You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/microbench/db_basic_bench.cc

1583 lines
49 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef OS_WIN
#include <unistd.h>
#endif // ! OS_WIN
#include "benchmark/benchmark.h"
#include "db/db_impl/db_impl.h"
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "table/block_based/block.h"
#include "table/block_based/block_builder.h"
#include "util/random.h"
Add microbenchmarks for `DB::GetMergeOperands()` (#9971) Summary: The new microbenchmarks, DBGetMergeOperandsInMemtable and DBGetMergeOperandsInSstFile, correspond to the two different LSMs tested: all data in one memtable and all data in one SST file, respectively. Both cases are parameterized by thread count (1 or 8) and merge operands per key (1, 32, or 1024). The SST file case is additionally parameterized by whether data is in block cache or mmap'd memory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9971 Test Plan: ``` $ TEST_TMPDIR=/dev/shm/db_basic_bench/ ./db_basic_bench --benchmark_filter=DBGetMergeOperands The number of inputs is very large. DBGet will be repeated at least 192 times. The number of inputs is very large. DBGet will be repeated at least 192 times. 2022-05-09T13:15:40-07:00 Running ./db_basic_bench Run on (36 X 2570.91 MHz CPU s) CPU Caches: L1 Data 32 KiB (x18) L1 Instruction 32 KiB (x18) L2 Unified 1024 KiB (x18) L3 Unified 25344 KiB (x1) Load Average: 4.50, 4.33, 4.37 ---------------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ---------------------------------------------------------------------------------------------------------------------------- DBGetMergeOperandsInMemtable/entries_per_key:1/threads:1 846 ns 846 ns 849893 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:1 2436 ns 2436 ns 305779 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:1 77226 ns 77224 ns 8152 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1/threads:8 116 ns 929 ns 779368 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:8 330 ns 2644 ns 280824 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:8 12466 ns 99718 ns 7200 db_size=0 DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:1 1640 ns 1640 ns 461262 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:1 1693 ns 1693 ns 439936 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:1 3999 ns 3999 ns 172881 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:1 5544 ns 5543 ns 135657 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:1 78767 ns 78761 ns 8395 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:1 157242 ns 157238 ns 4495 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:8 231 ns 1848 ns 347768 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:8 214 ns 1715 ns 393312 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:8 596 ns 4767 ns 142088 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:8 720 ns 5757 ns 118200 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:8 11613 ns 92460 ns 7344 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:8 19989 ns 159908 ns 4440 db_size=19.6389M ``` Reviewed By: jay-zhuang Differential Revision: D36258861 Pulled By: ajkr fbshipit-source-id: 04b733e1cc3a4a70ed9baa894c50fdf96c0d6064
3 years ago
#include "utilities/merge_operators.h"
namespace ROCKSDB_NAMESPACE {
class KeyGenerator {
public:
// Generate next key
// buff: the caller needs to make sure there's enough space for generated key
// offset: to control the group of the key, 0 means normal key, 1 means
// non-existing key, 2 is reserved prefix_only: only return a prefix
Slice Next(char* buff, int8_t offset = 0, bool prefix_only = false) {
assert(max_key_ < std::numeric_limits<uint32_t>::max() /
MULTIPLIER); // TODO: add large key support
uint32_t k;
if (is_sequential_) {
assert(next_sequential_key_ < max_key_);
k = (next_sequential_key_ % max_key_) * MULTIPLIER + offset;
Add microbenchmarks for `DB::GetMergeOperands()` (#9971) Summary: The new microbenchmarks, DBGetMergeOperandsInMemtable and DBGetMergeOperandsInSstFile, correspond to the two different LSMs tested: all data in one memtable and all data in one SST file, respectively. Both cases are parameterized by thread count (1 or 8) and merge operands per key (1, 32, or 1024). The SST file case is additionally parameterized by whether data is in block cache or mmap'd memory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9971 Test Plan: ``` $ TEST_TMPDIR=/dev/shm/db_basic_bench/ ./db_basic_bench --benchmark_filter=DBGetMergeOperands The number of inputs is very large. DBGet will be repeated at least 192 times. The number of inputs is very large. DBGet will be repeated at least 192 times. 2022-05-09T13:15:40-07:00 Running ./db_basic_bench Run on (36 X 2570.91 MHz CPU s) CPU Caches: L1 Data 32 KiB (x18) L1 Instruction 32 KiB (x18) L2 Unified 1024 KiB (x18) L3 Unified 25344 KiB (x1) Load Average: 4.50, 4.33, 4.37 ---------------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ---------------------------------------------------------------------------------------------------------------------------- DBGetMergeOperandsInMemtable/entries_per_key:1/threads:1 846 ns 846 ns 849893 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:1 2436 ns 2436 ns 305779 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:1 77226 ns 77224 ns 8152 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1/threads:8 116 ns 929 ns 779368 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:8 330 ns 2644 ns 280824 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:8 12466 ns 99718 ns 7200 db_size=0 DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:1 1640 ns 1640 ns 461262 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:1 1693 ns 1693 ns 439936 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:1 3999 ns 3999 ns 172881 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:1 5544 ns 5543 ns 135657 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:1 78767 ns 78761 ns 8395 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:1 157242 ns 157238 ns 4495 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:8 231 ns 1848 ns 347768 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:8 214 ns 1715 ns 393312 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:8 596 ns 4767 ns 142088 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:8 720 ns 5757 ns 118200 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:8 11613 ns 92460 ns 7344 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:8 19989 ns 159908 ns 4440 db_size=19.6389M ``` Reviewed By: jay-zhuang Differential Revision: D36258861 Pulled By: ajkr fbshipit-source-id: 04b733e1cc3a4a70ed9baa894c50fdf96c0d6064
3 years ago
if (next_sequential_key_ + 1 == max_key_) {
next_sequential_key_ = 0;
} else {
next_sequential_key_++;
}
} else {
k = (rnd_->Next() % max_key_) * MULTIPLIER + offset;
}
// TODO: make sure the buff is large enough
memset(buff, 0, key_size_);
if (prefix_num_ > 0) {
uint32_t prefix = (k % prefix_num_) * MULTIPLIER + offset;
Encode(buff, prefix);
if (prefix_only) {
return {buff, prefix_size_};
}
}
Encode(buff + prefix_size_, k);
return {buff, key_size_};
}
