Add a new mem-table representation based on cuckoo hash.

Summary:
= Major Changes =
* Add a new mem-table representation, HashCuckooRep, which is based cuckoo hash.
  Cuckoo hash uses multiple hash functions.  This allows each key to have multiple
  possible locations in the mem-table.

  - Put: When insert a key, it will try to find whether one of its possible
    locations is vacant and store the key.  If none of its possible
    locations are available, then it will kick out a victim key and
    store at that location.  The kicked-out victim key will then be
    stored at a vacant space of its possible locations or kick-out
    another victim.  In this diff, the kick-out path (known as
    cuckoo-path) is found using BFS, which guarantees to be the shortest.

 - Get: Simply tries all possible locations of a key --- this guarantees
   worst-case constant time complexity.

 - Time complexity: O(1) for Get, and average O(1) for Put if the
   fullness of the mem-table is below 80%.

 - Default using two hash functions, the number of hash functions used
   by the cuckoo-hash may dynamically increase if it fails to find a
   short-enough kick-out path.

 - Currently, HashCuckooRep does not support iteration and snapshots,
   as our current main purpose of this is to optimize point access.

= Minor Changes =
* Add IsSnapshotSupported() to DB to indicate whether the current DB
  supports snapshots.  If it returns false, then DB::GetSnapshot() will
  always return nullptr.

Test Plan:
Run existing tests.  Will develop a test specifically for cuckoo hash in
the next diff.

Reviewers: sdong, haobo

Reviewed By: sdong

CC: leveldb, dhruba, igor

Differential Revision: https://reviews.facebook.net/D16155
main
Yueh-Hsuan Chiang 11 years ago
parent f1c9aa6ebe
commit 9d9d2965cb
  1. 12
      db/db_bench.cc
  2. 20
      db/db_impl.cc
  3. 7
      db/db_impl.h
  4. 130
      db/db_test.cc
  5. 12
      db/memtable.cc
  6. 8
      db/memtable.h
  7. 3
      include/rocksdb/db.h
  8. 43
      include/rocksdb/memtablerep.h
  9. 627
      util/hash_cuckoo_rep.cc
  10. 42
      util/hash_cuckoo_rep.h

@ -490,7 +490,8 @@ enum RepFactory {
kSkipList,
kPrefixHash,
kVectorRep,
kHashLinkedList
kHashLinkedList,
kCuckoo
};
namespace {
@ -505,6 +506,8 @@ enum RepFactory StringToRepFactory(const char* ctype) {
return kVectorRep;
else if (!strcasecmp(ctype, "hash_linkedlist"))
return kHashLinkedList;
else if (!strcasecmp(ctype, "cuckoo"))
return kCuckoo;
fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
return kSkipList;
@ -880,6 +883,9 @@ class Benchmark {
case kHashLinkedList:
fprintf(stdout, "Memtablerep: hash_linkedlist\n");
break;
case kCuckoo:
fprintf(stdout, "Memtablerep: cuckoo\n");
break;
}
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
@ -1579,6 +1585,10 @@ class Benchmark {
new VectorRepFactory
);
break;
case kCuckoo:
options.memtable_factory.reset(NewHashCuckooRepFactory(
options.write_buffer_size, FLAGS_key_size + FLAGS_value_size));
break;
}
if (FLAGS_use_plain_table) {
if (FLAGS_rep_factory != kPrefixHash &&

@ -2406,6 +2406,9 @@ Status DBImpl::InstallCompactionResults(CompactionState* compact,
inline SequenceNumber DBImpl::findEarliestVisibleSnapshot(
SequenceNumber in, std::vector<SequenceNumber>& snapshots,
SequenceNumber* prev_snapshot) {
if (!IsSnapshotSupported()) {
return 0;
}
SequenceNumber prev __attribute__((unused)) = 0;
for (const auto cur : snapshots) {
assert(prev <= cur);
@ -3559,7 +3562,18 @@ Status DBImpl::NewIterators(
return Status::OK();
}
bool DBImpl::IsSnapshotSupported() const {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->mem()->IsSnapshotSupported()) {
return false;
}
}
return true;
}
const Snapshot* DBImpl::GetSnapshot() {
// returns null if the underlying memtable does not support snapshot.
if (!IsSnapshotSupported()) return nullptr;
MutexLock l(&mutex_);
return snapshots_.New(versions_->LastSequence());
}
@ -4422,6 +4436,12 @@ Status DB::Open(const DBOptions& db_options, const std::string& dbname,
}
}
}
if (cfd->options()->merge_operator != nullptr &&
!cfd->mem()->IsMergeOperatorSupported()) {
s = Status::InvalidArgument(
"The memtable of column family %s does not support merge operator "
"its options.merge_operator is non-null", cfd->GetName().c_str());
}
if (!s.ok()) {
break;
}

@ -424,6 +424,13 @@ class DBImpl : public DB {
// dump rocksdb.stats to LOG
void MaybeDumpStats();
// Return true if the current db supports snapshot. If the current
// DB does not support snapshot, then calling GetSnapshot() will always
// return nullptr.
//
// @see GetSnapshot()
virtual bool IsSnapshotSupported() const;
// Return the minimum empty level that could hold the total data in the
// input level. Return the input level, if such level could not be found.
int FindMinimumEmptyLevelFitting(ColumnFamilyData* cfd, int level);

