clear we aren't making performance any worse.
Also fixed inadequate check of consistency between filter data size and
num_lines. (Unit test updated.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5941
Test Plan:
previously added unit tests FullBloomTest.CorruptFilters and
FullBloomTest.RawSchema
Differential Revision: D18018353
Pulled By: pdillinger
fbshipit-source-id: 8e04c2b4a7d93223f49a237fd52ef2483929ed9c
5 years ago
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
|
|
|
// Bad filter bits - returns false as if built from zero keys
|
|
|
|
// < 5 bytes overall means missing even metadata
|
|
|
|
OpenRaw(cft.Reset(-1, 3, 6, fill));
|
|
|
|
ASSERT_FALSE(Matches("hello"));
|
|
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
|
|
|
|
OpenRaw(cft.Reset(-5, 3, 6, fill));
|
|
|
|
ASSERT_FALSE(Matches("hello"));
|
|
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
|
|
// 31 is not a useful num_probes, nor generated by RocksDB unless directly
|
|
|
|
// using filter bits API without BloomFilterPolicy.
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 31, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
|
|
// Similar, with 127, largest positive char
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 127, fill));
|
|
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
|
|
// num_probes set to 128 / -128, lowest negative char
|
|
|
|
// NB: Bug in implementation interprets this as negative and has same
|
|
|
|
// effect as zero probes, but effectively reserves negative char values
|
|
|
|
// for future use.
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 128, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
|
|
// Similar, with 255 / -1
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 255, fill));
|
|
|
|
ASSERT_TRUE(Matches("hello"));
|
|
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace rocksdb
|
|
|
|
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
|
|
|
|
return RUN_ALL_TESTS();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GFLAGS
|