Summary: Support for PowerPC Architecture Detecting AltiVec Support Closes https://github.com/facebook/rocksdb/pull/2353 Differential Revision: D5210948 Pulled By: siying fbshipit-source-id: 859a8c063d37697addd89ba2b8a14e5efd5d24bfmain
parent
30b58cf71a
commit
2289d38115
@ -0,0 +1,95 @@ |
||||
// Copyright (c) 2017 International Business Machines Corp.
|
||||
// All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
// This source code is also licensed under the GPLv2 license found in the
|
||||
// COPYING file in the root directory of this source tree.
|
||||
|
||||
#define CRC_TABLE |
||||
#include <inttypes.h> |
||||
#include <stdlib.h> |
||||
#include <strings.h> |
||||
#include "util/crc32c_ppc_constants.h" |
||||
|
||||
#define VMX_ALIGN 16 |
||||
#define VMX_ALIGN_MASK (VMX_ALIGN - 1) |
||||
|
||||
#ifdef REFLECT |
||||
static unsigned int crc32_align(unsigned int crc, unsigned char const *p, |
||||
unsigned long len) { |
||||
while (len--) crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8); |
||||
return crc; |
||||
} |
||||
#endif |
||||
|
||||
#ifdef HAVE_POWER8 |
||||
unsigned int __crc32_vpmsum(unsigned int crc, unsigned char const *p, |
||||
unsigned long len); |
||||
|
||||
static uint32_t crc32_vpmsum(uint32_t crc, unsigned char const *data, |
||||
unsigned len) { |
||||
unsigned int prealign; |
||||
unsigned int tail; |
||||
|
||||
#ifdef CRC_XOR |
||||
crc ^= 0xffffffff; |
||||
#endif |
||||
|
||||
if (len < VMX_ALIGN + VMX_ALIGN_MASK) { |
||||
crc = crc32_align(crc, data, (unsigned long)len); |
||||
goto out; |
||||
} |
||||
|
||||
if ((unsigned long)data & VMX_ALIGN_MASK) { |
||||
prealign = VMX_ALIGN - ((unsigned long)data & VMX_ALIGN_MASK); |
||||
crc = crc32_align(crc, data, prealign); |
||||
len -= prealign; |
||||
data += prealign; |
||||
} |
||||
|
||||
crc = __crc32_vpmsum(crc, data, (unsigned long)len & ~VMX_ALIGN_MASK); |
||||
|
||||
tail = len & VMX_ALIGN_MASK; |
||||
if (tail) { |
||||
data += len & ~VMX_ALIGN_MASK; |
||||
crc = crc32_align(crc, data, tail); |
||||
} |
||||
|
||||
out: |
||||
#ifdef CRC_XOR |
||||
crc ^= 0xffffffff; |
||||
#endif |
||||
|
||||
return crc; |
||||
} |
||||
|
||||
/* This wrapper function works around the fact that crc32_vpmsum
|
||||
* does not gracefully handle the case where the data pointer is NULL. There |
||||
* may be room for performance improvement here. |
||||
*/ |
||||
uint32_t crc32c_ppc(uint32_t crc, unsigned char const *data, unsigned len) { |
||||
unsigned char *buf2; |
||||
|
||||
if (!data) { |
||||
buf2 = (unsigned char *)malloc(len); |
||||
bzero(buf2, len); |
||||
crc = crc32_vpmsum(crc, buf2, len); |
||||
free(buf2); |
||||
} else { |
||||
crc = crc32_vpmsum(crc, data, (unsigned long)len); |
||||
} |
||||
return crc; |
||||
} |
||||
|
||||
#else /* HAVE_POWER8 */ |
||||
|
||||
/* This symbol has to exist on non-ppc architectures (and on legacy
|
||||
* ppc systems using power7 or below) in order to compile properly |
||||
* there, even though it won't be called. |
||||
*/ |
||||
uint32_t crc32c_ppc(uint32_t crc, unsigned char const *data, unsigned len) { |
||||
return 0; |
||||
} |
||||
|
||||
#endif /* HAVE_POWER8 */ |
@ -0,0 +1,23 @@ |
||||
// Copyright (c) 2017 International Business Machines Corp.
|
||||
// All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
// This source code is also licensed under the GPLv2 license found in the
|
||||
// COPYING file in the root directory of this source tree.
|
||||
|
||||
#ifndef CRC32C_PPC_H |
||||
#define CRC32C_PPC_H |
||||
|
||||
#ifdef __cplusplus |
||||
extern "C" { |
||||
#endif |
||||
|
||||
extern uint32_t crc32c_ppc(uint32_t crc, unsigned char const *buffer, |
||||
unsigned len); |
||||
|
||||
#ifdef __cplusplus |
||||
} |
||||
#endif |
||||
|
||||
#endif |
@ -0,0 +1,753 @@ |
||||
// Copyright (c) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
|
||||
// Copyright (c) 2017 International Business Machines Corp. |
||||
// All rights reserved. |
||||
// This source code is licensed under the BSD-style license found in the |
||||
// LICENSE file in the root directory of this source tree. An additional grant |
||||
// of patent rights can be found in the PATENTS file in the same directory. |
||||
// This source code is also licensed under the GPLv2 license found in the |
||||
// COPYING file in the root directory of this source tree. |
||||
|
||||
#include <ppc-asm.h> |
||||
#include "ppc-opcode.h" |
||||
|
||||
#undef toc |
||||
|
||||
#ifndef r1 |
||||
#define r1 1 |
||||
#endif |
||||
|
||||
#ifndef r2 |
||||
#define r2 2 |
||||
#endif |
||||
|
||||
.section .rodata |
||||
.balign 16
|
||||
|
||||
.byteswap_constant: |
||||
/* byte reverse permute constant */ |
||||
.octa 0x0F0E0D0C0B0A09080706050403020100
|
||||
|
||||
#define __ASSEMBLY__ |
||||
#include "crc32c_ppc_constants.h" |
||||
|
||||
.text |
||||
|
||||
#if defined(__BIG_ENDIAN__) && defined(REFLECT) |
||||
#define BYTESWAP_DATA |
||||
#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT) |
||||
#define BYTESWAP_DATA |
||||
#else |
||||
#undef BYTESWAP_DATA |
||||
#endif |
||||
|
||||
#define off16 r25 |
||||
#define off32 r26 |
||||
#define off48 r27 |
||||
#define off64 r28 |
||||
#define off80 r29 |
||||
#define off96 r30 |
||||
#define off112 r31 |
||||
|
||||
#define const1 v24 |
||||
#define const2 v25 |
||||
|
||||
#define byteswap v26 |
||||
#define mask_32bit v27 |
||||
#define mask_64bit v28 |
||||
#define zeroes v29 |
||||
|
||||
#ifdef BYTESWAP_DATA |
||||
#define VPERM(A, B, C, D) vperm A, B, C, D |
||||
#else |
||||
#define VPERM(A, B, C, D) |
||||
#endif |
||||
|
||||
/* unsigned int __crc32_vpmsum(unsigned int crc, void *p, unsigned long len) */ |
||||
FUNC_START(__crc32_vpmsum) |
||||
std r31,-8(r1) |
||||
std r30,-16(r1) |
||||
std r29,-24(r1) |
||||
std r28,-32(r1) |
||||
std r27,-40(r1) |
||||
std r26,-48(r1) |
||||
std r25,-56(r1) |
||||
|
||||
li off16,16 |
||||
li off32,32 |
||||
li off48,48 |
||||
li off64,64 |
||||
li off80,80 |
||||
li off96,96 |
||||
li off112,112 |
||||
li r0,0 |
||||
|
||||
/* Enough room for saving 10 non volatile VMX registers */ |
||||
subi r6,r1,56+10*16 |
||||
subi r7,r1,56+2*16 |
||||
|
||||
stvx v20,0,r6 |
||||
stvx v21,off16,r6 |
||||
stvx v22,off32,r6 |
||||
stvx v23,off48,r6 |
||||
stvx v24,off64,r6 |
||||
stvx v25,off80,r6 |
||||
stvx v26,off96,r6 |
||||
stvx v27,off112,r6 |
||||
stvx v28,0,r7 |
||||
stvx v29,off16,r7 |
||||
|
||||
mr r10,r3 |
||||
|
||||
vxor zeroes,zeroes,zeroes |
||||
vspltisw v0,-1 |
||||
|
||||
vsldoi mask_32bit,zeroes,v0,4 |
||||
vsldoi mask_64bit,zeroes,v0,8 |
||||
|
||||
/* Get the initial value into v8 */ |
||||
vxor v8,v8,v8 |
||||
MTVRD(v8, r3) |
||||
#ifdef REFLECT |
||||
vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ |
||||
#else |
||||
vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */ |
||||
#endif |
||||
|
||||
#ifdef BYTESWAP_DATA |
||||
addis r3,r2,.byteswap_constant@toc@ha
|
||||
addi r3,r3,.byteswap_constant@toc@l
|
||||
|
||||
lvx byteswap,0,r3 |
||||
addi r3,r3,16 |
||||
#endif |
||||
|
||||
cmpdi r5,256 |
||||
blt .Lshort |
||||
|
||||
rldicr r6,r5,0,56 |
||||
|
||||
/* Checksum in blocks of MAX_SIZE */ |
||||
1: lis r7,MAX_SIZE@h
|
||||
ori r7,r7,MAX_SIZE@l
|
||||
mr r9,r7 |
||||
cmpd r6,r7 |
||||
bgt 2f |
||||
mr r7,r6 |
||||
2: subf r6,r7,r6 |
||||
|
||||
/* our main loop does 128 bytes at a time */ |
||||
srdi r7,r7,7 |
||||
|
||||
/* |
||||
* Work out the offset into the constants table to start at. Each |
||||
* constant is 16 bytes, and it is used against 128 bytes of input |