@ -301,6 +301,7 @@ class DBTest {
kPlainTableAllBytesPrefix,
kVectorRep,
kHashLinkList,
kHashCuckoo,
kMergePut,
kFilter,
kUncompressed,
@ -336,7 +337,8 @@ class DBTest {
kSkipMergePut = 4,
kSkipPlainTable = 8,
kSkipHashIndex = 16,
kSkipNoSeekToLast = 32
kSkipNoSeekToLast = 32,
kSkipHashCuckoo = 64
};
DBTest() : option_config_(kDefault),
@ -358,7 +360,6 @@ class DBTest {
// Switch to a fresh database with the next option configuration to
// test. Return false if there are no more configurations to test.
bool ChangeOptions(int skip_mask = kNoSkip) {
// skip some options
for(option_config_++; option_config_ < kEnd; option_config_++) {
if ((skip_mask & kSkipDeletesFilterFirst) &&
option_config_ == kDeletesFilterFirst) {
@ -386,7 +387,9 @@ class DBTest {
option_config_ == kBlockBasedTableWithWholeKeyHashIndex)) {
continue;
}
if ((skip_mask & kSkipHashCuckoo) && (option_config_ == kHashCuckoo)) {
continue;
}
break;
}
@ -417,6 +420,12 @@ class DBTest {
// Return the current option configuration.
Options CurrentOptions() {
Options options;
return CurrentOptions(options);
}
Options CurrentOptions(const Options& defaultOptions) {
// this redudant copy is to minimize code change w/o having lint error.
Options options = defaultOptions;
switch (option_config_) {
case kHashSkipList:
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
@ -473,6 +482,10 @@ class DBTest {
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
options.memtable_factory.reset(NewHashLinkListRepFactory(4));
break;
case kHashCuckoo:
options.memtable_factory.reset(
NewHashCuckooRepFactory(options.write_buffer_size));
break;
case kUniversalCompaction:
options.compaction_style = kCompactionStyleUniversal;
break;
@ -1040,9 +1053,10 @@ void VerifyTableProperties(DB* db, uint64_t expected_entries_size) {
TEST(DBTest, Empty) {
do {
Options options = CurrentOptions();
Options options;
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
std::string num;
@ -1244,9 +1258,10 @@ TEST(DBTest, PutDeleteGet) {
TEST(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
Options options;
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
ASSERT_OK(Put(1, "foo", "v1"));
@ -1287,7 +1302,8 @@ TEST(DBTest, GetSnapshot) {
ASSERT_EQ("v1", Get(1, key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
// skip as HashCuckooRep does not support snapshot
} while (ChangeOptions(kSkipHashCuckoo));
}
TEST(DBTest, GetLevel0Ordering) {
@ -1499,7 +1515,9 @@ TEST(DBTest, NonBlockingIteration) {
// This test verifies block cache behaviors, which is not used by plain
// table format.
} while (ChangeOptions(kSkipPlainTable | kSkipNoSeekToLast));
// Exclude kHashCuckoo as it does not support iteration currently
} while (ChangeOptions(kSkipPlainTable | kSkipNoSeekToLast |
kSkipHashCuckoo));
}
// A delete is skipped for key if KeyMayExist(key) returns False
@ -2035,7 +2053,8 @@ TEST(DBTest, IterWithSnapshot) {
}
db_->ReleaseSnapshot(snapshot);
delete iter;
} while (ChangeOptions());
// skip as HashCuckooRep does not support snapshot
} while (ChangeOptions(kSkipHashCuckoo));
}
TEST(DBTest, Recover) {
@ -2063,10 +2082,11 @@ TEST(DBTest, Recover) {
TEST(DBTest, RecoverWithTableHandle) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.write_buffer_size = 100;
options.disable_auto_compactions = true;
options = CurrentOptions(options);
DestroyAndReopen(&options);
CreateAndReopenWithCF({"pikachu"}, &options);
@ -2184,7 +2204,7 @@ TEST(DBTest, IgnoreRecoveredLog) {
}
Status s = TryReopen(&options);
ASSERT_TRUE(!s.ok());
} while (ChangeOptions());
} while (ChangeOptions(kSkipHashCuckoo));
}
TEST(DBTest, RollLog) {
@ -2505,9 +2525,10 @@ TEST(DBTest, RecoveryWithEmptyLog) {
// if the database is shutdown during the memtable compaction.
TEST(DBTest, RecoverDuringMemtableCompaction) {
do {
Options options = CurrentOptions();
Options options;
options.env = env_;
options.write_buffer_size = 1000000;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Trigger a long memtable compaction and reopen the database during it
@ -2526,8 +2547,9 @@ TEST(DBTest, RecoverDuringMemtableCompaction) {
TEST(DBTest, MinorCompactionsHappen) {
do {
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 10000;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
const int N = 500;
@ -2553,8 +2575,9 @@ TEST(DBTest, MinorCompactionsHappen) {
TEST(DBTest, ManifestRollOver) {
do {
Options options = CurrentOptions();
Options options;
options.max_manifest_file_size = 10 ; // 10 bytes
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
{
ASSERT_OK(Put(1, "manifest_key1", std::string(1000, '1')));
@ -2610,8 +2633,9 @@ TEST(DBTest, RecoverWithLargeLog) {
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 100000;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, &options);
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 3);
ASSERT_EQ(std::string(200000, '1'), Get(1, "big1"));
@ -2623,8 +2647,9 @@ TEST(DBTest, RecoverWithLargeLog) {
}
TEST(DBTest, CompactionsGenerateMultipleFiles) {
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 100000000; // Large write buffer
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
Random rnd(301);
@ -2649,11 +2674,12 @@ TEST(DBTest, CompactionsGenerateMultipleFiles) {
}
TEST(DBTest, CompactionTrigger) {