// use internal buffer for generated key, make sure there's only one caller in
// single thread
Slice Next() { return Next(buff_); }
// user internal buffer for generated prefix
Slice NextPrefix() {
assert(prefix_num_ > 0);
return Next(buff_, 0, true);
}
// helper function to get non exist key
Slice NextNonExist() { return Next(buff_, 1); }
Slice MaxKey(char* buff) const {
memset(buff, 0xff, key_size_);
return {buff, key_size_};
}
Slice MinKey(char* buff) const {
memset(buff, 0, key_size_);
return {buff, key_size_};
}
// max_key: the max key that it could generate
// prefix_num: the max prefix number
// key_size: in bytes
explicit KeyGenerator(Random* rnd, uint64_t max_key = 100 * 1024 * 1024,
size_t prefix_num = 0, size_t key_size = 10) {
prefix_num_ = prefix_num;
key_size_ = key_size;
max_key_ = max_key;
rnd_ = rnd;
if (prefix_num > 0) {
prefix_size_ = 4; // TODO: support different prefix_size
}
}
// generate sequential keys
explicit KeyGenerator(uint64_t max_key = 100 * 1024 * 1024,
size_t key_size = 10) {
key_size_ = key_size;
max_key_ = max_key;
rnd_ = nullptr;
is_sequential_ = true;
}
private:
Random* rnd_;
size_t prefix_num_ = 0;
size_t prefix_size_ = 0;
size_t key_size_;
uint64_t max_key_;
bool is_sequential_ = false;
uint32_t next_sequential_key_ = 0;
char buff_[256] = {0};
const int MULTIPLIER = 3;
void static Encode(char* buf, uint32_t value) {
if (port::kLittleEndian) {
buf[0] = static_cast<char>((value >> 24) & 0xff);
buf[1] = static_cast<char>((value >> 16) & 0xff);
buf[2] = static_cast<char>((value >> 8) & 0xff);
buf[3] = static_cast<char>(value & 0xff);
} else {
memcpy(buf, &value, sizeof(value));
}
}
};
static void SetupDB(benchmark::State& state, Options& options,
std::unique_ptr<DB>* db,
const std::string& test_name = "") {
options.create_if_missing = true;
auto env = Env::Default();
std::string db_path;
Status s = env->GetTestDirectory(&db_path);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
std::string db_name =
db_path + kFilePathSeparator + test_name + std::to_string(getpid());
DestroyDB(db_name, options);
DB* db_ptr = nullptr;
s = DB::Open(options, db_name, &db_ptr);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
db->reset(db_ptr);
}
static void TeardownDB(benchmark::State& state, const std::unique_ptr<DB>& db,
const Options& options, KeyGenerator& kg) {
char min_buff[256], max_buff[256];
const Range r(kg.MinKey(min_buff), kg.MaxKey(max_buff));
uint64_t size;
Status s = db->GetApproximateSizes(&r, 1, &size);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
state.counters["db_size"] = static_cast<double>(size);
std::string db_name = db->GetName();
s = db->Close();
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
DestroyDB(db_name, options);
}
static void DBOpen(benchmark::State& state) {
// create DB
std::unique_ptr<DB> db;
Options options;
SetupDB(state, options, &db, "DBOpen");
std::string db_name = db->GetName();
db->Close();
options.create_if_missing = false;
auto rnd = Random(123);
for (auto _ : state) {
{
DB* db_ptr = nullptr;
Status s = DB::Open(options, db_name, &db_ptr);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
db.reset(db_ptr);
}
state.PauseTiming();
auto wo = WriteOptions();
Status s;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 100; j++) {
s = db->Put(wo, rnd.RandomString(10), rnd.RandomString(100));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
s = db->Flush(FlushOptions());
}
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
s = db->Close();
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
state.ResumeTiming();
}
DestroyDB(db_name, options);
}
BENCHMARK(DBOpen)->Iterations(200); // specify iteration number as the db size
// is impacted by iteration number
static void DBClose(benchmark::State& state) {
// create DB
std::unique_ptr<DB> db;
Options options;
SetupDB(state, options, &db, "DBClose");
std::string db_name = db->GetName();
db->Close();
options.create_if_missing = false;
auto rnd = Random(12345);
for (auto _ : state) {
state.PauseTiming();
{
DB* db_ptr = nullptr;
Status s = DB::Open(options, db_name, &db_ptr);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
db.reset(db_ptr);
}
auto wo = WriteOptions();
Status s;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 100; j++) {
s = db->Put(wo, rnd.RandomString(10), rnd.RandomString(100));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
s = db->Flush(FlushOptions());
}
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
state.ResumeTiming();
s = db->Close();
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
DestroyDB(db_name, options);
}
BENCHMARK(DBClose)->Iterations(200); // specify iteration number as the db size
// is impacted by iteration number
static void DBPut(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
bool enable_statistics = state.range(3);
bool enable_wal = state.range(4);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db = nullptr;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
options.compaction_style = compaction_style;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "DBPut");
}
auto wo = WriteOptions();
wo.disableWAL = !enable_wal;
for (auto _ : state) {
state.PauseTiming();
Slice key = kg.Next();
std::string val = rnd.RandomString(static_cast<int>(per_key_size));
state.ResumeTiming();
Status s = db->Put(wo, key, val);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
if (state.thread_index() == 0) {
auto db_full = static_cast_with_check<DBImpl>(db.get());
Status s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
if (enable_statistics) {
HistogramData histogram_data;
options.statistics->histogramData(DB_WRITE, &histogram_data);
state.counters["put_mean"] = histogram_data.average * std::milli::den;
state.counters["put_p95"] = histogram_data.percentile95 * std::milli::den;
state.counters["put_p99"] = histogram_data.percentile99 * std::milli::den;
}
TeardownDB(state, db, options, kg);
}
}
static void DBPutArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {100l << 30}) {
for (int64_t per_key_size : {256, 1024}) {
for (bool enable_statistics : {false, true}) {
for (bool wal : {false, true}) {
b->Args(
{comp_style, max_data, per_key_size, enable_statistics, wal});
}
}
}
}
}
b->ArgNames(
{"comp_style", "max_data", "per_key_size", "enable_statistics", "wal"});
}
static const uint64_t DBPutNum = 409600l;
BENCHMARK(DBPut)->Threads(1)->Iterations(DBPutNum)->Apply(DBPutArguments);
BENCHMARK(DBPut)->Threads(8)->Iterations(DBPutNum / 8)->Apply(DBPutArguments);
static void ManualCompaction(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
bool enable_statistics = state.range(3);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
options.compaction_style = compaction_style;
// No auto compaction
options.disable_auto_compactions = true;
options.level0_file_num_compaction_trigger = (1 << 30);
options.level0_slowdown_writes_trigger = (1 << 30);
options.level0_stop_writes_trigger = (1 << 30);
options.soft_pending_compaction_bytes_limit = 0;
options.hard_pending_compaction_bytes_limit = 0;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "ManualCompaction");
}
auto wo = WriteOptions();
wo.disableWAL = true;
uint64_t flush_mod = key_num / 4; // at least generate 4 files for compaction
