Adding a user comparator for comparing Uint64 slices.

Summary:
- New Uint64 comparator
- Modify Reader and Builder to take custom user comparators instead of bytewise comparator
- Modify logic for choosing unused user key in builder
- Modify iterator logic in reader
- test changes

Test Plan:
cuckoo_table_{builder,reader,db}_test
make check all

Reviewers: ljin, sdong

Reviewed By: ljin

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D22377
main
Radheshyam Balasundaram 11 years ago
parent 1913ce27b9
commit 4142a3e783
  1. 34
      db/cuckoo_table_db_test.cc
  2. 8
      db/db_bench.cc
  3. 66
      table/cuckoo_table_builder.cc
  4. 6
      table/cuckoo_table_builder.h
  5. 30
      table/cuckoo_table_builder_test.cc
  6. 5
      table/cuckoo_table_factory.cc
  7. 1
      table/cuckoo_table_factory.h
  8. 50
      table/cuckoo_table_reader.cc
  9. 2
      table/cuckoo_table_reader.h
  10. 93
      table/cuckoo_table_reader_test.cc
  11. 46
      util/testutil.cc
  12. 7
      util/testutil.h

@ -131,8 +131,6 @@ TEST(CuckooTableDBTest, Flush) {
ASSERT_EQ("v2", Get("key2"));
ASSERT_EQ("v3", Get("key3"));
ASSERT_EQ("NOT_FOUND", Get("key4"));
ASSERT_EQ("Invalid argument: Length of key is invalid.", Get("somelongkey"));
ASSERT_EQ("Invalid argument: Length of key is invalid.", Get("s"));
// Now add more keys and flush.
ASSERT_OK(Put("key4", "v4"));
@ -195,6 +193,38 @@ static std::string Key(int i) {
snprintf(buf, sizeof(buf), "key_______%06d", i);
return std::string(buf);
}
static std::string Uint64Key(uint64_t i) {
std::string str;
str.resize(8);
memcpy(&str[0], static_cast<void*>(&i), 8);
return str;
}
} // namespace.
TEST(CuckooTableDBTest, Uint64Comparator) {
Options options = CurrentOptions();
options.comparator = test::Uint64Comparator();
Reopen(&options);
ASSERT_OK(Put(Uint64Key(1), "v1"));
ASSERT_OK(Put(Uint64Key(2), "v2"));
ASSERT_OK(Put(Uint64Key(3), "v3"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v1", Get(Uint64Key(1)));
ASSERT_EQ("v2", Get(Uint64Key(2)));
ASSERT_EQ("v3", Get(Uint64Key(3)));
ASSERT_EQ("NOT_FOUND", Get(Uint64Key(4)));
// Add more keys.
ASSERT_OK(Delete(Uint64Key(2))); // Delete.
ASSERT_OK(Put(Uint64Key(3), "v0")); // Update.
ASSERT_OK(Put(Uint64Key(4), "v4"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v1", Get(Uint64Key(1)));
ASSERT_EQ("NOT_FOUND", Get(Uint64Key(2)));
ASSERT_EQ("v0", Get(Uint64Key(3)));
ASSERT_EQ("v4", Get(Uint64Key(4)));
}
TEST(CuckooTableDBTest, CompactionTrigger) {

@ -163,6 +163,7 @@ DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run."
DEFINE_int32(value_size, 100, "Size of each value");
DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");
static bool ValidateKeySize(const char* flagname, int32_t value) {
return true;
@ -1650,6 +1651,13 @@ class Benchmark {
options.prefix_extractor.reset(
NewFixedPrefixTransform(FLAGS_prefix_size));
}
if (FLAGS_use_uint64_comparator) {
options.comparator = test::Uint64Comparator();
if (FLAGS_key_size != 8) {
fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
exit(1);
}
}
options.memtable_prefix_bloom_bits = FLAGS_memtable_bloom_bits;
options.bloom_locality = FLAGS_bloom_locality;
options.max_open_files = FLAGS_open_files;