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.level0_file_num_compaction_trigger = 3;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
Random rnd(301);
@ -2778,7 +2804,7 @@ class ChangeFilterFactory : public CompactionFilterFactory {
// 2. Made assumption on the memtable flush conidtions, which may change from
// time to time.
TEST(DBTest, UniversalCompactionTrigger) {
Options options = CurrentOptions();
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
// trigger compaction if there are >= 4 files
@ -2787,6 +2813,7 @@ TEST(DBTest, UniversalCompactionTrigger) {
filter->expect_manual_compaction_.store(false);
options.compaction_filter_factory.reset(filter);
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
Random rnd(301);
@ -2915,7 +2942,7 @@ TEST(DBTest, UniversalCompactionTrigger) {
}
TEST(DBTest, UniversalCompactionSizeAmplification) {
Options options = CurrentOptions();
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 3;
@ -2923,6 +2950,7 @@ TEST(DBTest, UniversalCompactionSizeAmplification) {
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.max_size_amplification_percent = 110;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, &options);
Random rnd(301);
@ -2953,12 +2981,13 @@ TEST(DBTest, UniversalCompactionSizeAmplification) {
}
TEST(DBTest, UniversalCompactionOptions) {
Options options = CurrentOptions();
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = -1;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
Random rnd(301);
@ -3114,6 +3143,7 @@ TEST(DBTest, CompressedCache) {
Options no_block_cache_opts;
no_block_cache_opts.no_block_cache = true;
no_block_cache_opts.statistics = options.statistics;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"},
{&no_block_cache_opts, &options});
@ -3180,12 +3210,13 @@ static std::string CompressibleString(Random* rnd, int len) {
}
TEST(DBTest, UniversalCompactionCompressRatio1) {
Options options = CurrentOptions();
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = 70;
options = CurrentOptions(options);
Reopen(&options);
Random rnd(301);
@ -3244,12 +3275,13 @@ TEST(DBTest, UniversalCompactionCompressRatio1) {
}
TEST(DBTest, UniversalCompactionCompressRatio2) {
Options options = CurrentOptions();
Options options;
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = 95;
options = CurrentOptions(options);
Reopen(&options);
Random rnd(301);
@ -3277,7 +3309,7 @@ TEST(DBTest, ConvertCompactionStyle) {
int max_key_universal_insert = 600;
// Stage 1: generate a db with level compaction
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 4;
options.level0_file_num_compaction_trigger = 3;
@ -3285,6 +3317,7 @@ TEST(DBTest, ConvertCompactionStyle) {
options.max_bytes_for_level_multiplier = 1;
options.target_file_size_base = 200<<10; // 200KB
options.target_file_size_multiplier = 1;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
for (int i = 0; i <= max_key_level_insert; i++) {
@ -3304,6 +3337,7 @@ TEST(DBTest, ConvertCompactionStyle) {
// Stage 2: reopen with universal compaction - should fail
options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options = CurrentOptions(options);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, &options);
ASSERT_TRUE(s.IsInvalidArgument());
@ -3314,6 +3348,7 @@ TEST(DBTest, ConvertCompactionStyle) {
options.target_file_size_multiplier = 1;
options.max_bytes_for_level_base = INT_MAX;
options.max_bytes_for_level_multiplier = 1;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, &options);
dbfull()->CompactRange(handles_[1], nullptr, nullptr, true /* reduce level */,
@ -3333,6 +3368,7 @@ TEST(DBTest, ConvertCompactionStyle) {
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 3;
options = CurrentOptions(options);
ReopenWithColumnFamilies({"default", "pikachu"}, &options);
for (int i = max_key_level_insert / 2; i <= max_key_universal_insert; i++) {
@ -3483,9 +3519,10 @@ TEST(DBTest, MinLevelToCompress2) {
TEST(DBTest, RepeatedWritesToSameKey) {
do {
Options options = CurrentOptions();
Options options;
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// We must have at most one file per level except for level-0,
@ -3504,11 +3541,12 @@ TEST(DBTest, RepeatedWritesToSameKey) {
TEST(DBTest, InPlaceUpdate) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
options.env = env_;
options.write_buffer_size = 100000;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Update key with values of smaller size
@ -3527,11 +3565,12 @@ TEST(DBTest, InPlaceUpdate) {
TEST(DBTest, InPlaceUpdateLargeNewValue) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
options.env = env_;
options.write_buffer_size = 100000;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Update key with values of larger size
@ -3551,7 +3590,7 @@ TEST(DBTest, InPlaceUpdateLargeNewValue) {
TEST(DBTest, InPlaceUpdateCallbackSmallerSize) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
@ -3559,6 +3598,7 @@ TEST(DBTest, InPlaceUpdateCallbackSmallerSize) {
options.write_buffer_size = 100000;
options.inplace_callback =
rocksdb::DBTest::updateInPlaceSmallerSize;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Update key with values of smaller size
@ -3579,7 +3619,7 @@ TEST(DBTest, InPlaceUpdateCallbackSmallerSize) {
TEST(DBTest, InPlaceUpdateCallbackSmallerVarintSize) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