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
if (i + 1 % flush_mod == 0) {
s = db->Flush(FlushOptions());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
std::vector<LiveFileMetaData> files_meta;
db->GetLiveFilesMetaData(&files_meta);
std::vector<std::string> files_before_compact;
files_before_compact.reserve(files_meta.size());
for (const LiveFileMetaData& file : files_meta) {
files_before_compact.emplace_back(file.name);
}
SetPerfLevel(kEnableTime);
get_perf_context()->EnablePerLevelPerfContext();
get_perf_context()->Reset();
CompactionOptions co;
for (auto _ : state) {
s = db->CompactFiles(co, files_before_compact, 1);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
if (state.thread_index() == 0) {
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
if (enable_statistics) {
HistogramData histogram_data;
options.statistics->histogramData(COMPACTION_TIME, &histogram_data);
state.counters["comp_time"] = histogram_data.average;
options.statistics->histogramData(COMPACTION_CPU_TIME, &histogram_data);
state.counters["comp_cpu_time"] = histogram_data.average;
options.statistics->histogramData(COMPACTION_OUTFILE_SYNC_MICROS,
&histogram_data);
state.counters["comp_outfile_sync"] = histogram_data.average;
state.counters["comp_read"] = static_cast<double>(
options.statistics->getTickerCount(COMPACT_READ_BYTES));
state.counters["comp_write"] = static_cast<double>(
options.statistics->getTickerCount(COMPACT_WRITE_BYTES));
state.counters["user_key_comparison_count"] =
static_cast<double>(get_perf_context()->user_key_comparison_count);
state.counters["block_read_count"] =
static_cast<double>(get_perf_context()->block_read_count);
state.counters["block_read_time"] =
static_cast<double>(get_perf_context()->block_read_time);
state.counters["block_read_cpu_time"] =
static_cast<double>(get_perf_context()->block_read_cpu_time);
state.counters["block_checksum_time"] =
static_cast<double>(get_perf_context()->block_checksum_time);
state.counters["new_table_block_iter_nanos"] =
static_cast<double>(get_perf_context()->new_table_block_iter_nanos);
state.counters["new_table_iterator_nanos"] =
static_cast<double>(get_perf_context()->new_table_iterator_nanos);
state.counters["find_table_nanos"] =
static_cast<double>(get_perf_context()->find_table_nanos);
}
TeardownDB(state, db, options, kg);
}
}
static void ManualCompactionArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal}) {
for (int64_t max_data : {32l << 20, 128l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
for (bool enable_statistics : {false, true}) {
b->Args({comp_style, max_data, per_key_size, enable_statistics});
}
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size", "enable_statistics"});
}
BENCHMARK(ManualCompaction)->Iterations(1)->Apply(ManualCompactionArguments);
static void ManualFlush(benchmark::State& state) {
uint64_t key_num = state.range(0);
uint64_t per_key_size = state.range(1);
bool enable_statistics = true;
// setup DB
static std::unique_ptr<DB> db;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
options.disable_auto_compactions = true;
options.level0_file_num_compaction_trigger = (1 << 30);
options.level0_slowdown_writes_trigger = (1 << 30);
options.level0_stop_writes_trigger = (1 << 30);
options.soft_pending_compaction_bytes_limit = 0;
options.hard_pending_compaction_bytes_limit = 0;
options.write_buffer_size = 2l << 30; // 2G to avoid auto flush
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "ManualFlush");
}
auto wo = WriteOptions();
for (auto _ : state) {
state.PauseTiming();
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
}
FlushOptions fo;
state.ResumeTiming();
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
if (state.thread_index() == 0) {
auto db_full = static_cast_with_check<DBImpl>(db.get());
Status s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
if (enable_statistics) {
HistogramData histogram_data;
options.statistics->histogramData(FLUSH_TIME, &histogram_data);
state.counters["flush_time"] = histogram_data.average;
state.counters["flush_write_bytes"] = static_cast<double>(
options.statistics->getTickerCount(FLUSH_WRITE_BYTES));
}
TeardownDB(state, db, options, kg);
}
}
static void ManualFlushArguments(benchmark::internal::Benchmark* b) {
for (int64_t key_num : {1l << 10, 8l << 10, 64l << 10}) {
for (int64_t per_key_size : {256, 1024}) {
b->Args({key_num, per_key_size});
}
}
b->ArgNames({"key_num", "per_key_size"});
}
BENCHMARK(ManualFlush)->Iterations(1)->Apply(ManualFlushArguments);
static void DBGet(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
bool enable_statistics = state.range(3);
bool negative_query = state.range(4);
bool enable_filter = state.range(5);
bool mmap = state.range(6);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
if (mmap) {
options.allow_mmap_reads = true;
options.compression = kNoCompression;
}
options.compaction_style = compaction_style;
BlockBasedTableOptions table_options;
if (enable_filter) {
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
}
if (mmap) {
table_options.no_block_cache = true;
table_options.block_restart_interval = 1;
}
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "DBGet");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
}
auto ro = ReadOptions();
if (mmap) {
ro.verify_checksums = false;
}
size_t not_found = 0;
if (negative_query) {
for (auto _ : state) {
std::string val;
Status s = db->Get(ro, kg.NextNonExist(), &val);
if (s.IsNotFound()) {
not_found++;
}
}
} else {
for (auto _ : state) {
std::string val;
Status s = db->Get(ro, kg.Next(), &val);
if (s.IsNotFound()) {
not_found++;
}
}
}
state.counters["neg_qu_pct"] = benchmark::Counter(
static_cast<double>(not_found * 100), benchmark::Counter::kAvgIterations);
if (state.thread_index() == 0) {
if (enable_statistics) {
HistogramData histogram_data;
options.statistics->histogramData(DB_GET, &histogram_data);
state.counters["get_mean"] = histogram_data.average * std::milli::den;
state.counters["get_p95"] = histogram_data.percentile95 * std::milli::den;
state.counters["get_p99"] = histogram_data.percentile99 * std::milli::den;
}
TeardownDB(state, db, options, kg);
}
}
static void DBGetArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {128l << 20, 512l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
for (bool enable_statistics : {false, true}) {
for (bool negative_query : {false, true}) {
for (bool enable_filter : {false, true}) {
for (bool mmap : {false, true}) {
b->Args({comp_style, max_data, per_key_size, enable_statistics,
negative_query, enable_filter, mmap});
}
}
}
}
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size", "enable_statistics",
"negative_query", "enable_filter", "mmap"});
}
static constexpr uint64_t kDBGetNum = 1l << 20;
BENCHMARK(DBGet)->Threads(1)->Iterations(kDBGetNum)->Apply(DBGetArguments);
BENCHMARK(DBGet)->Threads(8)->Iterations(kDBGetNum / 8)->Apply(DBGetArguments);
static void SimpleGetWithPerfContext(benchmark::State& state) {
// setup DB
static std::unique_ptr<DB> db;
std::string db_name;
Options options;
options.create_if_missing = true;
options.arena_block_size = 8 << 20;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, 1024);