@ -39,6 +39,7 @@ extern const uint64_t kCuckooTableMagicNumber = 0x926789d0c5f17873ull;
CuckooTableBuilder::CuckooTableBuilder(
WritableFile* file, double hash_table_ratio,
uint32_t max_num_hash_table, uint32_t max_search_depth,
const Comparator* user_comparator,
uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t))
: num_hash_table_(2),
file_(file),
@ -47,6 +48,7 @@ CuckooTableBuilder::CuckooTableBuilder(
max_search_depth_(max_search_depth),
is_last_level_file_(false),
has_seen_first_key_(false),
ucomp_(user_comparator),
get_slice_hash_(get_slice_hash),
closed_(false) {
properties_.num_entries = 0;
@ -73,6 +75,8 @@ void CuckooTableBuilder::Add(const Slice& key, const Slice& value) {
if (!has_seen_first_key_) {
is_last_level_file_ = ikey.sequence == 0;
has_seen_first_key_ = true;
smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
}
// Even if one sequence number is non-zero, then it is not last level.
assert(!is_last_level_file_ || ikey.sequence == 0);
@ -82,23 +86,17 @@ void CuckooTableBuilder::Add(const Slice& key, const Slice& value) {
} else {
kvs_.emplace_back(std::make_pair(key.ToString(), value.ToString()));
}
properties_.num_entries++;
// We assume that the keys are inserted in sorted order as determined by
// Byte-wise comparator. To identify an unused key, which will be used in
// filling empty buckets in the table, we try to find gaps between successive
// keys inserted (ie, latest key and previous in kvs_).
if (unused_user_key_.empty() && kvs_.size() > 1) {
std::string prev_key = is_last_level_file_ ? kvs_[kvs_.size()-1].first
: ExtractUserKey(kvs_[kvs_.size()-1].first).ToString();
std::string new_user_key = prev_key;
new_user_key.back()++;
// We ignore carry-overs and check that it is larger than previous key.
if (Slice(new_user_key).compare(Slice(prev_key)) > 0 &&
Slice(new_user_key).compare(ikey.user_key) < 0) {
unused_user_key_ = new_user_key;
}
// In order to fill the empty buckets in the hash table, we identify a
// key which is not used so far (unused_user_key). We determine this by
// maintaining smallest and largest keys inserted so far in bytewise order
// and use them to find a key outside this range in Finish() operation.
// Note that this strategy is independent of user comparator used here.
if (ikey.user_key.compare(smallest_user_key_) < 0) {
smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
} else if (ikey.user_key.compare(largest_user_key_) > 0) {
largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
}
}
@ -119,7 +117,7 @@ Status CuckooTableBuilder::MakeHashTable(std::vector<CuckooBucket>* buckets) {
bucket_found = true;
break;
} else {
if (user_key.compare(is_last_level_file_
if (ucomp_->Compare(user_key, is_last_level_file_
? Slice(kvs_[(*buckets)[hash_val].vector_idx].first)
: ExtractUserKey(
kvs_[(*buckets)[hash_val].vector_idx].first)) == 0) {
@ -160,31 +158,37 @@ Status CuckooTableBuilder::Finish() {
if (!s.ok()) {
return s;
}
if (unused_user_key_.empty() && !kvs_.empty()) {
// Try to find the key next to last key by handling carryovers.
std::string last_key =
is_last_level_file_ ? kvs_[kvs_.size()-1].first
: ExtractUserKey(kvs_[kvs_.size()-1].first).ToString();
std::string new_user_key = last_key;
int curr_pos = new_user_key.size() - 1;
// Determine unused_user_key to fill empty buckets.
std::string unused_bucket;
if (!kvs_.empty()) {
std::string unused_user_key = smallest_user_key_;
int curr_pos = unused_user_key.size() - 1;
while (curr_pos >= 0) {
++new_user_key[curr_pos];
if (new_user_key > last_key) {
unused_user_key_ = new_user_key;
--unused_user_key[curr_pos];
if (Slice(unused_user_key).compare(smallest_user_key_) < 0) {
break;
}
--curr_pos;
}
if (curr_pos < 0) {
// Try using the largest key to identify an unused key.
unused_user_key = largest_user_key_;
curr_pos = unused_user_key.size() - 1;
while (curr_pos >= 0) {
++unused_user_key[curr_pos];
if (Slice(unused_user_key).compare(largest_user_key_) > 0) {
break;
}
--curr_pos;
}
}
if (curr_pos < 0) {
return Status::Corruption("Unable to find unused key");
}
}
std::string unused_bucket;
if (!kvs_.empty()) {
if (is_last_level_file_) {
unused_bucket = unused_user_key_;
unused_bucket = unused_user_key;
} else {
ParsedInternalKey ikey(unused_user_key_, 0, kTypeValue);
ParsedInternalKey ikey(unused_user_key, 0, kTypeValue);
AppendInternalKey(&unused_bucket, ikey);
}
}