@ -3587,6 +3627,7 @@ TEST(DBTest, InPlaceUpdateCallbackSmallerVarintSize) {
options.write_buffer_size = 100000;
options.inplace_callback =
rocksdb::DBTest::updateInPlaceSmallerVarintSize;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Update key with values of smaller varint size
@ -3607,7 +3648,7 @@ TEST(DBTest, InPlaceUpdateCallbackSmallerVarintSize) {
TEST(DBTest, InPlaceUpdateCallbackLargeNewValue) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
@ -3615,6 +3656,7 @@ TEST(DBTest, InPlaceUpdateCallbackLargeNewValue) {
options.write_buffer_size = 100000;
options.inplace_callback =
rocksdb::DBTest::updateInPlaceLargerSize;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Update key with values of larger size
@ -3633,7 +3675,7 @@ TEST(DBTest, InPlaceUpdateCallbackLargeNewValue) {
TEST(DBTest, InPlaceUpdateCallbackNoAction) {
do {
Options options = CurrentOptions();
Options options;
options.create_if_missing = true;
options.inplace_update_support = true;
@ -3641,6 +3683,7 @@ TEST(DBTest, InPlaceUpdateCallbackNoAction) {
options.write_buffer_size = 100000;
options.inplace_callback =
rocksdb::DBTest::updateInPlaceNoAction;
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Callback function requests no actions from db
@ -3656,6 +3699,7 @@ TEST(DBTest, CompactionFilter) {
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.compaction_filter_factory = std::make_shared<KeepFilterFactory>();
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Write 100K keys, these are written to a few files in L0.
@ -3792,12 +3836,12 @@ TEST(DBTest, CompactionFilter) {
TEST(DBTest, CompactionFilterWithValueChange) {
do {
Options options = CurrentOptions();
Options options;
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.compaction_filter_factory =
std::make_shared<ChangeFilterFactory>();
Reopen(&options);
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, &options);
// Write 100K+1 keys, these are written to a few files
@ -4115,6 +4159,7 @@ TEST(DBTest, CompactionFilterV2WithValueChange) {
// compaction filter buffer using universal compaction
option_config_ = kUniversalCompaction;
options.compaction_style = (rocksdb::CompactionStyle)1;
options = CurrentOptions(options);
Reopen(&options);
// Write 100K+1 keys, these are written to a few files
@ -4253,9 +4298,10 @@ static bool Between(uint64_t val, uint64_t low, uint64_t high) {
TEST(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
Options options;
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options = CurrentOptions(options);
DestroyAndReopen();
CreateAndReopenWithCF({"pikachu"}, &options);
@ -4411,7 +4457,7 @@ TEST(DBTest, Snapshot) {
db_->ReleaseSnapshot(s2);
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
} while (ChangeOptions());
} while (ChangeOptions(kSkipHashCuckoo));
}
TEST(DBTest, HiddenValuesAreRemoved) {
@ -4445,7 +4491,9 @@ TEST(DBTest, HiddenValuesAreRemoved) {
ASSERT_TRUE(Between(Size("", "pastfoo", 1), 0, 1000));
// ApproximateOffsetOf() is not yet implemented in plain table format,
// which is used by Size().
} while (ChangeOptions(kSkipUniversalCompaction | kSkipPlainTable));
// skip HashCuckooRep as it does not support snapshot
} while (ChangeOptions(kSkipUniversalCompaction | kSkipPlainTable |
kSkipHashCuckoo));
}
TEST(DBTest, CompactBetweenSnapshots) {
@ -4500,8 +4548,8 @@ TEST(DBTest, CompactBetweenSnapshots) {
dbfull()->CompactRange(handles_[1], nullptr, nullptr);
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth ]");
} while (ChangeOptions());
// skip HashCuckooRep as it does not support snapshot
} while (ChangeOptions(kSkipHashCuckoo));
}
TEST(DBTest, DeletionMarkers1) {
@ -4721,6 +4769,7 @@ TEST(DBTest, CustomComparator) {
new_options.comparator = &cmp;
new_options.filter_policy = nullptr; // Cannot use bloom filters
new_options.write_buffer_size = 1000; // Compact more often
new_options = CurrentOptions(new_options);
DestroyAndReopen(&new_options);
CreateAndReopenWithCF({"pikachu"}, &new_options);
ASSERT_OK(Put(1, "[10]", "ten"));
@ -5955,7 +6004,8 @@ TEST(DBTest, MultiThreaded) {
env_->SleepForMicroseconds(100000);
}
}
} while (ChangeOptions());
// skip as HashCuckooRep does not support snapshot
} while (ChangeOptions(kSkipHashCuckoo));
}
// Group commit test:
@ -6119,6 +6169,7 @@ class ModelDB: public DB {
virtual void ReleaseSnapshot(const Snapshot* snapshot) {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
virtual Status Write(const WriteOptions& options, WriteBatch* batch) {
class Handler : public WriteBatch::Handler {
public:
@ -6333,6 +6384,7 @@ TEST(DBTest, Randomized) {
int minimum = 0;
if (option_config_ == kHashSkipList ||
option_config_ == kHashLinkList ||
option_config_ == kHashCuckoo ||
option_config_ == kPlainTableFirstBytePrefix ||
option_config_ == kBlockBasedTableWithWholeKeyHashIndex ||
option_config_ == kBlockBasedTableWithPrefixHashIndex) {
@ -6393,7 +6445,9 @@ TEST(DBTest, Randomized) {
}
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
} while (ChangeOptions(kSkipDeletesFilterFirst | kSkipNoSeekToLast));
// skip cuckoo hash as it does not support snapshot.
} while (ChangeOptions(kSkipDeletesFilterFirst |
kSkipNoSeekToLast | kSkipHashCuckoo));
}
TEST(DBTest, MultiGetSimple) {