if (state.thread_index() == 0) {
auto env = Env::Default();
std::string db_path;
Status s = env->GetTestDirectory(&db_path);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
db_name = db_path + "/simple_get_" + std::to_string(getpid());
DestroyDB(db_name, options);
{
DB* db_ptr = nullptr;
s = DB::Open(options, db_name, &db_ptr);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
db.reset(db_ptr);
}
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < 1024; i++) {
s = db->Put(wo, kg.Next(), rnd.RandomString(1024));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
FlushOptions fo;
s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
auto ro = ReadOptions();
size_t not_found = 0;
uint64_t user_key_comparison_count = 0;
uint64_t block_read_time = 0;
uint64_t block_read_cpu_time = 0;
uint64_t block_checksum_time = 0;
uint64_t get_snapshot_time = 0;
uint64_t get_post_process_time = 0;
uint64_t get_from_output_files_time = 0;
uint64_t new_table_block_iter_nanos = 0;
uint64_t block_seek_nanos = 0;
uint64_t get_cpu_nanos = 0;
uint64_t get_from_table_nanos = 0;
SetPerfLevel(kEnableTime);
get_perf_context()->EnablePerLevelPerfContext();
for (auto _ : state) {
std::string val;
get_perf_context()->Reset();
Status s = db->Get(ro, kg.NextNonExist(), &val);
if (s.IsNotFound()) {
not_found++;
}
user_key_comparison_count += get_perf_context()->user_key_comparison_count;
block_read_time += get_perf_context()->block_read_time;
block_read_cpu_time += get_perf_context()->block_read_cpu_time;
block_checksum_time += get_perf_context()->block_checksum_time;
get_snapshot_time += get_perf_context()->get_snapshot_time;
get_post_process_time += get_perf_context()->get_post_process_time;
get_from_output_files_time +=
get_perf_context()->get_from_output_files_time;
new_table_block_iter_nanos +=
get_perf_context()->new_table_block_iter_nanos;
block_seek_nanos += get_perf_context()->block_seek_nanos;
get_cpu_nanos += get_perf_context()->get_cpu_nanos;
get_from_table_nanos +=
(*(get_perf_context()->level_to_perf_context))[0].get_from_table_nanos;
}
state.counters["neg_qu_pct"] = benchmark::Counter(
static_cast<double>(not_found * 100), benchmark::Counter::kAvgIterations);
state.counters["user_key_comparison_count"] =
benchmark::Counter(static_cast<double>(user_key_comparison_count),
benchmark::Counter::kAvgIterations);
state.counters["block_read_time"] = benchmark::Counter(
static_cast<double>(block_read_time), benchmark::Counter::kAvgIterations);
state.counters["block_read_cpu_time"] =
benchmark::Counter(static_cast<double>(block_read_cpu_time),
benchmark::Counter::kAvgIterations);
state.counters["block_checksum_time"] =
benchmark::Counter(static_cast<double>(block_checksum_time),
benchmark::Counter::kAvgIterations);
state.counters["get_snapshot_time"] =
benchmark::Counter(static_cast<double>(get_snapshot_time),
benchmark::Counter::kAvgIterations);
state.counters["get_post_process_time"] =
benchmark::Counter(static_cast<double>(get_post_process_time),
benchmark::Counter::kAvgIterations);
state.counters["get_from_output_files_time"] =
benchmark::Counter(static_cast<double>(get_from_output_files_time),
benchmark::Counter::kAvgIterations);
state.counters["new_table_block_iter_nanos"] =
benchmark::Counter(static_cast<double>(new_table_block_iter_nanos),
benchmark::Counter::kAvgIterations);
state.counters["block_seek_nanos"] =
benchmark::Counter(static_cast<double>(block_seek_nanos),
benchmark::Counter::kAvgIterations);
state.counters["get_cpu_nanos"] = benchmark::Counter(
static_cast<double>(get_cpu_nanos), benchmark::Counter::kAvgIterations);
state.counters["get_from_table_nanos"] =
benchmark::Counter(static_cast<double>(get_from_table_nanos),
benchmark::Counter::kAvgIterations);
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
BENCHMARK(SimpleGetWithPerfContext)->Iterations(1000000);
Add microbenchmarks for `DB::GetMergeOperands()` (#9971) Summary: The new microbenchmarks, DBGetMergeOperandsInMemtable and DBGetMergeOperandsInSstFile, correspond to the two different LSMs tested: all data in one memtable and all data in one SST file, respectively. Both cases are parameterized by thread count (1 or 8) and merge operands per key (1, 32, or 1024). The SST file case is additionally parameterized by whether data is in block cache or mmap'd memory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9971 Test Plan: ``` $ TEST_TMPDIR=/dev/shm/db_basic_bench/ ./db_basic_bench --benchmark_filter=DBGetMergeOperands The number of inputs is very large. DBGet will be repeated at least 192 times. The number of inputs is very large. DBGet will be repeated at least 192 times. 2022-05-09T13:15:40-07:00 Running ./db_basic_bench Run on (36 X 2570.91 MHz CPU s) CPU Caches: L1 Data 32 KiB (x18) L1 Instruction 32 KiB (x18) L2 Unified 1024 KiB (x18) L3 Unified 25344 KiB (x1) Load Average: 4.50, 4.33, 4.37 ---------------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ---------------------------------------------------------------------------------------------------------------------------- DBGetMergeOperandsInMemtable/entries_per_key:1/threads:1 846 ns 846 ns 849893 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:1 2436 ns 2436 ns 305779 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:1 77226 ns 77224 ns 8152 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1/threads:8 116 ns 929 ns 779368 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:8 330 ns 2644 ns 280824 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:8 12466 ns 99718 ns 7200 db_size=0 DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:1 1640 ns 1640 ns 461262 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:1 1693 ns 1693 ns 439936 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:1 3999 ns 3999 ns 172881 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:1 5544 ns 5543 ns 135657 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:1 78767 ns 78761 ns 8395 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:1 157242 ns 157238 ns 4495 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:8 231 ns 1848 ns 347768 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:8 214 ns 1715 ns 393312 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:8 596 ns 4767 ns 142088 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:8 720 ns 5757 ns 118200 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:8 11613 ns 92460 ns 7344 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:8 19989 ns 159908 ns 4440 db_size=19.6389M ``` Reviewed By: jay-zhuang Differential Revision: D36258861 Pulled By: ajkr fbshipit-source-id: 04b733e1cc3a4a70ed9baa894c50fdf96c0d6064
3 years ago
static void DBGetMergeOperandsInMemtable(benchmark::State& state) {
const uint64_t kDataLen = 16 << 20; // 16MB
const uint64_t kValueLen = 64;
const uint64_t kNumEntries = kDataLen / kValueLen;
const uint64_t kNumEntriesPerKey = state.range(0);
const uint64_t kNumKeys = kNumEntries / kNumEntriesPerKey;
// setup DB
static std::unique_ptr<DB> db;
Options options;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
// Make memtable large enough that automatic flush will not be triggered.