||||
* data - 128 / 16 = 8 |
||||
*/ |
||||
sldi r8,r7,4 |
||||
srdi r9,r9,3 |
||||
subf r8,r8,r9 |
||||
|
||||
/* We reduce our final 128 bytes in a separate step */ |
||||
addi r7,r7,-1 |
||||
mtctr r7 |
||||
|
||||
addis r3,r2,.constants@toc@ha
|
||||
addi r3,r3,.constants@toc@l
|
||||
|
||||
/* Find the start of our constants */ |
||||
add r3,r3,r8 |
||||
|
||||
/* zero v0-v7 which will contain our checksums */ |
||||
vxor v0,v0,v0 |
||||
vxor v1,v1,v1 |
||||
vxor v2,v2,v2 |
||||
vxor v3,v3,v3 |
||||
vxor v4,v4,v4 |
||||
vxor v5,v5,v5 |
||||
vxor v6,v6,v6 |
||||
vxor v7,v7,v7 |
||||
|
||||
lvx const1,0,r3 |
||||
|
||||
/* |
||||
* If we are looping back to consume more data we use the values |
||||
* already in v16-v23. |
||||
*/ |
||||
cmpdi r0,1 |
||||
beq 2f |
||||
|
||||
/* First warm up pass */ |
||||
lvx v16,0,r4 |
||||
lvx v17,off16,r4 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPERM(v17,v17,v17,byteswap) |
||||
lvx v18,off32,r4 |
||||
lvx v19,off48,r4 |
||||
VPERM(v18,v18,v18,byteswap) |
||||
VPERM(v19,v19,v19,byteswap) |
||||
lvx v20,off64,r4 |
||||
lvx v21,off80,r4 |
||||
VPERM(v20,v20,v20,byteswap) |
||||
VPERM(v21,v21,v21,byteswap) |
||||
lvx v22,off96,r4 |
||||
lvx v23,off112,r4 |
||||
VPERM(v22,v22,v22,byteswap) |
||||
VPERM(v23,v23,v23,byteswap) |
||||
addi r4,r4,8*16 |
||||
|
||||
/* xor in initial value */ |
||||
vxor v16,v16,v8 |
||||
|
||||
2: bdz .Lfirst_warm_up_done |
||||
|
||||
addi r3,r3,16 |
||||
lvx const2,0,r3 |
||||
|
||||
/* Second warm up pass */ |
||||
VPMSUMD(v8,v16,const1) |
||||
lvx v16,0,r4 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v9,v17,const1) |
||||
lvx v17,off16,r4 |
||||
VPERM(v17,v17,v17,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v10,v18,const1) |
||||
lvx v18,off32,r4 |
||||
VPERM(v18,v18,v18,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v11,v19,const1) |
||||
lvx v19,off48,r4 |
||||
VPERM(v19,v19,v19,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v12,v20,const1) |
||||
lvx v20,off64,r4 |
||||
VPERM(v20,v20,v20,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v13,v21,const1) |
||||
lvx v21,off80,r4 |
||||
VPERM(v21,v21,v21,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v14,v22,const1) |
||||
lvx v22,off96,r4 |
||||
VPERM(v22,v22,v22,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
VPMSUMD(v15,v23,const1) |
||||
lvx v23,off112,r4 |
||||
VPERM(v23,v23,v23,byteswap) |
||||
|
||||
addi r4,r4,8*16 |
||||
|
||||
bdz .Lfirst_cool_down |
||||
|
||||
/* |
||||
* main loop. We modulo schedule it such that it takes three iterations |
||||
* to complete - first iteration load, second iteration vpmsum, third |
||||
* iteration xor. |
||||
*/ |
||||
.balign 16
|
||||
4: lvx const1,0,r3 |
||||
addi r3,r3,16 |
||||
ori r2,r2,0 |
||||
|
||||
vxor v0,v0,v8 |
||||
VPMSUMD(v8,v16,const2) |
||||
lvx v16,0,r4 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v1,v1,v9 |
||||
VPMSUMD(v9,v17,const2) |
||||
lvx v17,off16,r4 |
||||
VPERM(v17,v17,v17,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v2,v2,v10 |
||||
VPMSUMD(v10,v18,const2) |
||||
lvx v18,off32,r4 |
||||
VPERM(v18,v18,v18,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v3,v3,v11 |
||||
VPMSUMD(v11,v19,const2) |
||||
lvx v19,off48,r4 |
||||
VPERM(v19,v19,v19,byteswap) |
||||
lvx const2,0,r3 |
||||
ori r2,r2,0 |
||||
|
||||
vxor v4,v4,v12 |
||||
VPMSUMD(v12,v20,const1) |
||||
lvx v20,off64,r4 |
||||
VPERM(v20,v20,v20,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v5,v5,v13 |
||||
VPMSUMD(v13,v21,const1) |
||||
lvx v21,off80,r4 |
||||
VPERM(v21,v21,v21,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v6,v6,v14 |
||||
VPMSUMD(v14,v22,const1) |
||||
lvx v22,off96,r4 |
||||
VPERM(v22,v22,v22,byteswap) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v7,v7,v15 |
||||
VPMSUMD(v15,v23,const1) |
||||
lvx v23,off112,r4 |
||||
VPERM(v23,v23,v23,byteswap) |
||||
|
||||
addi r4,r4,8*16 |
||||
|
||||
bdnz 4b |
||||
|
||||
.Lfirst_cool_down: |
||||
/* First cool down pass */ |
||||
lvx const1,0,r3 |
||||
addi r3,r3,16 |
||||
|
||||
vxor v0,v0,v8 |
||||
VPMSUMD(v8,v16,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v1,v1,v9 |
||||
VPMSUMD(v9,v17,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v2,v2,v10 |
||||
VPMSUMD(v10,v18,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v3,v3,v11 |
||||
VPMSUMD(v11,v19,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v4,v4,v12 |
||||
VPMSUMD(v12,v20,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v5,v5,v13 |
||||
VPMSUMD(v13,v21,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v6,v6,v14 |
||||
VPMSUMD(v14,v22,const1) |
||||
ori r2,r2,0 |
||||
|
||||
vxor v7,v7,v15 |
||||
VPMSUMD(v15,v23,const1) |
||||
ori r2,r2,0 |
||||
|
||||
.Lsecond_cool_down: |
||||
/* Second cool down pass */ |
||||
vxor v0,v0,v8 |
||||
vxor v1,v1,v9 |
||||
vxor v2,v2,v10 |
||||
vxor v3,v3,v11 |
||||
vxor v4,v4,v12 |
||||
vxor v5,v5,v13 |
||||
vxor v6,v6,v14 |
||||
vxor v7,v7,v15 |
||||
|
||||
#ifdef REFLECT |
||||
/* |
||||
* vpmsumd produces a 96 bit result in the least significant bits |
||||
* of the register. Since we are bit reflected we have to shift it |
||||
* left 32 bits so it occupies the least significant bits in the |
||||
* bit reflected domain. |
||||
*/ |
||||
vsldoi v0,v0,zeroes,4 |
||||
vsldoi v1,v1,zeroes,4 |
||||
vsldoi v2,v2,zeroes,4 |
||||
vsldoi v3,v3,zeroes,4 |
||||
vsldoi v4,v4,zeroes,4 |
||||
vsldoi v5,v5,zeroes,4 |
||||
vsldoi v6,v6,zeroes,4 |
||||
vsldoi v7,v7,zeroes,4 |
||||
#endif |
||||
|
||||
/* xor with last 1024 bits */ |
||||
lvx v8,0,r4 |
||||
lvx v9,off16,r4 |
||||
VPERM(v8,v8,v8,byteswap) |
||||
VPERM(v9,v9,v9,byteswap) |
||||
lvx v10,off32,r4 |
||||
lvx v11,off48,r4 |
||||
VPERM(v10,v10,v10,byteswap) |
||||
VPERM(v11,v11,v11,byteswap) |
||||
lvx v12,off64,r4 |
||||
lvx v13,off80,r4 |
||||
VPERM(v12,v12,v12,byteswap) |
||||
VPERM(v13,v13,v13,byteswap) |
||||
lvx v14,off96,r4 |
||||
lvx v15,off112,r4 |
||||
VPERM(v14,v14,v14,byteswap) |
||||
VPERM(v15,v15,v15,byteswap) |
||||
|
||||
addi r4,r4,8*16 |
||||
|
||||
vxor v16,v0,v8 |
||||
vxor v17,v1,v9 |
||||
vxor v18,v2,v10 |
||||
vxor v19,v3,v11 |
||||
vxor v20,v4,v12 |
||||
vxor v21,v5,v13 |
||||
vxor v22,v6,v14 |
||||
vxor v23,v7,v15 |
||||
|
||||
li r0,1 |
||||
cmpdi r6,0 |
||||
addi r6,r6,128 |
||||
bne 1b |
||||
|
||||
/* Work out how many bytes we have left */ |
||||
andi. r5,r5,127 |
||||
|
||||
/* Calculate where in the constant table we need to start */ |
||||
subfic r6,r5,128 |
||||
add r3,r3,r6 |
||||
|
||||
/* How many 16 byte chunks are in the tail */ |
||||
srdi r7,r5,4 |
||||
mtctr r7 |
||||
|
||||
/* |
||||
* Reduce the previously calculated 1024 bits to 64 bits, shifting |
||||
* 32 bits to include the trailing 32 bits of zeros |
||||
*/ |
||||
lvx v0,0,r3 |
||||
lvx v1,off16,r3 |
||||
lvx v2,off32,r3 |
||||
lvx v3,off48,r3 |
||||
lvx v4,off64,r3 |
||||
lvx v5,off80,r3 |
||||
lvx v6,off96,r3 |
||||
lvx v7,off112,r3 |
||||
addi r3,r3,8*16 |
||||
|
||||
VPMSUMW(v0,v16,v0) |
||||
VPMSUMW(v1,v17,v1) |
||||
VPMSUMW(v2,v18,v2) |
||||
VPMSUMW(v3,v19,v3) |
||||
VPMSUMW(v4,v20,v4) |
||||
VPMSUMW(v5,v21,v5) |
||||
VPMSUMW(v6,v22,v6) |
||||
VPMSUMW(v7,v23,v7) |
||||
|
||||
/* Now reduce the tail (0 - 112 bytes) */ |
||||
cmpdi r7,0 |
||||
beq 1f |
||||
|
||||
lvx v16,0,r4 |
||||
lvx v17,0,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off16,r4 |
||||
lvx v17,off16,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off32,r4 |
||||
lvx v17,off32,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off48,r4 |
||||