@ -11,6 +11,7 @@
#include <memory>
#include <algorithm>
#include <limits>
#include "db/dbformat.h"
#include "db/merge_context.h"
@ -62,7 +63,16 @@ MemTable::~MemTable() {
}
size_t MemTable::ApproximateMemoryUsage() {
return arena_.ApproximateMemoryUsage() + table_->ApproximateMemoryUsage();
size_t arena_usage = arena_.ApproximateMemoryUsage();
size_t table_usage = table_->ApproximateMemoryUsage();
// let MAX_USAGE = std::numeric_limits<size_t>::max()
// then if arena_usage + total_usage >= MAX_USAGE, return MAX_USAGE.
// the following variation is to avoid numeric overflow.
if (arena_usage >= std::numeric_limits<size_t>::max() - table_usage) {
return std::numeric_limits<size_t>::max();
}
// otherwise, return the actual usage
return arena_usage + table_usage;
}
bool MemTable::ShouldFlushNow() const {

@ -149,6 +149,14 @@ class MemTable {
// Notify the underlying storage that no more items will be added
void MarkImmutable() { table_->MarkReadOnly(); }
// return true if the current MemTableRep supports merge operator.
bool IsMergeOperatorSupported() const {
return table_->IsMergeOperatorSupported();
}
// return true if the current MemTableRep supports snapshots.
bool IsSnapshotSupported() const { return table_->IsSnapshotSupported(); }
// Get the lock associated for the key
port::RWMutex* GetLock(const Slice& key);