options.write_buffer_size = 2 * kDataLen;
KeyGenerator sequential_key_gen(kNumKeys);
auto rnd = Random(301 + state.thread_index());
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "DBGetMergeOperandsInMemtable");
// load db
auto write_opts = WriteOptions();
write_opts.disableWAL = true;
for (uint64_t i = 0; i < kNumEntries; i++) {
Status s = db->Merge(write_opts, sequential_key_gen.Next(),
rnd.RandomString(static_cast<int>(kValueLen)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
}
KeyGenerator random_key_gen(kNumKeys);
std::vector<PinnableSlice> value_operands;
value_operands.resize(kNumEntriesPerKey);
GetMergeOperandsOptions get_merge_ops_opts;
get_merge_ops_opts.expected_max_number_of_operands =
static_cast<int>(kNumEntriesPerKey);
for (auto _ : state) {
int num_value_operands = 0;
Status s = db->GetMergeOperands(
ReadOptions(), db->DefaultColumnFamily(), random_key_gen.Next(),
value_operands.data(), &get_merge_ops_opts, &num_value_operands);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
if (num_value_operands != static_cast<int>(kNumEntriesPerKey)) {
state.SkipWithError("Unexpected number of merge operands found for key");
}
Avoid allocations/copies for large `GetMergeOperands()` results (#10458) Summary: This PR avoids allocations and copies for the result of `GetMergeOperands()` when the average operand size is at least 256 bytes and the total operands size is at least 32KB. The `GetMergeOperands()` already included `PinnableSlice` but was calling `PinSelf()` (i.e., allocating and copying) for each operand. When this optimization takes effect, we instead call `PinSlice()` to skip that allocation and copy. Resources are pinned in order for the `PinnableSlice` to point to valid memory even after `GetMergeOperands()` returns. The pinned resources include a referenced `SuperVersion`, a `MergingContext`, and a `PinnedIteratorsManager`. They are bundled into a `GetMergeOperandsState`. We use `SharedCleanablePtr` to share that bundle among all `PinnableSlice`s populated by `GetMergeOperands()`. That way, the last `PinnableSlice` to be `Reset()` will cleanup the bundle, including unreferencing the `SuperVersion`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10458 Test Plan: - new DB level test - measured benefit/regression in a number of memtable scenarios Setup command: ``` $ ./db_bench -benchmarks=mergerandom -merge_operator=StringAppendOperator -num=$num -writes=16384 -key_size=16 -value_size=$value_sz -compression_type=none -write_buffer_size=1048576000 ``` Benchmark command: ``` ./db_bench -threads=$threads -use_existing_db=true -avoid_flush_during_recovery=true -write_buffer_size=1048576000 -benchmarks=readrandomoperands -merge_operator=StringAppendOperator -num=$num -duration=10 ``` Worst regression is when a key has many tiny operands: - Parameters: num=1 (implying 16384 operands per key), value_sz=8, threads=1 - `GetMergeOperands()` latency increases 682 micros -> 800 micros (+17%) The regression disappears into the noise (<1% difference) if we remove the `Reset()` loop and the size counting loop. The former is arguably needed regardless of this PR as the convention in `Get()` and `MultiGet()` is to `Reset()` the input `PinnableSlice`s at the start. The latter could be optimized to count the size as we accumulate operands rather than after the fact. Best improvement is when a key has large operands and high concurrency: - Parameters: num=4 (implying 4096 operands per key), value_sz=2KB, threads=32 - `GetMergeOperands()` latency decreases 11492 micros -> 437 micros (-96%). Reviewed By: cbi42 Differential Revision: D38336578 Pulled By: ajkr fbshipit-source-id: 48146d127e04cb7f2d4d2939a2b9dff3aba18258
3 years ago
for (auto& value_operand : value_operands) {
value_operand.Reset();
}
Add microbenchmarks for `DB::GetMergeOperands()` (#9971) Summary: The new microbenchmarks, DBGetMergeOperandsInMemtable and DBGetMergeOperandsInSstFile, correspond to the two different LSMs tested: all data in one memtable and all data in one SST file, respectively. Both cases are parameterized by thread count (1 or 8) and merge operands per key (1, 32, or 1024). The SST file case is additionally parameterized by whether data is in block cache or mmap'd memory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9971 Test Plan: ``` $ TEST_TMPDIR=/dev/shm/db_basic_bench/ ./db_basic_bench --benchmark_filter=DBGetMergeOperands The number of inputs is very large. DBGet will be repeated at least 192 times. The number of inputs is very large. DBGet will be repeated at least 192 times. 2022-05-09T13:15:40-07:00 Running ./db_basic_bench Run on (36 X 2570.91 MHz CPU s) CPU Caches: L1 Data 32 KiB (x18) L1 Instruction 32 KiB (x18) L2 Unified 1024 KiB (x18) L3 Unified 25344 KiB (x1) Load Average: 4.50, 4.33, 4.37 ---------------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ---------------------------------------------------------------------------------------------------------------------------- DBGetMergeOperandsInMemtable/entries_per_key:1/threads:1 846 ns 846 ns 849893 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:1 2436 ns 2436 ns 305779 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:1 77226 ns 77224 ns 8152 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1/threads:8 116 ns 929 ns 779368 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:8 330 ns 2644 ns 280824 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:8 12466 ns 99718 ns 7200 db_size=0 DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:1 1640 ns 1640 ns 461262 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:1 1693 ns 1693 ns 439936 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:1 3999 ns 3999 ns 172881 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:1 5544 ns 5543 ns 135657 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:1 78767 ns 78761 ns 8395 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:1 157242 ns 157238 ns 4495 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:8 231 ns 1848 ns 347768 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:8 214 ns 1715 ns 393312 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:8 596 ns 4767 ns 142088 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:8 720 ns 5757 ns 118200 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:8 11613 ns 92460 ns 7344 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:8 19989 ns 159908 ns 4440 db_size=19.6389M ``` Reviewed By: jay-zhuang Differential Revision: D36258861 Pulled By: ajkr fbshipit-source-id: 04b733e1cc3a4a70ed9baa894c50fdf96c0d6064
3 years ago
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, random_key_gen);
}
}
static void DBGetMergeOperandsInSstFile(benchmark::State& state) {
const uint64_t kDataLen = 16 << 20; // 16MB
const uint64_t kValueLen = 64;
const uint64_t kNumEntries = kDataLen / kValueLen;
const uint64_t kNumEntriesPerKey = state.range(0);
const uint64_t kNumKeys = kNumEntries / kNumEntriesPerKey;
const bool kMmap = state.range(1);
// setup DB
static std::unique_ptr<DB> db;
BlockBasedTableOptions table_options;
if (kMmap) {
table_options.no_block_cache = true;
} else {
// Make block cache large enough that eviction will not be triggered.
table_options.block_cache = NewLRUCache(2 * kDataLen);
}
Options options;
if (kMmap) {
options.allow_mmap_reads = true;
}
options.compression = kNoCompression;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
// Make memtable large enough that automatic flush will not be triggered.
options.write_buffer_size = 2 * kDataLen;
KeyGenerator sequential_key_gen(kNumKeys);
auto rnd = Random(301 + state.thread_index());
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "DBGetMergeOperandsInBlockCache");
// load db
//
// Take a snapshot after each cycle of merges to ensure flush cannot
// merge any entries.
