You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/util/math.h

254 lines
8.8 KiB

Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <assert.h>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstdint>
#include <type_traits>
#include "rocksdb/rocksdb_namespace.h"
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
namespace ROCKSDB_NAMESPACE {
// Fast implementation of floor(log2(v)). Undefined for 0 or negative
// numbers (in case of signed type).
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
template <typename T>
inline int FloorLog2(T v) {
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
static_assert(std::is_integral<T>::value, "non-integral type");
assert(v > 0);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
unsigned long idx = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
_BitScanReverse(&idx, static_cast<uint32_t>(v));
} else {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanReverse64(&idx, static_cast<uint64_t>(v));
#else
const auto vh = static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32);
if (vh != 0) {
_BitScanReverse(&idx, static_cast<uint32_t>(vh));
idx += 32;
} else {
_BitScanReverse(&idx, static_cast<uint32_t>(v));
}
#endif
}
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
return idx;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
int lz = __builtin_clz(static_cast<unsigned int>(v));
return int{sizeof(unsigned int)} * 8 - 1 - lz;
} else if (sizeof(T) <= sizeof(unsigned long)) {
int lz = __builtin_clzl(static_cast<unsigned long>(v));
return int{sizeof(unsigned long)} * 8 - 1 - lz;
} else {
int lz = __builtin_clzll(static_cast<unsigned long long>(v));
return int{sizeof(unsigned long long)} * 8 - 1 - lz;
}
#endif
}
Meta-internal folly integration with F14FastMap (#9546) Summary: Especially after updating to C++17, I don't see a compelling case for *requiring* any folly components in RocksDB. I was able to purge the existing hard dependencies, and it can be quite difficult to strip out non-trivial components from folly for use in RocksDB. (The prospect of doing that on F14 has changed my mind on the best approach here.) But this change creates an optional integration where we can plug in components from folly at compile time, starting here with F14FastMap to replace std::unordered_map when possible (probably no public APIs for example). I have replaced the biggest CPU users of std::unordered_map with compile-time pluggable UnorderedMap which will use F14FastMap when USE_FOLLY is set. USE_FOLLY is always set in the Meta-internal buck build, and a simulation of that is in the Makefile for public CI testing. A full folly build is not needed, but checking out the full folly repo is much simpler for getting the dependency, and anything else we might want to optionally integrate in the future. Some picky details: * I don't think the distributed mutex stuff is actually used, so it was easy to remove. * I implemented an alternative to `folly::constexpr_log2` (which is much easier in C++17 than C++11) so that I could pull out the hard dependencies on `ConstexprMath.h` * I had to add noexcept move constructors/operators to some types to make F14's complainUnlessNothrowMoveAndDestroy check happy, and I added a macro to make that easier in some common cases. * Updated Meta-internal buck build to use folly F14Map (always) No updates to HISTORY.md nor INSTALL.md as this is not (yet?) considered a production integration for open source users. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9546 Test Plan: CircleCI tests updated so that a couple of them use folly. Most internal unit & stress/crash tests updated to use Meta-internal latest folly. (Note: they should probably use buck but they currently use Makefile.) Example performance improvement: when filter partitions are pinned in cache, they are tracked by PartitionedFilterBlockReader::filter_map_ and we can build a test that exercises that heavily. Build DB with ``` TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters ``` and test with (simultaneous runs with & without folly, ~20 times each to see convergence) ``` TEST_TMPDIR=/dev/shm/rocksdb ./db_bench_folly -readonly -use_existing_db -benchmarks=readrandom -num=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters -duration=40 -pin_l0_filter_and_index_blocks_in_cache ``` Average ops/s no folly: 26229.2 Average ops/s with folly: 26853.3 (+2.4%) Reviewed By: ajkr Differential Revision: D34181736 Pulled By: pdillinger fbshipit-source-id: ffa6ad5104c2880321d8a1aa7187e00ab0d02e94
2 years ago
// Constexpr version of FloorLog2
template <typename T>
constexpr int ConstexprFloorLog2(T v) {
int rv = 0;
while (v > T{1}) {
++rv;
v >>= 1;
}
return rv;
}
// Number of low-order zero bits before the first 1 bit. Undefined for 0.
template <typename T>
inline int CountTrailingZeroBits(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
assert(v != 0);
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
unsigned long tz = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
_BitScanForward(&tz, static_cast<uint32_t>(v));
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
} else {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanForward64(&tz, static_cast<uint64_t>(v));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
#else
_BitScanForward(&tz, static_cast<uint32_t>(v));
if (tz == 0) {
_BitScanForward(&tz,
static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32));
tz += 32;
}
#endif
}
return static_cast<int>(tz);
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
return __builtin_ctz(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_ctzl(static_cast<unsigned long>(v));
} else {
return __builtin_ctzll(static_cast<unsigned long long>(v));
}
#endif
}
// Not all MSVC compile settings will use `BitsSetToOneFallback()`. We include
// the following code at coarse granularity for simpler macros. It's important
// to exclude at least so our non-MSVC unit test coverage tool doesn't see it.