@ -275,6 +275,9 @@ class DB {
// this handle will all observe a stable snapshot of the current DB
// state. The caller must call ReleaseSnapshot(result) when the
// snapshot is no longer needed.
//
// nullptr will be returned if the DB fails to take a snapshot or does
// not support snapshot.
virtual const Snapshot* GetSnapshot() = 0;
// Release a previously acquired snapshot. The caller must not

@ -152,6 +152,14 @@ class MemTableRep {
// a Seek might only include keys with the same prefix as the target key.
virtual Iterator* GetDynamicPrefixIterator() { return GetIterator(); }
// Return true if the current MemTableRep supports merge operator.
// Default: true
virtual bool IsMergeOperatorSupported() const { return true; }
// Return true if the current MemTableRep supports snapshot
// Default: true
virtual bool IsSnapshotSupported() const { return true; }
protected:
// When *key is an internal key concatenated with the value, returns the
// user key.
@ -219,6 +227,39 @@ extern MemTableRepFactory* NewHashSkipListRepFactory(
extern MemTableRepFactory* NewHashLinkListRepFactory(
size_t bucket_count = 50000);
// This factory creates a cuckoo-hashing based mem-table representation.
// Cuckoo-hash is a closed-hash strategy, in which all key/value pairs
// are stored in the bucket array itself intead of in some data structures
// external to the bucket array. In addition, each key in cuckoo hash
// has a constant number of possible buckets in the bucket array. These
// two properties together makes cuckoo hash more memory efficient and
// a constant worst-case read time. Cuckoo hash is best suitable for
// point-lookup workload.
//
// When inserting a key / value, it first checks whether one of its possible
// buckets is empty. If so, the key / value will be inserted to that vacant
// bucket. Otherwise, one of the keys originally stored in one of these
// possible buckets will be "kicked out" and move to one of its possible
// buckets (and possibly kicks out another victim.) In the current
// implementation, such "kick-out" path is bounded. If it cannot find a
// "kick-out" path for a specific key, this key will be stored in a backup
// structure, and the current memtable to be forced to immutable.
//
// Note that currently this mem-table representation does not support
// snapshot (i.e., it only queries latest state) and iterators. In addition,
// MultiGet operation might also lose its atomicity due to the lack of
// snapshot support.
//
// Parameters:
// write_buffer_size: the write buffer size in bytes.
// average_data_size: the average size of key + value in bytes. This value
// together with write_buffer_size will be used to compute the number
// of buckets.
// hash_function_count: the number of hash functions that will be used by
// the cuckoo-hash. The number also equals to the number of possible
// buckets each key will have.
extern MemTableRepFactory* NewHashCuckooRepFactory(
size_t write_buffer_size, size_t average_data_size = 64,
unsigned int hash_function_count = 4);
#endif // ROCKSDB_LITE
} // namespace rocksdb