std::vector<const Snapshot*> snapshots;
snapshots.resize(kNumEntriesPerKey);
auto write_opts = WriteOptions();
write_opts.disableWAL = true;
for (uint64_t i = 0; i < kNumEntriesPerKey; i++) {
for (uint64_t j = 0; j < kNumKeys; j++) {
Status s = db->Merge(write_opts, sequential_key_gen.Next(),
rnd.RandomString(static_cast<int>(kValueLen)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
snapshots[i] = db->GetSnapshot();
}
// Flush to an L0 file; read back to prime the cache/mapped memory.
db->Flush(FlushOptions());
for (uint64_t i = 0; i < kNumKeys; ++i) {
std::string value;
Status s = db->Get(ReadOptions(), sequential_key_gen.Next(), &value);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
if (state.thread_index() == 0) {
for (uint64_t i = 0; i < kNumEntriesPerKey; ++i) {
db->ReleaseSnapshot(snapshots[i]);
}
}
}
KeyGenerator random_key_gen(kNumKeys);
std::vector<PinnableSlice> value_operands;
value_operands.resize(kNumEntriesPerKey);
GetMergeOperandsOptions get_merge_ops_opts;
get_merge_ops_opts.expected_max_number_of_operands =
static_cast<int>(kNumEntriesPerKey);
for (auto _ : state) {
int num_value_operands = 0;
ReadOptions read_opts;
read_opts.verify_checksums = false;
Status s = db->GetMergeOperands(
read_opts, db->DefaultColumnFamily(), random_key_gen.Next(),
value_operands.data(), &get_merge_ops_opts, &num_value_operands);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
if (num_value_operands != static_cast<int>(kNumEntriesPerKey)) {
state.SkipWithError("Unexpected number of merge operands found for key");
}
Avoid allocations/copies for large `GetMergeOperands()` results (#10458) Summary: This PR avoids allocations and copies for the result of `GetMergeOperands()` when the average operand size is at least 256 bytes and the total operands size is at least 32KB. The `GetMergeOperands()` already included `PinnableSlice` but was calling `PinSelf()` (i.e., allocating and copying) for each operand. When this optimization takes effect, we instead call `PinSlice()` to skip that allocation and copy. Resources are pinned in order for the `PinnableSlice` to point to valid memory even after `GetMergeOperands()` returns. The pinned resources include a referenced `SuperVersion`, a `MergingContext`, and a `PinnedIteratorsManager`. They are bundled into a `GetMergeOperandsState`. We use `SharedCleanablePtr` to share that bundle among all `PinnableSlice`s populated by `GetMergeOperands()`. That way, the last `PinnableSlice` to be `Reset()` will cleanup the bundle, including unreferencing the `SuperVersion`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10458 Test Plan: - new DB level test - measured benefit/regression in a number of memtable scenarios Setup command: ``` $ ./db_bench -benchmarks=mergerandom -merge_operator=StringAppendOperator -num=$num -writes=16384 -key_size=16 -value_size=$value_sz -compression_type=none -write_buffer_size=1048576000 ``` Benchmark command: ``` ./db_bench -threads=$threads -use_existing_db=true -avoid_flush_during_recovery=true -write_buffer_size=1048576000 -benchmarks=readrandomoperands -merge_operator=StringAppendOperator -num=$num -duration=10 ``` Worst regression is when a key has many tiny operands: - Parameters: num=1 (implying 16384 operands per key), value_sz=8, threads=1 - `GetMergeOperands()` latency increases 682 micros -> 800 micros (+17%) The regression disappears into the noise (<1% difference) if we remove the `Reset()` loop and the size counting loop. The former is arguably needed regardless of this PR as the convention in `Get()` and `MultiGet()` is to `Reset()` the input `PinnableSlice`s at the start. The latter could be optimized to count the size as we accumulate operands rather than after the fact. Best improvement is when a key has large operands and high concurrency: - Parameters: num=4 (implying 4096 operands per key), value_sz=2KB, threads=32 - `GetMergeOperands()` latency decreases 11492 micros -> 437 micros (-96%). Reviewed By: cbi42 Differential Revision: D38336578 Pulled By: ajkr fbshipit-source-id: 48146d127e04cb7f2d4d2939a2b9dff3aba18258
3 years ago
for (auto& value_operand : value_operands) {
value_operand.Reset();
}
Add microbenchmarks for `DB::GetMergeOperands()` (#9971) Summary: The new microbenchmarks, DBGetMergeOperandsInMemtable and DBGetMergeOperandsInSstFile, correspond to the two different LSMs tested: all data in one memtable and all data in one SST file, respectively. Both cases are parameterized by thread count (1 or 8) and merge operands per key (1, 32, or 1024). The SST file case is additionally parameterized by whether data is in block cache or mmap'd memory. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9971 Test Plan: ``` $ TEST_TMPDIR=/dev/shm/db_basic_bench/ ./db_basic_bench --benchmark_filter=DBGetMergeOperands The number of inputs is very large. DBGet will be repeated at least 192 times. The number of inputs is very large. DBGet will be repeated at least 192 times. 2022-05-09T13:15:40-07:00 Running ./db_basic_bench Run on (36 X 2570.91 MHz CPU s) CPU Caches: L1 Data 32 KiB (x18) L1 Instruction 32 KiB (x18) L2 Unified 1024 KiB (x18) L3 Unified 25344 KiB (x1) Load Average: 4.50, 4.33, 4.37 ---------------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ---------------------------------------------------------------------------------------------------------------------------- DBGetMergeOperandsInMemtable/entries_per_key:1/threads:1 846 ns 846 ns 849893 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:1 2436 ns 2436 ns 305779 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:1 77226 ns 77224 ns 8152 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1/threads:8 116 ns 929 ns 779368 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:32/threads:8 330 ns 2644 ns 280824 db_size=0 DBGetMergeOperandsInMemtable/entries_per_key:1024/threads:8 12466 ns 99718 ns 7200 db_size=0 DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:1 1640 ns 1640 ns 461262 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:1 1693 ns 1693 ns 439936 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:1 3999 ns 3999 ns 172881 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:1 5544 ns 5543 ns 135657 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:1 78767 ns 78761 ns 8395 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:1 157242 ns 157238 ns 4495 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:0/threads:8 231 ns 1848 ns 347768 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:1/mmap:1/threads:8 214 ns 1715 ns 393312 db_size=21.7826M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:0/threads:8 596 ns 4767 ns 142088 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:32/mmap:1/threads:8 720 ns 5757 ns 118200 db_size=19.6981M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:0/threads:8 11613 ns 92460 ns 7344 db_size=19.6389M DBGetMergeOperandsInSstFile/entries_per_key:1024/mmap:1/threads:8 19989 ns 159908 ns 4440 db_size=19.6389M ``` Reviewed By: jay-zhuang Differential Revision: D36258861 Pulled By: ajkr fbshipit-source-id: 04b733e1cc3a4a70ed9baa894c50fdf96c0d6064