@ -22,7 +22,7 @@ class CuckooTableBuilder: public TableBuilder {
public:
CuckooTableBuilder(
WritableFile* file, double hash_table_ratio, uint32_t max_num_hash_table,
uint32_t max_search_depth,
uint32_t max_search_depth, const Comparator* user_comparator,
uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t));
// REQUIRES: Either Finish() or Abandon() has been called.
@ -83,9 +83,11 @@ class CuckooTableBuilder: public TableBuilder {
std::vector<std::pair<std::string, std::string>> kvs_;
TableProperties properties_;
bool has_seen_first_key_;
const Comparator* ucomp_;
uint64_t (*get_slice_hash_)(const Slice& s, uint32_t index,
uint64_t max_num_buckets);
std::string unused_user_key_ = "";
std::string largest_user_key_ = "";
std::string smallest_user_key_ = "";
bool closed_; // Either Finish() or Abandon() has been called.

@ -119,7 +119,7 @@ TEST(CuckooBuilderTest, SuccessWithEmptyFile) {
fname = test::TmpDir() + "/NoCollisionFullKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
4, 100, GetSliceHash);
4, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
ASSERT_OK(builder.Finish());
ASSERT_OK(writable_file->Close());
@ -146,7 +146,7 @@ TEST(CuckooBuilderTest, WriteSuccessNoCollisionFullKey) {
fname = test::TmpDir() + "/NoCollisionFullKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(keys[i]), Slice(values[i]));
@ -157,7 +157,7 @@ TEST(CuckooBuilderTest, WriteSuccessNoCollisionFullKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = keys.size() / kHashTableRatio;
std::string expected_unused_bucket = GetInternalKey("key05", true);
std::string expected_unused_bucket = GetInternalKey("key00", true);
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 2, false);
@ -183,7 +183,7 @@ TEST(CuckooBuilderTest, WriteSuccessWithCollisionFullKey) {
fname = test::TmpDir() + "/WithCollisionFullKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(keys[i]), Slice(values[i]));
@ -194,7 +194,7 @@ TEST(CuckooBuilderTest, WriteSuccessWithCollisionFullKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = keys.size() / kHashTableRatio;
std::string expected_unused_bucket = GetInternalKey("key05", true);
std::string expected_unused_bucket = GetInternalKey("key00", true);
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 4, false);
@ -225,7 +225,7 @@ TEST(CuckooBuilderTest, WithCollisionPathFullKey) {
fname = test::TmpDir() + "/WithCollisionPathFullKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(keys[i]), Slice(values[i]));
@ -236,7 +236,7 @@ TEST(CuckooBuilderTest, WithCollisionPathFullKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = keys.size() / kHashTableRatio;
std::string expected_unused_bucket = GetInternalKey("key06", true);
std::string expected_unused_bucket = GetInternalKey("key00", true);
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 2, false);
@ -258,7 +258,7 @@ TEST(CuckooBuilderTest, WriteSuccessNoCollisionUserKey) {
fname = test::TmpDir() + "/NoCollisionUserKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(GetInternalKey(user_keys[i], true)), Slice(values[i]));
@ -269,7 +269,7 @@ TEST(CuckooBuilderTest, WriteSuccessNoCollisionUserKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = user_keys.size() / kHashTableRatio;
std::string expected_unused_bucket = "key05";
std::string expected_unused_bucket = "key00";
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(user_keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 2, true);
@ -291,7 +291,7 @@ TEST(CuckooBuilderTest, WriteSuccessWithCollisionUserKey) {
fname = test::TmpDir() + "/WithCollisionUserKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(GetInternalKey(user_keys[i], true)), Slice(values[i]));
@ -302,7 +302,7 @@ TEST(CuckooBuilderTest, WriteSuccessWithCollisionUserKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = user_keys.size() / kHashTableRatio;
std::string expected_unused_bucket = "key05";
std::string expected_unused_bucket = "key00";
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(user_keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 4, true);
@ -326,7 +326,7 @@ TEST(CuckooBuilderTest, WithCollisionPathUserKey) {
fname = test::TmpDir() + "/WithCollisionPathUserKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 2, GetSliceHash);
num_hash_fun, 2, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(GetInternalKey(user_keys[i], true)), Slice(values[i]));
@ -337,7 +337,7 @@ TEST(CuckooBuilderTest, WithCollisionPathUserKey) {
ASSERT_OK(writable_file->Close());
uint32_t expected_max_buckets = user_keys.size() / kHashTableRatio;
std::string expected_unused_bucket = "key06";
std::string expected_unused_bucket = "key00";
expected_unused_bucket += std::string(values[0].size(), 'a');
CheckFileContents(user_keys, values, expected_locations,
expected_unused_bucket, expected_max_buckets, 2, true);
@ -362,7 +362,7 @@ TEST(CuckooBuilderTest, FailWhenCollisionPathTooLong) {
fname = test::TmpDir() + "/WithCollisionPathUserKey";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 2, GetSliceHash);
num_hash_fun, 2, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t i = 0; i < user_keys.size(); i++) {
builder.Add(Slice(GetInternalKey(user_keys[i], false)), Slice("value"));
@ -382,7 +382,7 @@ TEST(CuckooBuilderTest, FailWhenSameKeyInserted) {
fname = test::TmpDir() + "/FailWhenSameKeyInserted";
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, env_options_));
CuckooTableBuilder builder(writable_file.get(), kHashTableRatio,
num_hash_fun, 100, GetSliceHash);
num_hash_fun, 100, BytewiseComparator(), GetSliceHash);
ASSERT_OK(builder.status());
builder.Add(Slice(GetInternalKey(user_key, false)), Slice("value1"));