lvx v17,off48,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off64,r4 |
||||
lvx v17,off64,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off80,r4 |
||||
lvx v17,off80,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
bdz 1f |
||||
|
||||
lvx v16,off96,r4 |
||||
lvx v17,off96,r3 |
||||
VPERM(v16,v16,v16,byteswap) |
||||
VPMSUMW(v16,v16,v17) |
||||
vxor v0,v0,v16 |
||||
|
||||
/* Now xor all the parallel chunks together */ |
||||
1: vxor v0,v0,v1 |
||||
vxor v2,v2,v3 |
||||
vxor v4,v4,v5 |
||||
vxor v6,v6,v7 |
||||
|
||||
vxor v0,v0,v2 |
||||
vxor v4,v4,v6 |
||||
|
||||
vxor v0,v0,v4 |
||||
|
||||
.Lbarrett_reduction: |
||||
/* Barrett constants */ |
||||
addis r3,r2,.barrett_constants@toc@ha
|
||||
addi r3,r3,.barrett_constants@toc@l
|
||||
|
||||
lvx const1,0,r3 |
||||
lvx const2,off16,r3 |
||||
|
||||
vsldoi v1,v0,v0,8 |
||||
vxor v0,v0,v1 /* xor two 64 bit results together */ |
||||
|
||||
#ifdef REFLECT |
||||
/* shift left one bit */ |
||||
vspltisb v1,1 |
||||
vsl v0,v0,v1 |
||||
#endif |
||||
|
||||
vand v0,v0,mask_64bit |
||||
|
||||
#ifndef REFLECT |
||||
/* |
||||
* Now for the Barrett reduction algorithm. The idea is to calculate q, |
||||
* the multiple of our polynomial that we need to subtract. By |
||||
* doing the computation 2x bits higher (ie 64 bits) and shifting the |
||||
* result back down 2x bits, we round down to the nearest multiple. |
||||
*/ |
||||
VPMSUMD(v1,v0,const1) /* ma */ |
||||
vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */ |
||||
VPMSUMD(v1,v1,const2) /* qn */ |
||||
vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ |
||||
|
||||
/* |
||||
* Get the result into r3. We need to shift it left 8 bytes: |
||||
* V0 [ 0 1 2 X ] |
||||
* V0 [ 0 X 2 3 ] |
||||
*/ |
||||
vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */ |
||||
#else |
||||
/* |
||||
* The reflected version of Barrett reduction. Instead of bit |
||||
* reflecting our data (which is expensive to do), we bit reflect our |
||||
* constants and our algorithm, which means the intermediate data in |
||||
* our vector registers goes from 0-63 instead of 63-0. We can reflect |
||||
* the algorithm because we don't carry in mod 2 arithmetic. |
||||
*/ |
||||
vand v1,v0,mask_32bit /* bottom 32 bits of a */ |
||||
VPMSUMD(v1,v1,const1) /* ma */ |
||||
vand v1,v1,mask_32bit /* bottom 32bits of ma */ |
||||
VPMSUMD(v1,v1,const2) /* qn */ |
||||
vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ |
||||
|
||||
/* |
||||
* Since we are bit reflected, the result (ie the low 32 bits) is in |
||||
* the high 32 bits. We just need to shift it left 4 bytes |
||||
* V0 [ 0 1 X 3 ] |
||||
* V0 [ 0 X 2 3 ] |
||||
*/ |
||||
vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ |
||||
#endif |
||||
|
||||
/* Get it into r3 */ |
||||
MFVRD(r3, v0) |
||||
|
||||
.Lout: |
||||
subi r6,r1,56+10*16 |
||||
subi r7,r1,56+2*16 |
||||
|
||||
lvx v20,0,r6 |
||||
lvx v21,off16,r6 |
||||
lvx v22,off32,r6 |
||||
lvx v23,off48,r6 |
||||
lvx v24,off64,r6 |
||||
lvx v25,off80,r6 |
||||
lvx v26,off96,r6 |
||||
lvx v27,off112,r6 |
||||
lvx v28,0,r7 |
||||
lvx v29,off16,r7 |
||||
|
||||
ld r31,-8(r1) |
||||
ld r30,-16(r1) |
||||
ld r29,-24(r1) |
||||
ld r28,-32(r1) |
||||
ld r27,-40(r1) |
||||
ld r26,-48(r1) |
||||
ld r25,-56(r1) |
||||
|
||||
blr |
||||
|
||||
.Lfirst_warm_up_done: |
||||
lvx const1,0,r3 |
||||
addi r3,r3,16 |
||||
|
||||
VPMSUMD(v8,v16,const1) |
||||
VPMSUMD(v9,v17,const1) |
||||
VPMSUMD(v10,v18,const1) |
||||
VPMSUMD(v11,v19,const1) |
||||
VPMSUMD(v12,v20,const1) |
||||
VPMSUMD(v13,v21,const1) |
||||
VPMSUMD(v14,v22,const1) |
||||
VPMSUMD(v15,v23,const1) |
||||
|
||||
b .Lsecond_cool_down |
||||
|
||||
.Lshort: |
||||
cmpdi r5,0 |
||||
beq .Lzero |
||||
|
||||
addis r3,r2,.short_constants@toc@ha
|
||||
addi r3,r3,.short_constants@toc@l
|
||||
|
||||
/* Calculate where in the constant table we need to start */ |
||||
subfic r6,r5,256 |
||||
add r3,r3,r6 |
||||
|
||||
/* How many 16 byte chunks? */ |
||||
srdi r7,r5,4 |
||||
mtctr r7 |
||||
|
||||
vxor v19,v19,v19 |
||||
vxor v20,v20,v20 |
||||
|
||||
lvx v0,0,r4 |
||||
lvx v16,0,r3 |
||||
VPERM(v0,v0,v16,byteswap) |
||||
vxor v0,v0,v8 /* xor in initial value */ |
||||
VPMSUMW(v0,v0,v16) |
||||
bdz .Lv0 |
||||
|
||||
lvx v1,off16,r4 |
||||
lvx v17,off16,r3 |
||||
VPERM(v1,v1,v17,byteswap) |
||||
VPMSUMW(v1,v1,v17) |
||||
bdz .Lv1 |
||||
|
||||
lvx v2,off32,r4 |
||||
lvx v16,off32,r3 |
||||
VPERM(v2,v2,v16,byteswap) |
||||
VPMSUMW(v2,v2,v16) |
||||
bdz .Lv2 |
||||
|
||||
lvx v3,off48,r4 |
||||
lvx v17,off48,r3 |
||||
VPERM(v3,v3,v17,byteswap) |
||||
VPMSUMW(v3,v3,v17) |
||||
bdz .Lv3 |
||||
|
||||
lvx v4,off64,r4 |
||||
lvx v16,off64,r3 |
||||
VPERM(v4,v4,v16,byteswap) |
||||
VPMSUMW(v4,v4,v16) |
||||
bdz .Lv4 |
||||
|
||||
lvx v5,off80,r4 |
||||
lvx v17,off80,r3 |
||||
VPERM(v5,v5,v17,byteswap) |
||||
VPMSUMW(v5,v5,v17) |
||||
bdz .Lv5 |
||||
|
||||
lvx v6,off96,r4 |
||||
lvx v16,off96,r3 |
||||
VPERM(v6,v6,v16,byteswap) |
||||
VPMSUMW(v6,v6,v16) |
||||
bdz .Lv6 |
||||
|
||||
lvx v7,off112,r4 |
||||
lvx v17,off112,r3 |
||||
VPERM(v7,v7,v17,byteswap) |
||||
VPMSUMW(v7,v7,v17) |
||||
bdz .Lv7 |
||||
|
||||
addi r3,r3,128 |
||||
addi r4,r4,128 |
||||
|
||||
lvx v8,0,r4 |
||||
lvx v16,0,r3 |
||||
VPERM(v8,v8,v16,byteswap) |
||||
VPMSUMW(v8,v8,v16) |
||||
bdz .Lv8 |
||||
|
||||
lvx v9,off16,r4 |
||||
lvx v17,off16,r3 |
||||
VPERM(v9,v9,v17,byteswap) |
||||
VPMSUMW(v9,v9,v17) |
||||
bdz .Lv9 |
||||
|
||||
lvx v10,off32,r4 |
||||
lvx v16,off32,r3 |
||||
VPERM(v10,v10,v16,byteswap) |
||||
VPMSUMW(v10,v10,v16) |
||||
bdz .Lv10 |
||||
|
||||
lvx v11,off48,r4 |
||||
lvx v17,off48,r3 |
||||
VPERM(v11,v11,v17,byteswap) |
||||
VPMSUMW(v11,v11,v17) |
||||
bdz .Lv11 |
||||
|
||||
lvx v12,off64,r4 |
||||
lvx v16,off64,r3 |
||||
VPERM(v12,v12,v16,byteswap) |
||||
VPMSUMW(v12,v12,v16) |
||||
bdz .Lv12 |
||||
|
||||
lvx v13,off80,r4 |
||||
lvx v17,off80,r3 |
||||
VPERM(v13,v13,v17,byteswap) |
||||
VPMSUMW(v13,v13,v17) |
||||
bdz .Lv13 |
||||
|
||||
lvx v14,off96,r4 |
||||
lvx v16,off96,r3 |
||||
VPERM(v14,v14,v16,byteswap) |
||||
VPMSUMW(v14,v14,v16) |
||||
bdz .Lv14 |
||||
|
||||
lvx v15,off112,r4 |
||||
lvx v17,off112,r3 |
||||
VPERM(v15,v15,v17,byteswap) |
||||
VPMSUMW(v15,v15,v17) |
||||
|
||||
.Lv15: vxor v19,v19,v15 |
||||
.Lv14: vxor v20,v20,v14 |
||||
.Lv13: vxor v19,v19,v13 |
||||
.Lv12: vxor v20,v20,v12 |
||||
.Lv11: vxor v19,v19,v11 |
||||
.Lv10: vxor v20,v20,v10 |
||||
.Lv9: vxor v19,v19,v9 |
||||
.Lv8: vxor v20,v20,v8 |
||||
.Lv7: vxor v19,v19,v7 |
||||
.Lv6: vxor v20,v20,v6 |
||||
.Lv5: vxor v19,v19,v5 |
||||
.Lv4: vxor v20,v20,v4 |
||||
.Lv3: vxor v19,v19,v3 |
||||
.Lv2: vxor v20,v20,v2 |
||||
.Lv1: vxor v19,v19,v1 |
||||
.Lv0: vxor v20,v20,v0 |
||||
|
||||
vxor v0,v19,v20 |
||||
|
||||
b .Lbarrett_reduction |
||||
|
||||
.Lzero: |
||||
mr r3,r10 |
||||
b .Lout |
||||
|
||||
FUNC_END(__crc32_vpmsum) |
@ -0,0 +1,893 @@ |
||||
// Copyright (C) 2015, 2017 International Business Machines Corp.
|
||||
// All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
// This source code is also licensed under the GPLv2 license found in the
|
||||
// COPYING file in the root directory of this source tree.
|
||||
#ifndef CRC32C_PPC_CONST_H |
||||
#define CRC32C_PPC_CONST_H |
||||
#define CRC 0x1edc6f41 |
||||
#define REFLECT |
||||
#define CRC_XOR |
||||
|
||||
#ifndef __ASSEMBLY__ |
||||
#ifdef CRC_TABLE |
||||
static const unsigned int crc_table[] = { |
||||
0x00000000, 0xf26b8303, 0xe13b70f7, 0x1350f3f4, 0xc79a971f, 0x35f1141c, |
||||
0x26a1e7e8, 0xd4ca64eb, 0x8ad958cf, 0x78b2dbcc, 0x6be22838, 0x9989ab3b, |