3 years ago
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, random_key_gen);
}
}
static void DBGetMergeOperandsInMemtableArguments(
benchmark::internal::Benchmark* b) {
for (int entries_per_key : {1, 32, 1024}) {
b->Args({entries_per_key});
}
b->ArgNames({"entries_per_key"});
}
static void DBGetMergeOperandsInSstFileArguments(
benchmark::internal::Benchmark* b) {
for (int entries_per_key : {1, 32, 1024}) {
for (bool mmap : {false, true}) {
b->Args({entries_per_key, mmap});
}
}
b->ArgNames({"entries_per_key", "mmap"});
}
BENCHMARK(DBGetMergeOperandsInMemtable)
->Threads(1)
->Apply(DBGetMergeOperandsInMemtableArguments);
BENCHMARK(DBGetMergeOperandsInMemtable)
->Threads(8)
->Apply(DBGetMergeOperandsInMemtableArguments);
BENCHMARK(DBGetMergeOperandsInSstFile)
->Threads(1)
->Apply(DBGetMergeOperandsInSstFileArguments);
BENCHMARK(DBGetMergeOperandsInSstFile)
->Threads(8)
->Apply(DBGetMergeOperandsInSstFileArguments);
std::string GenerateKey(int primary_key, int secondary_key, int padding_size,
Random* rnd) {
char buf[50];
char* p = &buf[0];
snprintf(buf, sizeof(buf), "%6d%4d", primary_key, secondary_key);
std::string k(p);
if (padding_size) {
k += rnd->RandomString(padding_size);
}
return k;
}
void GenerateRandomKVs(std::vector<std::string>* keys,
std::vector<std::string>* values, const int from,
const int len, const int step = 1,
const int padding_size = 0,
const int keys_share_prefix = 1) {
Random rnd(302);
// generate different prefix
for (int i = from; i < from + len; i += step) {
// generating keys that share the prefix
for (int j = 0; j < keys_share_prefix; ++j) {
keys->emplace_back(GenerateKey(i, j, padding_size, &rnd));
// 100 bytes values
values->emplace_back(rnd.RandomString(100));
}
}
}
// TODO: move it to different files, as it's testing an internal API
static void DataBlockSeek(benchmark::State& state) {
Random rnd(301);
Options options = Options();
BlockBuilder builder(16, true, false,
BlockBasedTableOptions::kDataBlockBinarySearch);
int num_records = 500;
std::vector<std::string> keys;
std::vector<std::string> values;
GenerateRandomKVs(&keys, &values, 0, num_records);
for (int i = 0; i < num_records; i++) {
std::string ukey(keys[i] + "1");
InternalKey ikey(ukey, 0, kTypeValue);
builder.Add(ikey.Encode().ToString(), values[i]);
}
Slice rawblock = builder.Finish();
BlockContents contents;
contents.data = rawblock;
Block reader(std::move(contents));
SetPerfLevel(kEnableTime);
uint64_t total = 0;
for (auto _ : state) {
DataBlockIter* iter = reader.NewDataIterator(options.comparator,
kDisableGlobalSequenceNumber);
uint32_t index = rnd.Uniform(static_cast<int>(num_records));
std::string ukey(keys[index] + "1");
InternalKey ikey(ukey, 0, kTypeValue);
get_perf_context()->Reset();
bool may_exist = iter->SeekForGet(ikey.Encode().ToString());
if (!may_exist) {
state.SkipWithError("key not found");
}
total += get_perf_context()->block_seek_nanos;
delete iter;
}
state.counters["seek_ns"] = benchmark::Counter(
static_cast<double>(total), benchmark::Counter::kAvgIterations);
}
BENCHMARK(DataBlockSeek)->Iterations(1000000);
static void IteratorSeek(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
bool enable_statistics = state.range(3);
bool negative_query = state.range(4);
bool enable_filter = state.range(5);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
options.compaction_style = compaction_style;
if (enable_filter) {
BlockBasedTableOptions table_options;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
}
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "IteratorSeek");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
}
for (auto _ : state) {
std::unique_ptr<Iterator> iter{nullptr};
state.PauseTiming();
if (!iter) {
iter.reset(db->NewIterator(ReadOptions()));
}
Slice key = negative_query ? kg.NextNonExist() : kg.Next();
if (!iter->status().ok()) {
state.SkipWithError(iter->status().ToString().c_str());
return;
}
state.ResumeTiming();
iter->Seek(key);
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
static void IteratorSeekArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {128l << 20, 512l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
for (bool enable_statistics : {false, true}) {
for (bool negative_query : {false, true}) {
for (bool enable_filter : {false, true}) {
b->Args({comp_style, max_data, per_key_size, enable_statistics,
negative_query, enable_filter});
}
}
}
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size", "enable_statistics",
"negative_query", "enable_filter"});
}
static constexpr uint64_t kDBSeekNum = 10l << 10;
BENCHMARK(IteratorSeek)
->Threads(1)
->Iterations(kDBSeekNum)
->Apply(IteratorSeekArguments);
BENCHMARK(IteratorSeek)
->Threads(8)
->Iterations(kDBSeekNum / 8)
->Apply(IteratorSeekArguments);
static void IteratorNext(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
Options options;
options.compaction_style = compaction_style;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "IteratorNext");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
}
for (auto _ : state) {
std::unique_ptr<Iterator> iter{nullptr};
state.PauseTiming();
if (!iter) {
iter.reset(db->NewIterator(ReadOptions()));
}
while (!iter->Valid()) {
iter->Seek(kg.Next());
if (!iter->status().ok()) {
state.SkipWithError(iter->status().ToString().c_str());
}
}
state.ResumeTiming();
iter->Next();
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
static void IteratorNextArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {128l << 20, 512l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
b->Args({comp_style, max_data, per_key_size});
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size"});
}
static constexpr uint64_t kIteratorNextNum = 10l << 10;
BENCHMARK(IteratorNext)
->Iterations(kIteratorNextNum)
->Apply(IteratorNextArguments);
static void IteratorNextWithPerfContext(benchmark::State& state) {
// setup DB
static std::unique_ptr<DB> db;
Options options;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, 1024);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "IteratorNextWithPerfContext");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < 1024; i++) {
Status s = db->Put(wo, kg.Next(), rnd.RandomString(1024));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
Status s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
FlushOptions fo;
s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
uint64_t user_key_comparison_count = 0;
uint64_t internal_key_skipped_count = 0;
uint64_t find_next_user_entry_time = 0;
uint64_t iter_next_cpu_nanos = 0;
SetPerfLevel(kEnableTime);
get_perf_context()->EnablePerLevelPerfContext();
for (auto _ : state) {
std::unique_ptr<Iterator> iter{nullptr};
state.PauseTiming();