@ -36,7 +36,7 @@ Status CuckooTableFactory::NewTableReader(const Options& options,
std::unique_ptr<RandomAccessFile>&& file, uint64_t file_size,
std::unique_ptr<TableReader>* table) const {
std::unique_ptr<CuckooTableReader> new_reader(new CuckooTableReader(options,
std::move(file), file_size, GetSliceMurmurHash));
std::move(file), file_size, icomp.user_comparator(), GetSliceMurmurHash));
Status s = new_reader->status();
if (s.ok()) {
*table = std::move(new_reader);
@ -48,7 +48,8 @@ TableBuilder* CuckooTableFactory::NewTableBuilder(
const Options& options, const InternalKeyComparator& internal_comparator,
WritableFile* file, CompressionType compression_type) const {
return new CuckooTableBuilder(file, hash_table_ratio_, kMaxNumHashTable,
max_search_depth_, GetSliceMurmurHash);
max_search_depth_, internal_comparator.user_comparator(),
GetSliceMurmurHash);
}
std::string CuckooTableFactory::GetPrintableTableOptions() const {

@ -21,7 +21,6 @@ extern uint64_t GetSliceMurmurHash(const Slice& s, uint32_t index,
// - Key length and Value length are fixed.
// - Does not support Snapshot.
// - Does not support Merge operations.
// - Only supports Bytewise comparators.
class CuckooTableFactory : public TableFactory {
public:
CuckooTableFactory(double hash_table_ratio, uint32_t max_search_depth)