@ -0,0 +1,627 @@
// Copyright (c) 2014, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
#ifndef ROCKSDB_LITE
#include "util/hash_cuckoo_rep.h"
#include <algorithm>
#include <atomic>
#include <limits>
#include <queue>
#include <string>
#include <memory>
#include <vector>
#include "rocksdb/memtablerep.h"
#include "util/murmurhash.h"
#include "db/memtable.h"
#include "db/skiplist.h"
#include "util/stl_wrappers.h"
namespace rocksdb {
namespace {
// the default maximum size of the cuckoo path searching queue
static const int kCuckooPathMaxSearchSteps = 100;
struct CuckooStep {
static const int kNullStep = -1;
// the bucket id in the cuckoo array.
int bucket_id_;
// index of cuckoo-step array that points to its previous step,
// -1 if it the beginning step.
int prev_step_id_;
// the depth of the current step.
unsigned int depth_;
CuckooStep() : bucket_id_(-1), prev_step_id_(kNullStep), depth_(1) {}
CuckooStep(CuckooStep&&) = default;
CuckooStep& operator=(CuckooStep&&) = default;
CuckooStep(const CuckooStep&) = delete;
CuckooStep& operator=(const CuckooStep&) = delete;
CuckooStep(int bucket_id, int prev_step_id, int depth)
: bucket_id_(bucket_id), prev_step_id_(prev_step_id), depth_(depth) {}
};
class HashCuckooRep : public MemTableRep {
public:
explicit HashCuckooRep(const MemTableRep::KeyComparator& compare,
Arena* arena, const size_t bucket_count,
const unsigned int hash_func_count)
: MemTableRep(arena),
compare_(compare),
arena_(arena),
bucket_count_(bucket_count),
cuckoo_path_max_depth_(kDefaultCuckooPathMaxDepth),
occupied_count_(0),
hash_function_count_(hash_func_count),
backup_table_(nullptr) {
char* mem = reinterpret_cast<char*>(
arena_->Allocate(sizeof(std::atomic<const char*>) * bucket_count_));
cuckoo_array_ = new (mem) std::atomic<const char*>[bucket_count_];
for (unsigned int bid = 0; bid < bucket_count_; ++bid) {
cuckoo_array_[bid].store(nullptr, std::memory_order_relaxed);
}
cuckoo_path_ = reinterpret_cast<int*>(
arena_->Allocate(sizeof(int*) * (cuckoo_path_max_depth_ + 1)));
is_nearly_full_ = false;
}
// return false, indicating HashCuckooRep does not support merge operator.
virtual bool IsMergeOperatorSupported() const override { return false; }
// return false, indicating HashCuckooRep does not support snapshot.
virtual bool IsSnapshotSupported() const override { return false; }
// Returns true iff an entry that compares equal to key is in the collection.
virtual bool Contains(const char* internal_key) const override;
virtual ~HashCuckooRep() override {}
// Insert the specified key (internal_key) into the mem-table. Assertion
// fails if
// the current mem-table already contains the specified key.
virtual void Insert(KeyHandle handle) override;
// This function returns std::numeric_limits<size_t>::max() in the following
// three cases to disallow further write operations:
// 1. when the fullness reaches kMaxFullnes.
// 2. when the backup_table_ is used.
//
// otherwise, this function will always return 0.
virtual size_t ApproximateMemoryUsage() override {
if (is_nearly_full_) {
return std::numeric_limits<size_t>::max();
}
return 0;
}
virtual void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg,
const char* entry)) override;
class Iterator : public MemTableRep::Iterator {
std::shared_ptr<std::vector<const char*>> bucket_;
typename std::vector<const char*>::const_iterator mutable cit_;
const KeyComparator& compare_;
std::string tmp_; // For passing to EncodeKey
bool mutable sorted_;
void DoSort() const;
public:
explicit Iterator(std::shared_ptr<std::vector<const char*>> bucket,
const KeyComparator& compare);
// Initialize an iterator over the specified collection.
// The returned iterator is not valid.
// explicit Iterator(const MemTableRep* collection);
virtual ~Iterator() override{};
// Returns true iff the iterator is positioned at a valid node.
virtual bool Valid() const override;
// Returns the key at the current position.
// REQUIRES: Valid()
virtual const char* key() const override;
// Advances to the next position.
// REQUIRES: Valid()
virtual void Next() override;
// Advances to the previous position.
// REQUIRES: Valid()
virtual void Prev() override;
// Advance to the first entry with a key >= target
virtual void Seek(const Slice& user_key, const char* memtable_key) override;
// Position at the first entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToFirst() override;
// Position at the last entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToLast() override;
};
struct CuckooStepBuffer {
CuckooStepBuffer() : write_index_(0), read_index_(0) {}
~CuckooStepBuffer() {}
int write_index_;
int read_index_;
CuckooStep steps_[kCuckooPathMaxSearchSteps];
CuckooStep& NextWriteBuffer() { return steps_[write_index_++]; }
inline const CuckooStep& ReadNext() { return steps_[read_index_++]; }
inline bool HasNewWrite() { return write_index_ > read_index_; }
inline void reset() {
write_index_ = 0;
read_index_ = 0;
}
inline bool IsFull() { return write_index_ >= kCuckooPathMaxSearchSteps; }
// returns the number of steps that has been read
inline int ReadCount() { return read_index_; }
// returns the number of steps that has been written to the buffer.
inline int WriteCount() { return write_index_; }
};
private:
const MemTableRep::KeyComparator& compare_;
// the pointer to Arena to allocate memory, immutable after construction.
Arena* const arena_;
// the number of hash bucket in the hash table.
const size_t bucket_count_;
// the maxinum depth of the cuckoo path.
const unsigned int cuckoo_path_max_depth_;
// the current number of entries in cuckoo_array_ which has been occupied.
size_t occupied_count_;
// the current number of hash functions used in the cuckoo hash.
unsigned int hash_function_count_;
// the backup MemTableRep to handle the case where cuckoo hash cannot find
// a vacant bucket for inserting the key of a put request.
std::shared_ptr<MemTableRep> backup_table_;
// the array to store pointers, pointing to the actual data.
std::atomic<const char*>* cuckoo_array_;
// a buffer to store cuckoo path
int* cuckoo_path_;
// a boolean flag indicating whether the fullness of bucket array
// reaches the point to make the current memtable immutable.
bool is_nearly_full_;
// the default maximum depth of the cuckoo path.
static const unsigned int kDefaultCuckooPathMaxDepth = 10;
CuckooStepBuffer step_buffer_;
// returns the bucket id assogied to the input slice based on the
unsigned int GetHash(const Slice& slice, const int hash_func_id) const {
// the seeds used in the Murmur hash to produce different hash functions.
static const int kMurmurHashSeeds[HashCuckooRepFactory::kMaxHashCount] = {
545609244, 1769731426, 763324157, 13099088, 592422103,
1899789565, 248369300, 1984183468, 1613664382, 1491157517};
return MurmurHash(slice.data(), slice.size(),
kMurmurHashSeeds[hash_func_id]) %
bucket_count_;
}
// A cuckoo path is a sequence of bucket ids, where each id points to a
// location of cuckoo_array_. This path describes the displacement sequence
// of entries in order to store the desired data specified by the input user
// key. The path starts from one of the locations associated with the
// specified user key and ends at a vacant space in the cuckoo array. This
// function will update the cuckoo_path.
//
// @return true if it found a cuckoo path.