if (!iter) {
iter.reset(db->NewIterator(ReadOptions()));
}
while (!iter->Valid()) {
iter->Seek(kg.Next());
if (!iter->status().ok()) {
state.SkipWithError(iter->status().ToString().c_str());
}
}
get_perf_context()->Reset();
state.ResumeTiming();
iter->Next();
user_key_comparison_count += get_perf_context()->user_key_comparison_count;
internal_key_skipped_count +=
get_perf_context()->internal_key_skipped_count;
find_next_user_entry_time += get_perf_context()->find_next_user_entry_time;
iter_next_cpu_nanos += get_perf_context()->iter_next_cpu_nanos;
}
state.counters["user_key_comparison_count"] =
benchmark::Counter(static_cast<double>(user_key_comparison_count),
benchmark::Counter::kAvgIterations);
state.counters["internal_key_skipped_count"] =
benchmark::Counter(static_cast<double>(internal_key_skipped_count),
benchmark::Counter::kAvgIterations);
state.counters["find_next_user_entry_time"] =
benchmark::Counter(static_cast<double>(find_next_user_entry_time),
benchmark::Counter::kAvgIterations);
state.counters["iter_next_cpu_nanos"] =
benchmark::Counter(static_cast<double>(iter_next_cpu_nanos),
benchmark::Counter::kAvgIterations);
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
BENCHMARK(IteratorNextWithPerfContext)->Iterations(100000);
static void IteratorPrev(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
std::string db_name;
Options options;
options.compaction_style = compaction_style;
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "IteratorPrev");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
}
for (auto _ : state) {
std::unique_ptr<Iterator> iter{nullptr};
state.PauseTiming();
if (!iter) {
iter.reset(db->NewIterator(ReadOptions()));
}
while (!iter->Valid()) {
iter->Seek(kg.Next());
if (!iter->status().ok()) {
state.SkipWithError(iter->status().ToString().c_str());
}
}
state.ResumeTiming();
iter->Prev();
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
static void IteratorPrevArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {128l << 20, 512l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
b->Args({comp_style, max_data, per_key_size});
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size"});
}
static constexpr uint64_t kIteratorPrevNum = 10l << 10;
BENCHMARK(IteratorPrev)
->Iterations(kIteratorPrevNum)
->Apply(IteratorPrevArguments);
static void PrefixSeek(benchmark::State& state) {
auto compaction_style = static_cast<CompactionStyle>(state.range(0));
uint64_t max_data = state.range(1);
uint64_t per_key_size = state.range(2);
bool enable_statistics = state.range(3);
bool enable_filter = state.range(4);
uint64_t key_num = max_data / per_key_size;
// setup DB
static std::unique_ptr<DB> db;
Options options;
if (enable_statistics) {
options.statistics = CreateDBStatistics();
}
options.compaction_style = compaction_style;
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
if (enable_filter) {
BlockBasedTableOptions table_options;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
}
auto rnd = Random(301 + state.thread_index());
KeyGenerator kg(&rnd, key_num, key_num / 100);
if (state.thread_index() == 0) {
SetupDB(state, options, &db, "PrefixSeek");
// load db
auto wo = WriteOptions();
wo.disableWAL = true;
for (uint64_t i = 0; i < key_num; i++) {
Status s = db->Put(wo, kg.Next(),
rnd.RandomString(static_cast<int>(per_key_size)));
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
FlushOptions fo;
Status s = db->Flush(fo);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
auto db_full = static_cast_with_check<DBImpl>(db.get());
s = db_full->WaitForCompact(true);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
}
for (auto _ : state) {
std::unique_ptr<Iterator> iter{nullptr};
state.PauseTiming();
if (!iter) {
iter.reset(db->NewIterator(ReadOptions()));
}
state.ResumeTiming();
iter->Seek(kg.NextPrefix());
if (!iter->status().ok()) {
state.SkipWithError(iter->status().ToString().c_str());
return;
}
}
if (state.thread_index() == 0) {
TeardownDB(state, db, options, kg);
}
}
static void PrefixSeekArguments(benchmark::internal::Benchmark* b) {
for (int comp_style : {kCompactionStyleLevel, kCompactionStyleUniversal,
kCompactionStyleFIFO}) {
for (int64_t max_data : {128l << 20, 512l << 20}) {
for (int64_t per_key_size : {256, 1024}) {
for (bool enable_statistics : {false, true}) {
for (bool enable_filter : {false, true}) {
b->Args({comp_style, max_data, per_key_size, enable_statistics,
enable_filter});
}
}
}
}
}
b->ArgNames({"comp_style", "max_data", "per_key_size", "enable_statistics",
"enable_filter"});
}
static constexpr uint64_t kPrefixSeekNum = 10l << 10;
BENCHMARK(PrefixSeek)->Iterations(kPrefixSeekNum)->Apply(PrefixSeekArguments);
BENCHMARK(PrefixSeek)
->Threads(8)
->Iterations(kPrefixSeekNum / 8)
->Apply(PrefixSeekArguments);
// TODO: move it to different files, as it's testing an internal API
static void RandomAccessFileReaderRead(benchmark::State& state) {
bool enable_statistics = state.range(0);
constexpr int kFileNum = 10;
auto env = Env::Default();
auto fs = env->GetFileSystem();
std::string db_path;
Status s = env->GetTestDirectory(&db_path);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
return;
}
// Setup multiple `RandomAccessFileReader`s with different parameters to be
// used for test
Random rand(301);
std::string fname_base =
db_path + kFilePathSeparator + "random-access-file-reader-read";
std::vector<std::unique_ptr<RandomAccessFileReader>> readers;
auto statistics_share = CreateDBStatistics();
Statistics* statistics = enable_statistics ? statistics_share.get() : nullptr;
for (int i = 0; i < kFileNum; i++) {
std::string fname = fname_base + std::to_string(i);
std::string content = rand.RandomString(kDefaultPageSize);
std::unique_ptr<WritableFile> tgt_file;
env->NewWritableFile(fname, &tgt_file, EnvOptions());
tgt_file->Append(content);
tgt_file->Close();
std::unique_ptr<FSRandomAccessFile> f;
fs->NewRandomAccessFile(fname, FileOptions(), &f, nullptr);
int rand_num = rand.Next() % 3;
auto temperature = rand_num == 0 ? Temperature::kUnknown
: rand_num == 1 ? Temperature::kWarm
: Temperature::kCold;
readers.emplace_back(new RandomAccessFileReader(
std::move(f), fname, env->GetSystemClock().get(), nullptr, statistics,
0, nullptr, nullptr, {}, temperature, rand_num == 1));
}
IOOptions io_options;
std::unique_ptr<char[]> scratch(new char[2048]);
Slice result;
uint64_t idx = 0;
for (auto _ : state) {
s = readers[idx++ % kFileNum]->Read(io_options, 0, kDefaultPageSize / 3,
&result, scratch.get(), nullptr,
Env::IO_TOTAL);
if (!s.ok()) {
state.SkipWithError(s.ToString().c_str());
}
}
// clean up
for (int i = 0; i < kFileNum; i++) {
std::string fname = fname_base + std::to_string(i);
env->DeleteFile(fname); // ignore return, okay to fail cleanup
}
}
BENCHMARK(RandomAccessFileReaderRead)
->Iterations(1000000)
->Arg(0)
->Arg(1)
->ArgName("enable_statistics");
} // namespace ROCKSDB_NAMESPACE
BENCHMARK_MAIN();