@ -28,8 +28,10 @@ CuckooTableReader::CuckooTableReader(
const Options& options,
std::unique_ptr<RandomAccessFile>&& file,
uint64_t file_size,
const Comparator* comparator,
uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t))
: file_(std::move(file)),
ucomp_(comparator),
get_slice_hash_(get_slice_hash) {
if (!options.allow_mmap_reads) {
status_ = Status::InvalidArgument("File is not mmaped");
@ -85,24 +87,19 @@ Status CuckooTableReader::Get(
bool (*result_handler)(void* arg, const ParsedInternalKey& k,
const Slice& v),
void (*mark_key_may_exist_handler)(void* handle_context)) {
ParsedInternalKey ikey;
if (!ParseInternalKey(key, &ikey)) {
return Status::Corruption("Unable to parse key into inernal key.");
}
if ((is_last_level_ && key.size() != key_length_ + 8) ||
(!is_last_level_ && key.size() != key_length_)) {
return Status::InvalidArgument("Length of key is invalid.");
}
assert(key.size() == key_length_ + (is_last_level_ ? 8 : 0));
Slice user_key = ExtractUserKey(key);
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_fun_; ++hash_cnt) {
uint64_t hash_val = get_slice_hash_(ikey.user_key, hash_cnt, num_buckets_);
uint64_t hash_val = get_slice_hash_(user_key, hash_cnt, num_buckets_);
assert(hash_val < num_buckets_);
const char* bucket = &file_data_.data()[hash_val * bucket_length_];
if (unused_key_.compare(0, key_length_, bucket, key_length_) == 0) {
if (ucomp_->Compare(Slice(unused_key_.data(), user_key.size()),
Slice(bucket, user_key.size())) == 0) {
return Status::OK();
}
// Here, we compare only the user key part as we support only one entry
// per user key and we don't support sanpshot.
if (ikey.user_key.compare(Slice(bucket, ikey.user_key.size())) == 0) {
if (ucomp_->Compare(user_key, Slice(bucket, user_key.size())) == 0) {
Slice value = Slice(&bucket[key_length_], value_length_);
if (is_last_level_) {
ParsedInternalKey found_ikey(Slice(bucket, key_length_), 0, kTypeValue);
@ -121,10 +118,10 @@ Status CuckooTableReader::Get(
}
void CuckooTableReader::Prepare(const Slice& key) {
Slice user_key = ExtractUserKey(key);
// Prefetching first location also helps improve Get performance.
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_fun_; ++hash_cnt) {
uint64_t hash_val = get_slice_hash_(ExtractUserKey(key),
hash_cnt, num_buckets_);
uint64_t hash_val = get_slice_hash_(user_key, hash_cnt, num_buckets_);
PREFETCH(&file_data_.data()[hash_val * bucket_length_], 0, 3);
}
}
@ -145,17 +142,29 @@ class CuckooTableIterator : public Iterator {
void LoadKeysFromReader();
private:
struct {
struct CompareKeys {
CompareKeys(const Comparator* ucomp, const bool last_level)
: ucomp_(ucomp),
is_last_level_(last_level) {}
bool operator()(const std::pair<Slice, uint32_t>& first,
const std::pair<Slice, uint32_t>& second) const {
return first.first.compare(second.first) < 0;
if (is_last_level_) {
return ucomp_->Compare(first.first, second.first) < 0;
} else {
return ucomp_->Compare(ExtractUserKey(first.first),
ExtractUserKey(second.first)) < 0;
}
}
} CompareKeys;
private:
const Comparator* ucomp_;
const bool is_last_level_;
};
const CompareKeys comparator_;
void PrepareKVAtCurrIdx();
CuckooTableReader* reader_;
Status status_;
// Contains a map of keys to bucket_id sorted in key order.
// We assume byte-wise comparison for key ordering.
std::vector<std::pair<Slice, uint32_t>> key_to_bucket_id_;
// We assume that the number of items can be stored in uint32 (4 Billion).
uint32_t curr_key_idx_;
@ -167,7 +176,8 @@ class CuckooTableIterator : public Iterator {
};
CuckooTableIterator::CuckooTableIterator(CuckooTableReader* reader)
: reader_(reader),
: comparator_(reader->ucomp_, reader->is_last_level_),
reader_(reader),
curr_key_idx_(std::numeric_limits<int32_t>::max()) {
key_to_bucket_id_.clear();
curr_value_.clear();
@ -186,7 +196,7 @@ void CuckooTableIterator::LoadKeysFromReader() {
}
assert(key_to_bucket_id_.size() ==
reader_->GetTableProperties()->num_entries);
std::sort(key_to_bucket_id_.begin(), key_to_bucket_id_.end(), CompareKeys);
std::sort(key_to_bucket_id_.begin(), key_to_bucket_id_.end(), comparator_);
curr_key_idx_ = key_to_bucket_id_.size();
}
@ -208,7 +218,7 @@ void CuckooTableIterator::Seek(const Slice& target) {
auto seek_it = std::lower_bound(key_to_bucket_id_.begin(),
key_to_bucket_id_.end(),
std::make_pair(target_to_search, 0),
CompareKeys);
comparator_);
curr_key_idx_ = std::distance(key_to_bucket_id_.begin(), seek_it);
PrepareKVAtCurrIdx();
}