||||
0x4d43cfd0, 0xbf284cd3, 0xac78bf27, 0x5e133c24, 0x105ec76f, 0xe235446c, |
||||
0xf165b798, 0x030e349b, 0xd7c45070, 0x25afd373, 0x36ff2087, 0xc494a384, |
||||
0x9a879fa0, 0x68ec1ca3, 0x7bbcef57, 0x89d76c54, 0x5d1d08bf, 0xaf768bbc, |
||||
0xbc267848, 0x4e4dfb4b, 0x20bd8ede, 0xd2d60ddd, 0xc186fe29, 0x33ed7d2a, |
||||
0xe72719c1, 0x154c9ac2, 0x061c6936, 0xf477ea35, 0xaa64d611, 0x580f5512, |
||||
0x4b5fa6e6, 0xb93425e5, 0x6dfe410e, 0x9f95c20d, 0x8cc531f9, 0x7eaeb2fa, |
||||
0x30e349b1, 0xc288cab2, 0xd1d83946, 0x23b3ba45, 0xf779deae, 0x05125dad, |
||||
0x1642ae59, 0xe4292d5a, 0xba3a117e, 0x4851927d, 0x5b016189, 0xa96ae28a, |
||||
0x7da08661, 0x8fcb0562, 0x9c9bf696, 0x6ef07595, 0x417b1dbc, 0xb3109ebf, |
||||
0xa0406d4b, 0x522bee48, 0x86e18aa3, 0x748a09a0, 0x67dafa54, 0x95b17957, |
||||
0xcba24573, 0x39c9c670, 0x2a993584, 0xd8f2b687, 0x0c38d26c, 0xfe53516f, |
||||
0xed03a29b, 0x1f682198, 0x5125dad3, 0xa34e59d0, 0xb01eaa24, 0x42752927, |
||||
0x96bf4dcc, 0x64d4cecf, 0x77843d3b, 0x85efbe38, 0xdbfc821c, 0x2997011f, |
||||
0x3ac7f2eb, 0xc8ac71e8, 0x1c661503, 0xee0d9600, 0xfd5d65f4, 0x0f36e6f7, |
||||
0x61c69362, 0x93ad1061, 0x80fde395, 0x72966096, 0xa65c047d, 0x5437877e, |
||||
0x4767748a, 0xb50cf789, 0xeb1fcbad, 0x197448ae, 0x0a24bb5a, 0xf84f3859, |
||||
0x2c855cb2, 0xdeeedfb1, 0xcdbe2c45, 0x3fd5af46, 0x7198540d, 0x83f3d70e, |
||||
0x90a324fa, 0x62c8a7f9, 0xb602c312, 0x44694011, 0x5739b3e5, 0xa55230e6, |
||||
0xfb410cc2, 0x092a8fc1, 0x1a7a7c35, 0xe811ff36, 0x3cdb9bdd, 0xceb018de, |
||||
0xdde0eb2a, 0x2f8b6829, 0x82f63b78, 0x709db87b, 0x63cd4b8f, 0x91a6c88c, |
||||
0x456cac67, 0xb7072f64, 0xa457dc90, 0x563c5f93, 0x082f63b7, 0xfa44e0b4, |
||||
0xe9141340, 0x1b7f9043, 0xcfb5f4a8, 0x3dde77ab, 0x2e8e845f, 0xdce5075c, |
||||
0x92a8fc17, 0x60c37f14, 0x73938ce0, 0x81f80fe3, 0x55326b08, 0xa759e80b, |
||||
0xb4091bff, 0x466298fc, 0x1871a4d8, 0xea1a27db, 0xf94ad42f, 0x0b21572c, |
||||
0xdfeb33c7, 0x2d80b0c4, 0x3ed04330, 0xccbbc033, 0xa24bb5a6, 0x502036a5, |
||||
0x4370c551, 0xb11b4652, 0x65d122b9, 0x97baa1ba, 0x84ea524e, 0x7681d14d, |
||||
0x2892ed69, 0xdaf96e6a, 0xc9a99d9e, 0x3bc21e9d, 0xef087a76, 0x1d63f975, |
||||
0x0e330a81, 0xfc588982, 0xb21572c9, 0x407ef1ca, 0x532e023e, 0xa145813d, |
||||
0x758fe5d6, 0x87e466d5, 0x94b49521, 0x66df1622, 0x38cc2a06, 0xcaa7a905, |
||||
0xd9f75af1, 0x2b9cd9f2, 0xff56bd19, 0x0d3d3e1a, 0x1e6dcdee, 0xec064eed, |
||||
0xc38d26c4, 0x31e6a5c7, 0x22b65633, 0xd0ddd530, 0x0417b1db, 0xf67c32d8, |
||||
0xe52cc12c, 0x1747422f, 0x49547e0b, 0xbb3ffd08, 0xa86f0efc, 0x5a048dff, |
||||
0x8ecee914, 0x7ca56a17, 0x6ff599e3, 0x9d9e1ae0, 0xd3d3e1ab, 0x21b862a8, |
||||
0x32e8915c, 0xc083125f, 0x144976b4, 0xe622f5b7, 0xf5720643, 0x07198540, |
||||
0x590ab964, 0xab613a67, 0xb831c993, 0x4a5a4a90, 0x9e902e7b, 0x6cfbad78, |
||||
0x7fab5e8c, 0x8dc0dd8f, 0xe330a81a, 0x115b2b19, 0x020bd8ed, 0xf0605bee, |
||||
0x24aa3f05, 0xd6c1bc06, 0xc5914ff2, 0x37faccf1, 0x69e9f0d5, 0x9b8273d6, |
||||
0x88d28022, 0x7ab90321, 0xae7367ca, 0x5c18e4c9, 0x4f48173d, 0xbd23943e, |
||||
0xf36e6f75, 0x0105ec76, 0x12551f82, 0xe03e9c81, 0x34f4f86a, 0xc69f7b69, |
||||
0xd5cf889d, 0x27a40b9e, 0x79b737ba, 0x8bdcb4b9, 0x988c474d, 0x6ae7c44e, |
||||
0xbe2da0a5, 0x4c4623a6, 0x5f16d052, 0xad7d5351, |
||||
}; |
||||
|
||||
#endif |
||||
|
||||
#else |
||||
#define MAX_SIZE 32768 |
||||
.constants : |
||||
|
||||
/* Reduce 262144 kbits to 1024 bits */ |
||||
/* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */ |
||||
.octa 0x00000000b6ca9e20000000009c37c408 |
||||
|
||||
/* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */ |
||||
.octa 0x00000000350249a800000001b51df26c |
||||
|
||||
/* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */ |
||||
.octa 0x00000001862dac54000000000724b9d0 |
||||
|
||||
/* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */ |
||||
.octa 0x00000001d87fb48c00000001c00532fe |
||||
|
||||
/* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */ |
||||
.octa 0x00000001f39b699e00000000f05a9362 |
||||
|
||||
/* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */ |
||||
.octa 0x0000000101da11b400000001e1007970 |
||||
|
||||
/* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */ |
||||
.octa 0x00000001cab571e000000000a57366ee |
||||
|
||||
/* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */ |
||||
.octa 0x00000000c7020cfe0000000192011284 |
||||
|
||||
/* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */ |
||||
.octa 0x00000000cdaed1ae0000000162716d9a |
||||
|
||||
/* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */ |
||||
.octa 0x00000001e804effc00000000cd97ecde |
||||
|
||||
/* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */ |
||||
.octa 0x0000000077c3ea3a0000000058812bc0 |
||||
|
||||
/* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */ |
||||
.octa 0x0000000068df31b40000000088b8c12e |
||||
|
||||
/* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */ |
||||
.octa 0x00000000b059b6c200000001230b234c |
||||
|
||||
/* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */ |
||||
.octa 0x0000000145fb8ed800000001120b416e |
||||
|
||||
/* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */ |
||||
.octa 0x00000000cbc0916800000001974aecb0 |
||||
|
||||
/* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */ |
||||
.octa 0x000000005ceeedc2000000008ee3f226 |
||||
|
||||
/* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */ |
||||
.octa 0x0000000047d74e8600000001089aba9a |
||||
|
||||
/* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */ |
||||
.octa 0x00000001407e9e220000000065113872 |
||||
|
||||
/* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */ |
||||
.octa 0x00000001da967bda000000005c07ec10 |
||||
|
||||
/* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */ |
||||
.octa 0x000000006c8983680000000187590924 |
||||
|
||||
/* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */ |
||||
.octa 0x00000000f2d14c9800000000e35da7c6 |
||||
|
||||
/* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */ |
||||
.octa 0x00000001993c6ad4000000000415855a |
||||
|
||||
/* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */ |
||||
.octa 0x000000014683d1ac0000000073617758 |
||||
|
||||
/* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */ |
||||
.octa 0x00000001a7c93e6c0000000176021d28 |
||||
|
||||
/* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */ |
||||
.octa 0x000000010211e90a00000001c358fd0a |
||||
|
||||
/* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */ |
||||
.octa 0x000000001119403e00000001ff7a2c18 |
||||
|
||||
/* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */ |
||||
.octa 0x000000001c3261aa00000000f2d9f7e4 |
||||
|
||||
/* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */ |
||||
.octa 0x000000014e37a634000000016cf1f9c8 |
||||
|
||||
/* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */ |
||||
.octa 0x0000000073786c0c000000010af9279a |
||||
|
||||
/* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */ |
||||
.octa 0x000000011dc037f80000000004f101e8 |
||||
|
||||
/* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */ |
||||
.octa 0x0000000031433dfc0000000070bcf184 |
||||
|
||||
/* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */ |
||||
.octa 0x000000009cde8348000000000a8de642 |
||||
|
||||
/* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */ |
||||
.octa 0x0000000038d3c2a60000000062ea130c |
||||
|
||||
/* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */ |
||||
.octa 0x000000011b25f26000000001eb31cbb2 |
||||
|
||||
/* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */ |
||||
.octa 0x000000001629e6f00000000170783448 |
||||
|
||||
/* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */ |
||||
.octa 0x0000000160838b4c00000001a684b4c6 |
||||
|
||||
/* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */ |
||||
.octa 0x000000007a44011c00000000253ca5b4 |
||||
|
||||
/* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */ |
||||
.octa 0x00000000226f417a0000000057b4b1e2 |
||||
|
||||
/* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */ |
||||
.octa 0x0000000045eb2eb400000000b6bd084c |
||||
|
||||
/* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */ |
||||
.octa 0x000000014459d70c0000000123c2d592 |
||||
|
||||
/* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */ |
||||
.octa 0x00000001d406ed8200000000159dafce |
||||
|
||||
/* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */ |
||||
.octa 0x0000000160c8e1a80000000127e1a64e |
||||
|
||||
/* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */ |
||||
.octa 0x0000000027ba80980000000056860754 |
||||
|
||||
/* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */ |
||||
.octa 0x000000006d92d01800000001e661aae8 |
||||
|
||||
/* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */ |
||||
.octa 0x000000012ed7e3f200000000f82c6166 |
||||
|
||||
/* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */ |
||||
.octa 0x000000002dc8778800000000c4f9c7ae |
||||
|
||||
/* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */ |
||||
.octa 0x0000000018240bb80000000074203d20 |
||||
|
||||
/* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */ |
||||
.octa 0x000000001ad381580000000198173052 |
||||
|
||||
/* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */ |
||||
.octa 0x00000001396b78f200000001ce8aba54 |
||||
|
||||
/* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */ |
||||
.octa 0x000000011a68133400000001850d5d94 |
||||
|
||||
/* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */ |
||||
.octa 0x000000012104732e00000001d609239c |
||||
|
||||
/* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */ |
||||
.octa 0x00000000a140d90c000000001595f048 |
||||
|
||||
/* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */ |
||||
.octa 0x00000001b7215eda0000000042ccee08 |
||||
|
||||
/* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */ |
||||
.octa 0x00000001aaf1df3c000000010a389d74 |
||||
|
||||
/* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */ |
||||
.octa 0x0000000029d15b8a000000012a840da6 |
||||
|
||||
/* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */ |
||||
.octa 0x00000000f1a96922000000001d181c0c |
||||
|
||||
/* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */ |
||||
.octa 0x00000001ac80d03c0000000068b7d1f6 |
||||
|
||||
/* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */ |
||||
.octa 0x000000000f11d56a000000005b0f14fc |
||||
|
||||
/* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */ |
||||
.octa 0x00000001f1c022a20000000179e9e730 |
||||
|
||||
/* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */ |
||||
.octa 0x0000000173d00ae200000001ce1368d6 |
||||
|
||||
/* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */ |
||||
.octa 0x00000001d4ffe4ac0000000112c3a84c |
||||
|
||||
/* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */ |
||||
.octa 0x000000016edc5ae400000000de940fee |
||||
|
||||
/* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */ |
||||
.octa 0x00000001f1a0214000000000fe896b7e |
||||
|
||||
/* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */ |
||||
.octa 0x00000000ca0b28a000000001f797431c |
||||
|
||||
/* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */ |
||||
.octa 0x00000001928e30a20000000053e989ba |
||||
|
||||
/* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */ |
||||
.octa 0x0000000097b1b002000000003920cd16 |
||||
|
||||
/* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */ |
||||
.octa 0x00000000b15bf90600000001e6f579b8 |
||||
|
||||
/* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */ |
||||
.octa 0x00000000411c5d52000000007493cb0a |
||||
|
||||
/* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */ |
||||
.octa 0x00000001c36f330000000001bdd376d8 |
||||
|
||||
/* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */ |
||||
.octa 0x00000001119227e0000000016badfee6 |
||||
|
||||
/* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */ |
||||
.octa 0x00000000114d47020000000071de5c58 |
||||
|
||||
/* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */ |
||||
.octa 0x00000000458b5b9800000000453f317c |
||||
|
||||
/* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */ |
||||
.octa 0x000000012e31fb8e0000000121675cce |
||||
|
||||
/* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */ |
||||
.octa 0x000000005cf619d800000001f409ee92 |
||||
|
||||
/* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */ |
||||
.octa 0x0000000063f4d8b200000000f36b9c88 |
||||
|
||||
/* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */ |
||||
.octa 0x000000004138dc8a0000000036b398f4 |
||||
|
||||
/* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */ |
||||
.octa 0x00000001d29ee8e000000001748f9adc |
||||
|
||||
/* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */ |
||||
.octa 0x000000006a08ace800000001be94ec00 |
||||
|
||||
/* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */ |
||||
.octa 0x0000000127d4201000000000b74370d6 |
||||
|
||||
/* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */ |
||||
.octa 0x0000000019d76b6200000001174d0b98 |
||||
|
||||
/* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */ |
||||
.octa 0x00000001b1471f6e00000000befc06a4 |
||||
|
||||
/* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */ |
||||
.octa 0x00000001f64c19cc00000001ae125288 |
||||
|
||||
/* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */ |
||||
.octa 0x00000000003c0ea00000000095c19b34 |
||||
|
||||
/* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */ |
||||
.octa 0x000000014d73abf600000001a78496f2 |
||||
|
||||
/* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */ |
||||
.octa 0x00000001620eb84400000001ac5390a0 |
||||
|
||||
/* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */ |
||||
.octa 0x0000000147655048000000002a80ed6e |
||||
|
||||
/* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */ |
||||
.octa 0x0000000067b5077e00000001fa9b0128 |
||||
|
||||
/* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */ |
||||
.octa 0x0000000010ffe20600000001ea94929e |
||||
|
||||
/* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */ |
||||
.octa 0x000000000fee8f1e0000000125f4305c |
||||
|
||||
/* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */ |
||||
.octa 0x00000001da26fbae00000001471e2002 |
||||
|
||||
/* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */ |
||||
.octa 0x00000001b3a8bd880000000132d2253a |
||||
|
||||
/* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */ |
||||
.octa 0x00000000e8f3898e00000000f26b3592 |
||||
|
||||
/* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */ |
||||
.octa 0x00000000b0d0d28c00000000bc8b67b0 |
||||
|
||||
/* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */ |
||||
.octa 0x0000000030f2a798000000013a826ef2 |
||||
|
||||
/* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */ |
||||
.octa 0x000000000fba10020000000081482c84 |
||||
|
||||
/* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */ |
||||
.octa 0x00000000bdb9bd7200000000e77307c2 |
||||
|
||||
/* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */ |
||||
.octa 0x0000000075d3bf5a00000000d4a07ec8 |
||||
|
||||
/* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */ |
||||
.octa 0x00000000ef1f98a00000000017102100 |
||||
|
||||
/* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */ |
||||
.octa 0x00000000689c760200000000db406486 |
||||
|
||||
/* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */ |
||||
.octa 0x000000016d5fa5fe0000000192db7f88 |
||||
|
||||
/* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */ |
||||
.octa 0x00000001d0d2b9ca000000018bf67b1e |
||||
|
||||
/* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */ |
||||
.octa 0x0000000041e7b470000000007c09163e |
||||
|
||||
/* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */ |
||||
.octa 0x00000001cbb6495e000000000adac060 |
||||
|
||||
/* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */ |
||||
.octa 0x000000010052a0b000000000bd8316ae |
||||
|
||||
/* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */ |
||||
.octa 0x00000001d8effb5c000000019f09ab54 |
||||
|
||||
/* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */ |
||||
.octa 0x00000001d969853c0000000125155542 |
||||
|
||||
/* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */ |
||||
.octa 0x00000000523ccce2000000018fdb5882 |
||||
|
||||
/* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */ |
||||
.octa 0x000000001e2436bc00000000e794b3f4 |
||||
|
||||
/* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */ |
||||
.octa 0x00000000ddd1c3a2000000016f9bb022 |
||||
|
||||
/* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */ |
||||
.octa 0x0000000019fcfe3800000000290c9978 |
||||
|
||||
/* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */ |
||||
.octa 0x00000001ce95db640000000083c0f350 |
||||
|
||||
/* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */ |
||||
.octa 0x00000000af5828060000000173ea6628 |
||||
|
||||
/* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */ |
||||
.octa 0x00000001006388f600000001c8b4e00a |
||||
|
||||
/* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */ |
||||
.octa 0x0000000179eca00a00000000de95d6aa |
||||
|
||||
/* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */ |
||||
.octa 0x0000000122410a6a000000010b7f7248 |
||||
|
||||
/* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */ |
||||
.octa 0x000000004288e87c00000001326e3a06 |
||||
|
||||
/* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */ |
||||
.octa 0x000000016c5490da00000000bb62c2e6 |
||||
|
||||
/* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */ |
||||
.octa 0x00000000d1c71f6e0000000156a4b2c2 |
||||
|
||||
/* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */ |
||||
.octa 0x00000001b4ce08a6000000011dfe763a |
||||
|
||||
/* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */ |
||||
.octa 0x00000001466ba60c000000007bcca8e2 |
||||
|
||||
/* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */ |
||||
.octa 0x00000001f6c488a40000000186118faa |
||||
|
||||
/* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */ |
||||
.octa 0x000000013bfb06820000000111a65a88 |
||||
|
||||
/* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */ |
||||
.octa 0x00000000690e9e54000000003565e1c4 |
||||
|
||||
/* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */ |
||||
.octa 0x00000000281346b6000000012ed02a82 |
||||
|
||||
/* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */ |
||||
.octa 0x000000015646402400000000c486ecfc |
||||
|
||||
/* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */ |
||||
.octa 0x000000016063a8dc0000000001b951b2 |
||||
|
||||
/* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */ |
||||
.octa 0x0000000116a663620000000048143916 |
||||
|
||||
/* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */ |
||||
.octa 0x000000017e8aa4d200000001dc2ae124 |
||||
|
||||
/* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */ |
||||
.octa 0x00000001728eb10c00000001416c58d6 |
||||
|
||||
/* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */ |
||||
.octa 0x00000001b08fd7fa00000000a479744a |
||||
|
||||
/* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */ |
||||
.octa 0x00000001092a16e80000000096ca3a26 |
||||
|
||||
/* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */ |
||||
.octa 0x00000000a505637c00000000ff223d4e |
||||
|
||||
/* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */ |
||||
.octa 0x00000000d94869b2000000010e84da42 |
||||
|
||||
/* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */ |
||||
.octa 0x00000001c8b203ae00000001b61ba3d0 |
||||
|
||||
/* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */ |
||||
.octa 0x000000005704aea000000000680f2de8 |
||||
|
||||
/* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */ |
||||
.octa 0x000000012e295fa2000000008772a9a8 |
||||
|
||||
/* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */ |
||||
.octa 0x000000011d0908bc0000000155f295bc |
||||
|
||||
/* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */ |
||||
.octa 0x0000000193ed97ea00000000595f9282 |
||||
|
||||
/* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */ |
||||
.octa 0x000000013a0f1c520000000164b1c25a |
||||
|
||||
/* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */ |
||||
.octa 0x000000010c2c40c000000000fbd67c50 |
||||
|
||||
/* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */ |
||||
.octa 0x00000000ff6fac3e0000000096076268 |
||||
|
||||
/* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */ |
||||
.octa 0x000000017b3609c000000001d288e4cc |
||||
|
||||
/* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */ |
||||
.octa 0x0000000088c8c92200000001eaac1bdc |
||||
|
||||
/* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */ |
||||
.octa 0x00000001751baae600000001f1ea39e2 |
||||
|
||||
/* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */ |
||||
.octa 0x000000010795297200000001eb6506fc |
||||
|
||||
/* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */ |
||||
.octa 0x0000000162b00abe000000010f806ffe |
||||
|
||||
/* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */ |
||||
.octa 0x000000000d7b404c000000010408481e |
||||
|
||||
/* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */ |
||||
.octa 0x00000000763b13d40000000188260534 |
||||
|
||||
/* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */ |
||||
.octa 0x00000000f6dc22d80000000058fc73e0 |
||||
|
||||
/* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */ |
||||
.octa 0x000000007daae06000000000391c59b8 |
||||
|
||||
/* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */ |
||||
.octa 0x000000013359ab7c000000018b638400 |
||||
|
||||
/* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */ |
||||
.octa 0x000000008add438a000000011738f5c4 |
||||
|
||||
/* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */ |
||||
.octa 0x00000001edbefdea000000008cf7c6da |
||||
|
||||
/* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */ |
||||
.octa 0x000000004104e0f800000001ef97fb16 |
||||
|
||||
/* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */ |
||||
.octa 0x00000000b48a82220000000102130e20 |
||||
|
||||
/* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */ |
||||
.octa 0x00000001bcb4684400000000db968898 |
||||
|
||||
/* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */ |
||||
.octa 0x000000013293ce0a00000000b5047b5e |
||||
|
||||
/* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */ |
||||
.octa 0x00000001710d0844000000010b90fdb2 |
||||
|
||||
/* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */ |
||||
.octa 0x0000000117907f6e000000004834a32e |
||||
|
||||
/* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */ |
||||
.octa 0x0000000087ddf93e0000000059c8f2b0 |
||||
|
||||
/* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */ |
||||
.octa 0x000000005970e9b00000000122cec508 |
||||
|
||||
/* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */ |
||||
.octa 0x0000000185b2b7d0000000000a330cda |
||||
|
||||
/* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */ |
||||
.octa 0x00000001dcee0efc000000014a47148c |
||||
|
||||
/* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */ |
||||
.octa 0x0000000030da27220000000042c61cb8 |
||||
|
||||
/* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */ |
||||
.octa 0x000000012f925a180000000012fe6960 |
||||
|
||||
/* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */ |
||||
.octa 0x00000000dd2e357c00000000dbda2c20 |
||||
|
||||
/* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */ |
||||
.octa 0x00000000071c80de000000011122410c |
||||
|
||||
/* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */ |
||||
.octa 0x000000011513140a00000000977b2070 |
||||
|
||||
/* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */ |
||||
.octa 0x00000001df876e8e000000014050438e |
||||
|
||||
/* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */ |
||||
.octa 0x000000015f81d6ce0000000147c840e8 |
||||
|
||||
/* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */ |
||||
.octa 0x000000019dd94dbe00000001cc7c88ce |
||||
|
||||
/* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */ |
||||
.octa 0x00000001373d206e00000001476b35a4 |
||||
|
||||
/* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */ |
||||
.octa 0x00000000668ccade000000013d52d508 |
||||
|
||||
/* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */ |
||||
.octa 0x00000001b192d268000000008e4be32e |
||||
|
||||
/* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */ |
||||
.octa 0x00000000e30f3a7800000000024120fe |
||||
|
||||
/* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */ |
||||
.octa 0x000000010ef1f7bc00000000ddecddb4 |
||||
|
||||
/* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */ |
||||
.octa 0x00000001f5ac738000000000d4d403bc |
||||
|
||||
/* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */ |
||||
.octa 0x000000011822ea7000000001734b89aa |
||||
|
||||
/* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */ |
||||
.octa 0x00000000c3a33848000000010e7a58d6 |
||||
|
||||
/* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */ |
||||
.octa 0x00000001bd151c2400000001f9f04e9c |
||||
|
||||
/* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */ |
||||
.octa 0x0000000056002d7600000000b692225e |
||||
|
||||
/* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */ |
||||
.octa 0x000000014657c4f4000000019b8d3f3e |
||||
|
||||
/* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */ |
||||
.octa 0x0000000113742d7c00000001a874f11e |
||||
|
||||
/* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */ |
||||
.octa 0x000000019c5920ba000000010d5a4254 |
||||
|
||||
/* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */ |
||||
.octa 0x000000005216d2d600000000bbb2f5d6 |
||||
|
||||
/* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */ |
||||
.octa 0x0000000136f5ad8a0000000179cc0e36 |
||||
|
||||
/* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */ |
||||
.octa 0x000000018b07beb600000001dca1da4a |
||||
|
||||
/* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */ |
||||
.octa 0x00000000db1e93b000000000feb1a192 |
||||
|
||||
/* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */ |
||||
.octa 0x000000000b96fa3a00000000d1eeedd6 |
||||
|
||||
/* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */ |
||||
.octa 0x00000001d9968af0000000008fad9bb4 |
||||
|
||||
/* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */ |
||||
.octa 0x000000000e4a77a200000001884938e4 |
||||
|
||||
/* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */ |
||||
.octa 0x00000000508c2ac800000001bc2e9bc0 |
||||
|
||||
/* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */ |
||||
.octa 0x0000000021572a8000000001f9658a68 |
||||
|
||||
/* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */ |
||||
.octa 0x00000001b859daf2000000001b9224fc |
||||
|
||||
/* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */ |
||||
.octa 0x000000016f7884740000000055b2fb84 |
||||
|
||||
/* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */ |
||||
.octa 0x00000001b438810e000000018b090348 |
||||
|
||||
/* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */ |
||||
.octa 0x0000000095ddc6f2000000011ccbd5ea |
||||
|
||||
/* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */ |
||||
.octa 0x00000001d977c20c0000000007ae47f8 |
||||
|
||||
/* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */ |
||||
.octa 0x00000000ebedb99a0000000172acbec0 |
||||
|
||||
/* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */ |
||||
.octa 0x00000001df9e9e9200000001c6e3ff20 |
||||
|
||||
/* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */ |
||||
.octa 0x00000001a4a3f95200000000e1b38744 |
||||
|
||||
/* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */ |
||||
.octa 0x00000000e2f5122000000000791585b2 |
||||
|
||||
/* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */ |
||||
.octa 0x000000004aa01f3e00000000ac53b894 |
||||
|
||||
/* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */ |
||||
.octa 0x00000000b3e90a5800000001ed5f2cf4 |
||||
|
||||
/* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */ |
||||
.octa 0x000000000c9ca2aa00000001df48b2e0 |
||||
|
||||
/* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */ |
||||
.octa 0x000000015168231600000000049c1c62 |
||||
|
||||
/* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */ |
||||
.octa 0x0000000036fce78c000000017c460c12 |
||||
|
||||
/* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */ |
||||
.octa 0x000000009037dc10000000015be4da7e |
||||
|
||||
/* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */ |
||||
.octa 0x00000000d3298582000000010f38f668 |
||||
|
||||
/* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */ |
||||
.octa 0x00000001b42e8ad60000000039f40a00 |
||||
|
||||
/* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */ |
||||
.octa 0x00000000142a983800000000bd4c10c4 |
||||
|
||||
/* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */ |
||||
.octa 0x0000000109c7f1900000000042db1d98 |
||||
|
||||
/* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */ |
||||
.octa 0x0000000056ff931000000001c905bae6 |
||||
|
||||
/* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */ |
||||
.octa 0x00000001594513aa00000000069d40ea |
||||
|
||||
/* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */ |
||||
.octa 0x00000001e3b5b1e8000000008e4fbad0 |
||||
|
||||
/* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */ |
||||
.octa 0x000000011dd5fc080000000047bedd46 |
||||
|
||||
/* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */ |
||||
.octa 0x00000001675f0cc20000000026396bf8 |
||||
|
||||
/* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */ |
||||
.octa 0x00000000d1c8dd4400000000379beb92 |
||||
|
||||
/* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */ |
||||
.octa 0x0000000115ebd3d8000000000abae54a |
||||
|
||||
/* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */ |
||||
.octa 0x00000001ecbd0dac0000000007e6a128 |
||||
|
||||
/* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */ |
||||
.octa 0x00000000cdf67af2000000000ade29d2 |
||||
|
||||
/* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */ |
||||
.octa 0x000000004c01ff4c00000000f974c45c |
||||
|
||||
/* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */ |
||||
.octa 0x00000000f2d8657e00000000e77ac60a |
||||
|
||||
/* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */ |
||||
.octa 0x000000006bae74c40000000145895816 |
||||
|
||||
/* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */ |
||||
.octa 0x0000000152af8aa00000000038e362be |
||||
|
||||
/* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */ |
||||
.octa 0x0000000004663802000000007f991a64 |
||||
|
||||
/* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */ |
||||
.octa 0x00000001ab2f5afc00000000fa366d3a |
||||
|
||||
/* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */ |
||||
.octa 0x0000000074a4ebd400000001a2bb34f0 |
||||
|
||||
/* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */ |
||||
.octa 0x00000001d7ab3a4c0000000028a9981e |
||||
|
||||
/* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */ |
||||
.octa 0x00000001a8da60c600000001dbc672be |
||||
|
||||
/* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */ |
||||
.octa 0x000000013cf6382000000000b04d77f6 |
||||
|
||||
/* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */ |
||||
.octa 0x00000000bec12e1e0000000124400d96 |
||||
|
||||
/* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */ |
||||
.octa 0x00000001c6368010000000014ca4b414 |
||||
|
||||
/* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */ |
||||
.octa 0x00000001e6e78758000000012fe2c938 |
||||
|
||||
/* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */ |
||||
.octa 0x000000008d7f2b3c00000001faed01e6 |
||||
|
||||
/* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */ |
||||
.octa 0x000000016b4a156e000000007e80ecfe |
||||
|
||||
/* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */ |
||||
.octa 0x00000001c63cfeb60000000098daee94 |
||||
|
||||
/* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */ |
||||
.octa 0x000000015f902670000000010a04edea |
||||
|
||||
/* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */ |
||||
.octa 0x00000001cd5de11e00000001c00b4524 |
||||
|
||||
/* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */ |
||||
.octa 0x000000001acaec540000000170296550 |
||||
|
||||
/* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */ |
||||
.octa 0x000000002bd0ca780000000181afaa48 |
||||
|
||||
/* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */ |
||||
.octa 0x0000000032d63d5c0000000185a31ffa |
||||
|
||||
/* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */ |
||||
.octa 0x000000001c6d4e4c000000002469f608 |
||||
|
||||
/* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */ |
||||
.octa 0x0000000106a60b92000000006980102a |
||||
|
||||
/* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */ |
||||
.octa 0x00000000d3855e120000000111ea9ca8 |
||||
|
||||
/* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */ |
||||
.octa 0x00000000e312563600000001bd1d29ce |
||||
|
||||
/* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */ |
||||
.octa 0x000000009e8f7ea400000001b34b9580 |
||||
|
||||
/* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */ |
||||
.octa 0x00000001c82e562c000000003076054e |
||||
|
||||
/* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */ |
||||
.octa 0x00000000ca9f09ce000000012a608ea4 |
||||
|
||||
/* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */ |
||||
.octa 0x00000000c63764e600000000784d05fe |
||||
|
||||
/* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */ |
||||
.octa 0x0000000168d2e49e000000016ef0d82a |
||||
|
||||
/* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */ |
||||
.octa 0x00000000e986c1480000000075bda454 |
||||
|
||||
/* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */ |
||||
.octa 0x00000000cfb65894000000003dc0a1c4 |
||||
|
||||
/* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */ |
||||
.octa 0x0000000111cadee400000000e9a5d8be |
||||
|
||||
/* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */ |
||||
.octa 0x0000000171fb63ce00000001609bc4b4 |
||||
|
||||
.short_constants : |
||||
|
||||
/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the
|
||||
trailing 32 bits of zeros */ |
||||
/* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */ |
||||
.octa 0x7fec2963e5bf80485cf015c388e56f72 |
||||
|
||||
/* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */ |
||||
.octa 0x38e888d4844752a9963a18920246e2e6 |
||||
|
||||
/* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */ |
||||
.octa 0x42316c00730206ad419a441956993a31 |
||||
|
||||
/* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */ |
||||
.octa 0x543d5c543e65ddf9924752ba2b830011 |
||||
|
||||
/* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */ |
||||
.octa 0x78e87aaf56767c9255bd7f9518e4a304 |
||||
|
||||
/* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */ |
||||
.octa 0x8f68fcec1903da7f6d76739fe0553f1e |
||||
|
||||
/* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */ |
||||
.octa 0x3f4840246791d588c133722b1fe0b5c3 |
||||
|
||||
/* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */ |
||||
.octa 0x34c96751b04de25a64b67ee0e55ef1f3 |
||||
|
||||
/* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */ |
||||
.octa 0x156c8e180b4a395b069db049b8fdb1e7 |
||||
|
||||
/* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */ |
||||
.octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e |
||||
|
||||
/* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */ |
||||
.octa 0x041d37768cd75659817cdc5119b29a35 |
||||
|
||||
/* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */ |
||||
.octa 0x3a0777818cfaa9651ce9d94b36c41f1c |
||||
|
||||
/* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */ |
||||
.octa 0x0e148e8252377a554f256efcb82be955 |
||||
|
||||
/* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */ |
||||
.octa 0x9c25531d19e65ddeec1631edb2dea967 |
||||
|
||||
/* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */ |
||||
.octa 0x790606ff9957c0a65d27e147510ac59a |
||||
|
||||
/* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */ |
||||
.octa 0x82f63b786ea2d55ca66805eb18b8ea18 |
||||
|
||||
.barrett_constants : |
||||
/* 33 bit reflected Barrett constant m - (4^32)/n */ |
||||
.octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */ |
||||
/* 33 bit reflected Barrett constant n */ |
||||
.octa 0x00000000000000000000000105ec76f1 |
||||
#endif |
||||
|
||||
#endif |
@ -0,0 +1,31 @@ |
||||
// Copyright (c) 2017 International Business Machines Corp.
|
||||
// All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
// This source code is also licensed under the GPLv2 license found in the
|
||||
// COPYING file in the root directory of this source tree.
|
||||
|
||||
#ifndef __OPCODES_H |
||||
#define __OPCODES_H |
||||
|
||||
#define __PPC_RA(a) (((a)&0x1f) << 16) |
||||
#define __PPC_RB(b) (((b)&0x1f) << 11) |
||||
#define __PPC_XA(a) ((((a)&0x1f) << 16) | (((a)&0x20) >> 3)) |
||||
#define __PPC_XB(b) ((((b)&0x1f) << 11) | (((b)&0x20) >> 4)) |
||||
#define __PPC_XS(s) ((((s)&0x1f) << 21) | (((s)&0x20) >> 5)) |
||||
#define __PPC_XT(s) __PPC_XS(s) |
||||
#define VSX_XX3(t, a, b) (__PPC_XT(t) | __PPC_XA(a) | __PPC_XB(b)) |
||||
#define VSX_XX1(s, a, b) (__PPC_XS(s) | __PPC_RA(a) | __PPC_RB(b)) |
||||
|
||||
#define PPC_INST_VPMSUMW 0x10000488 |
||||
#define PPC_INST_VPMSUMD 0x100004c8 |
||||
#define PPC_INST_MFVSRD 0x7c000066 |
||||
#define PPC_INST_MTVSRD 0x7c000166 |
||||
|
||||
#define VPMSUMW(t, a, b) .long PPC_INST_VPMSUMW | VSX_XX3((t), a, b) |
||||
#define VPMSUMD(t, a, b) .long PPC_INST_VPMSUMD | VSX_XX3((t), a, b) |
||||
#define MFVRD(a, t) .long PPC_INST_MFVSRD | VSX_XX1((t) + 32, a, 0) |
||||
#define MTVRD(t, a) .long PPC_INST_MTVSRD | VSX_XX1((t) + 32, a, 0) |
||||
|
||||
#endif |
Loading…
Reference in new issue