#ifdef _MSC_VER
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
namespace detail {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
template <typename T>
int BitsSetToOneFallback(T v) {
const int kBits = static_cast<int>(sizeof(T)) * 8;
static_assert((kBits & (kBits - 1)) == 0, "must be power of two bits");
// we static_cast these bit patterns in order to truncate them to the correct
// size. Warning C4309 dislikes this technique, so disable it here.
#pragma warning(disable : 4309)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
v = static_cast<T>(v - ((v >> 1) & static_cast<T>(0x5555555555555555ull)));
v = static_cast<T>((v & static_cast<T>(0x3333333333333333ull)) +
((v >> 2) & static_cast<T>(0x3333333333333333ull)));
v = static_cast<T>((v + (v >> 4)) & static_cast<T>(0x0F0F0F0F0F0F0F0Full));
#pragma warning(default : 4309)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
for (int shift_bits = 8; shift_bits < kBits; shift_bits <<= 1) {
v += static_cast<T>(v >> shift_bits);
}
// we want the bottom "slot" that's big enough to represent a value up to
// (and including) kBits.
return static_cast<int>(v & static_cast<T>(kBits | (kBits - 1)));
}
} // namespace detail
#endif // _MSC_VER
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
// Number of bits set to 1. Also known as "population count".
template <typename T>
inline int BitsSetToOne(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
if (sizeof(T) < sizeof(uint32_t)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(uint32_t) - 1;
// The bit mask is to neutralize sign extension on small signed types
constexpr uint32_t m = (uint32_t{1} << ((8 * sizeof(T)) & mm)) - 1;
#if defined(HAVE_SSE42) && (defined(_M_X64) || defined(_M_IX86))
return static_cast<int>(__popcnt(static_cast<uint32_t>(v) & m));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
#else
return static_cast<int>(detail::BitsSetToOneFallback(v) & m);
#endif
} else if (sizeof(T) == sizeof(uint32_t)) {
#if defined(HAVE_SSE42) && (defined(_M_X64) || defined(_M_IX86))
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
return static_cast<int>(__popcnt(static_cast<uint32_t>(v)));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
#else
return detail::BitsSetToOneFallback(static_cast<uint32_t>(v));
#endif
} else {
#if defined(HAVE_SSE42) && defined(_M_X64)
return static_cast<int>(__popcnt64(static_cast<uint64_t>(v)));
#elif defined(HAVE_SSE42) && defined(_M_IX86)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
4 years ago
return static_cast<int>(
__popcnt(static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32) +
__popcnt(static_cast<uint32_t>(v))));
#else
return detail::BitsSetToOneFallback(static_cast<uint64_t>(v));
#endif
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
}
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) < sizeof(unsigned int)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(unsigned int) - 1;
// This bit mask is to neutralize sign extension on small signed types
constexpr unsigned int m = (1U << ((8 * sizeof(T)) & mm)) - 1;
return __builtin_popcount(static_cast<unsigned int>(v) & m);
} else if (sizeof(T) == sizeof(unsigned int)) {
return __builtin_popcount(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
return __builtin_popcountl(static_cast<unsigned long>(v));
} else {
return __builtin_popcountll(static_cast<unsigned long long>(v));
}
#endif
}
template <typename T>
inline int BitParity(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
// bit parity == oddness of popcount
return BitsSetToOne(v) & 1;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
// On any sane systen, potential sign extension here won't change parity
return __builtin_parity(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_parityl(static_cast<unsigned long>(v));
} else {
return __builtin_parityll(static_cast<unsigned long long>(v));
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
}
#endif
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
3 years ago
// Swaps between big and little endian. Can be used in combination with the
// little-endian encoding/decoding functions in coding_lean.h and coding.h to
// encode/decode big endian.
template <typename T>
inline T EndianSwapValue(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
if (sizeof(T) == 2) {
return static_cast<T>(_byteswap_ushort(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(_byteswap_ulong(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(_byteswap_uint64(static_cast<uint64_t>(v)));
}
#else
if (sizeof(T) == 2) {
return static_cast<T>(__builtin_bswap16(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(__builtin_bswap32(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(__builtin_bswap64(static_cast<uint64_t>(v)));
}
#endif
// Recognized by clang as bswap, but not by gcc :(
T ret_val = 0;
for (std::size_t i = 0; i < sizeof(T); ++i) {
ret_val |= ((v >> (8 * i)) & 0xff) << (8 * (sizeof(T) - 1 - i));
}
return ret_val;
}
// Reverses the order of bits in an integral value
template <typename T>
inline T ReverseBits(T v) {
T r = EndianSwapValue(v);
const T kHighestByte = T{1} << ((sizeof(T) - 1) * 8);
const T kEveryByte = kHighestByte | (kHighestByte / 255);
r = ((r & (kEveryByte * 0x0f)) << 4) | ((r >> 4) & (kEveryByte * 0x0f));
r = ((r & (kEveryByte * 0x33)) << 2) | ((r >> 2) & (kEveryByte * 0x33));
r = ((r & (kEveryByte * 0x55)) << 1) | ((r >> 1) & (kEveryByte * 0x55));
return r;
}
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
4 years ago
} // namespace ROCKSDB_NAMESPACE