@ -29,6 +29,7 @@ class CuckooTableReader: public TableReader {
const Options& options,
std::unique_ptr<RandomAccessFile>&& file,
uint64_t file_size,
const Comparator* user_comparator,
uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t));
~CuckooTableReader() {}
@ -70,6 +71,7 @@ class CuckooTableReader: public TableReader {
uint32_t value_length_;
uint32_t bucket_length_;
uint64_t num_buckets_;
const Comparator* ucomp_;
uint64_t (*get_slice_hash_)(const Slice& s, uint32_t index,
uint64_t max_num_buckets);
};

@ -104,11 +104,12 @@ class CuckooReaderTest {
return std::string(reinterpret_cast<char*>(&i), sizeof(i));
}
void CreateCuckooFileAndCheckReader() {
void CreateCuckooFileAndCheckReader(
const Comparator* ucomp = BytewiseComparator()) {
std::unique_ptr<WritableFile> writable_file;
ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options));
CuckooTableBuilder builder(
writable_file.get(), 0.9, kNumHashFunc, 100, GetSliceHash);
writable_file.get(), 0.9, kNumHashFunc, 100, ucomp, GetSliceHash);
ASSERT_OK(builder.status());
for (uint32_t key_idx = 0; key_idx < num_items; ++key_idx) {
builder.Add(Slice(keys[key_idx]), Slice(values[key_idx]));
@ -127,6 +128,7 @@ class CuckooReaderTest {
options,
std::move(read_file),
file_size,
ucomp,
GetSliceHash);
ASSERT_OK(reader.status());
for (uint32_t i = 0; i < num_items; ++i) {
@ -145,13 +147,14 @@ class CuckooReaderTest {
}
}
void CheckIterator() {
void CheckIterator(const Comparator* ucomp = BytewiseComparator()) {
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
CuckooTableReader reader(
options,
std::move(read_file),
file_size,
ucomp,
GetSliceHash);
ASSERT_OK(reader.status());
Iterator* it = reader.NewIterator(ReadOptions(), nullptr);
@ -243,12 +246,40 @@ TEST(CuckooReaderTest, WhenKeyExists) {
CreateCuckooFileAndCheckReader();
}
TEST(CuckooReaderTest, WhenKeyExistsWithUint64Comparator) {
SetUp(kNumHashFunc);
fname = test::TmpDir() + "/CuckooReaderUint64_WhenKeyExists";
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i].resize(8);
memcpy(&user_keys[i][0], static_cast<void*>(&i), 8);
ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values.
AddHashLookups(user_keys[i], i, kNumHashFunc);
}
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Test with collision. Make all hash values collide.
hash_map.clear();
for (uint32_t i = 0; i < num_items; i++) {
AddHashLookups(user_keys[i], 0, kNumHashFunc);
}
UpdateKeys(false);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
}
TEST(CuckooReaderTest, CheckIterator) {
SetUp(2*kNumHashFunc);
fname = test::TmpDir() + "/CuckooReader_CheckIterator";
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i] = "key" + NumToStr(i);
ParsedInternalKey ikey(user_keys[i], 0, kTypeValue);
ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values, in reverse order.
@ -262,6 +293,26 @@ TEST(CuckooReaderTest, CheckIterator) {
CheckIterator();
}
TEST(CuckooReaderTest, CheckIteratorUint64) {
SetUp(2*kNumHashFunc);
fname = test::TmpDir() + "/CuckooReader_CheckIterator";
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i].resize(8);
memcpy(&user_keys[i][0], static_cast<void*>(&i), 8);
ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values, in reverse order.
AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc);
}
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
CheckIterator(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
CheckIterator(test::Uint64Comparator());
}
TEST(CuckooReaderTest, WhenKeyNotFound) {
// Add keys with colliding hash values.
SetUp(kNumHashFunc);
@ -281,6 +332,7 @@ TEST(CuckooReaderTest, WhenKeyNotFound) {
options,
std::move(read_file),
file_size,
BytewiseComparator(),
GetSliceHash);
ASSERT_OK(reader.status());
// Search for a key with colliding hash values.
@ -305,31 +357,6 @@ TEST(CuckooReaderTest, WhenKeyNotFound) {
ASSERT_EQ(0, v.call_count);
ASSERT_OK(reader.status());
// Test read with corrupted key.
Slice corrupt_key("corrupt_ikey");
ASSERT_TRUE(!ParseInternalKey(corrupt_key, &ikey));
ASSERT_TRUE(reader.Get(
ReadOptions(), corrupt_key, &v,
AssertValues, nullptr).IsCorruption());
ASSERT_EQ(0, v.call_count);
ASSERT_OK(reader.status());
// Test read with key of invalid length.
IterKey k;
k.SetInternalKey("very_long_key", 0, kTypeValue);
ASSERT_TRUE(reader.Get(
ReadOptions(), k.GetKey(), &v,
AssertValues, nullptr).IsInvalidArgument());
ASSERT_EQ(0, v.call_count);
ASSERT_OK(reader.status());
k.Clear();
k.SetInternalKey("s", 0, kTypeValue);
ASSERT_TRUE(reader.Get(
ReadOptions(), k.GetKey(), &v,
AssertValues, nullptr).IsInvalidArgument());
ASSERT_EQ(0, v.call_count);
ASSERT_OK(reader.status());
// Test read when key is unused key.
std::string unused_key =
reader.GetTableProperties()->user_collected_properties.at(
@ -393,7 +420,7 @@ void WriteFile(const std::vector<std::string>& keys,
ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options));
CuckooTableBuilder builder(
writable_file.get(), hash_ratio,
kMaxNumHashTable, 1000, GetSliceMurmurHash);
kMaxNumHashTable, 1000, test::Uint64Comparator(), GetSliceMurmurHash);
ASSERT_OK(builder.status());
for (uint64_t key_idx = 0; key_idx < num; ++key_idx) {
// Value is just a part of key.
@ -411,7 +438,8 @@ void WriteFile(const std::vector<std::string>& keys,
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
CuckooTableReader reader(
options, std::move(read_file), file_size, GetSliceMurmurHash);
options, std::move(read_file), file_size,
test::Uint64Comparator(), GetSliceMurmurHash);
ASSERT_OK(reader.status());
ReadOptions r_options;
for (const auto& key : keys) {
@ -439,7 +467,8 @@ void ReadKeys(const std::vector<std::string>& keys, uint64_t num,
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
CuckooTableReader reader(
options, std::move(read_file), file_size, GetSliceMurmurHash);
options, std::move(read_file), file_size, test::Uint64Comparator(),
GetSliceMurmurHash);
ASSERT_OK(reader.status());
const UserCollectedProperties user_props =
reader.GetTableProperties()->user_collected_properties;

@ -9,6 +9,7 @@
#include "util/testutil.h"
#include "port/port.h"
#include "util/random.h"
namespace rocksdb {
@ -52,5 +53,50 @@ extern Slice CompressibleString(Random* rnd, double compressed_fraction,
return Slice(*dst);
}
namespace {
class Uint64ComparatorImpl : public Comparator {
public:
Uint64ComparatorImpl() { }
virtual const char* Name() const override {
return "rocksdb.Uint64Comparator";
}
virtual int Compare(const Slice& a, const Slice& b) const override {
assert(a.size() == sizeof(uint64_t) && b.size() == sizeof(uint64_t));
const uint64_t* left = reinterpret_cast<const uint64_t*>(a.data());
const uint64_t* right = reinterpret_cast<const uint64_t*>(b.data());
if (*left == *right) {
return 0;
} else if (*left < *right) {
return -1;
} else {
return 1;
}
}
virtual void FindShortestSeparator(std::string* start,
const Slice& limit) const override {
return;
}
virtual void FindShortSuccessor(std::string* key) const override {
return;
}
};
} // namespace
static port::OnceType once = LEVELDB_ONCE_INIT;
static const Comparator* uint64comp;
static void InitModule() {
uint64comp = new Uint64ComparatorImpl;
}
const Comparator* Uint64Comparator() {
port::InitOnce(&once, InitModule);
return uint64comp;
}
} // namespace test
} // namespace rocksdb

@ -76,5 +76,12 @@ class PlainInternalKeyComparator : public InternalKeyComparator {
}
};
// Returns a user key comparator that can be used for comparing two uint64_t
// slices. Instead of comparing slices byte-wise, it compares all the 8 bytes
// at once. Assumes same endian-ness is used though the database's lifetime.
// Symantics of comparison would differ from Bytewise comparator in little
// endian machines.
extern const Comparator* Uint64Comparator();
} // namespace test
} // namespace rocksdb

Loading…
Cancel
Save