bool FindCuckooPath(const char* internal_key, const Slice& user_key,
int* cuckoo_path, size_t* cuckoo_path_length,
int initial_hash_id = 0);
// Perform quick insert by checking whether there is a vacant bucket in one
// of the possible locations of the input key. If so, then the function will
// return true and the key will be stored in that vacant bucket.
//
// This function is a helper function of FindCuckooPath that discovers the
// first possible steps of a cuckoo path. It begins by first computing
// the possible locations of the input keys (and stores them in bucket_ids.)
// Then, if one of its possible locations is vacant, then the input key will
// be stored in that vacant space and the function will return true.
// Otherwise, the function will return false indicating a complete search
// of cuckoo-path is needed.
bool QuickInsert(const char* internal_key, const Slice& user_key,
int bucket_ids[], const int initial_hash_id);
// Unhide default implementations of GetIterator
using MemTableRep::GetIterator;
// Returns the pointer to the internal iterator to the buckets where buckets
// are sorted according to the user specified KeyComparator. Note that
// any insert after this function call may affect the sorted nature of
// the returned iterator.
virtual MemTableRep::Iterator* GetIterator() override {
std::vector<const char*> compact_buckets;
for (unsigned int bid = 0; bid < bucket_count_; ++bid) {
const char* bucket = cuckoo_array_[bid].load(std::memory_order_relaxed);
if (bucket != nullptr) {
compact_buckets.push_back(bucket);
}
}
MemTableRep* backup_table = backup_table_.get();
if (backup_table != nullptr) {
std::unique_ptr<MemTableRep::Iterator> iter(backup_table->GetIterator());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
compact_buckets.push_back(iter->key());
}
}
return new Iterator(
std::shared_ptr<std::vector<const char*>>(
new std::vector<const char*>(std::move(compact_buckets))),
compare_);
}
};
void HashCuckooRep::Get(const LookupKey& key, void* callback_args,
bool (*callback_func)(void* arg, const char* entry)) {
Slice user_key = key.user_key();
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
const char* bucket =
cuckoo_array_[GetHash(user_key, hid)].load(std::memory_order_acquire);
if (bucket != nullptr) {
auto bucket_user_key = UserKey(bucket);
if (user_key.compare(bucket_user_key) == 0) {
callback_func(callback_args, bucket);
break;
}
} else {
// as Put() always stores at the vacant bucket located by the
// hash function with the smallest possible id, when we first
// find a vacant bucket in Get(), that means a miss.
break;
}
}
MemTableRep* backup_table = backup_table_.get();
if (backup_table != nullptr) {
backup_table->Get(key, callback_args, callback_func);
}
}
void HashCuckooRep::Insert(KeyHandle handle) {
static const float kMaxFullness = 0.90;
auto* key = static_cast<char*>(handle);
int initial_hash_id = 0;
size_t cuckoo_path_length = 0;
auto user_key = UserKey(key);
// find cuckoo path
if (FindCuckooPath(key, user_key, cuckoo_path_, &cuckoo_path_length,
initial_hash_id) == false) {
// if true, then we can't find a vacant bucket for this key even we
// have used up all the hash functions. Then use a backup memtable to
// store such key, which will further make this mem-table become
// immutable.
if (backup_table_.get() == nullptr) {
VectorRepFactory factory(10);
backup_table_.reset(factory.CreateMemTableRep(compare_, arena_, nullptr));
is_nearly_full_ = true;
}
backup_table_->Insert(key);
return;
}
// when reaching this point, means the insert can be done successfully.
occupied_count_++;
if (occupied_count_ >= bucket_count_ * kMaxFullness) {
is_nearly_full_ = true;
}
// perform kickout process if the length of cuckoo path > 1.
if (cuckoo_path_length == 0) return;
// the cuckoo path stores the kickout path in reverse order.
// so the kickout or displacement is actually performed
// in reverse order, which avoids false-negatives on read
// by moving each key involved in the cuckoo path to the new
// location before replacing it.
for (size_t i = 1; i < cuckoo_path_length; ++i) {
int kicked_out_bid = cuckoo_path_[i - 1];
int current_bid = cuckoo_path_[i];
// since we only allow one writer at a time, it is safe to do relaxed read.
cuckoo_array_[kicked_out_bid]
.store(cuckoo_array_[current_bid].load(std::memory_order_relaxed),
std::memory_order_release);
}
int insert_key_bid = cuckoo_path_[cuckoo_path_length - 1];
cuckoo_array_[insert_key_bid].store(key, std::memory_order_release);
}
bool HashCuckooRep::Contains(const char* internal_key) const {
auto user_key = UserKey(internal_key);
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
const char* stored_key =
cuckoo_array_[GetHash(user_key, hid)].load(std::memory_order_acquire);
if (stored_key != nullptr) {
if (compare_(internal_key, stored_key) == 0) {
return true;
}
}
}
return false;
}
bool HashCuckooRep::QuickInsert(const char* internal_key, const Slice& user_key,
int bucket_ids[], const int initial_hash_id) {
int cuckoo_bucket_id = -1;
// Below does the followings:
// 0. Calculate all possible locations of the input key.
// 1. Check if there is a bucket having same user_key as the input does.
// 2. If there exists such bucket, then replace this bucket by the newly
// insert data and return. This step also performs duplication check.
// 3. If no such bucket exists but exists a vacant bucket, then insert the
// input data into it.
// 4. If step 1 to 3 all fail, then return false.
for (unsigned int hid = initial_hash_id; hid < hash_function_count_; ++hid) {
bucket_ids[hid] = GetHash(user_key, hid);
// since only one PUT is allowed at a time, and this is part of the PUT
// operation, so we can safely perform relaxed load.
const char* stored_key =
cuckoo_array_[bucket_ids[hid]].load(std::memory_order_relaxed);
if (stored_key == nullptr) {
if (cuckoo_bucket_id == -1) {
cuckoo_bucket_id = bucket_ids[hid];
}
} else {
const auto bucket_user_key = UserKey(stored_key);
if (bucket_user_key.compare(user_key) == 0) {
cuckoo_bucket_id = bucket_ids[hid];
break;
}
}
}
if (cuckoo_bucket_id != -1) {
cuckoo_array_[cuckoo_bucket_id]
.store(internal_key, std::memory_order_release);
return true;
}
return false;
}
// Perform pre-check and find the shortest cuckoo path. A cuckoo path
// is a displacement sequence for inserting the specified input key.
//
// @return true if it successfully found a vacant space or cuckoo-path.
// If the return value is true but the length of cuckoo_path is zero,
// then it indicates that a vacant bucket or an bucket with matched user
// key with the input is found, and a quick insertion is done.
bool HashCuckooRep::FindCuckooPath(const char* internal_key,
const Slice& user_key, int* cuckoo_path,
size_t* cuckoo_path_length,
const int initial_hash_id) {
int bucket_ids[HashCuckooRepFactory::kMaxHashCount];
*cuckoo_path_length = 0;
if (QuickInsert(internal_key, user_key, bucket_ids, initial_hash_id)) {
return true;
}
// If this step is reached, then it means:
// 1. no vacant bucket in any of the possible locations of the input key.
// 2. none of the possible locations of the input key has the same user
// key as the input `internal_key`.
// the front and back indices for the step_queue_
step_buffer_.reset();
for (unsigned int hid = initial_hash_id; hid < hash_function_count_; ++hid) {
/// CuckooStep& current_step = step_queue_[front_pos++];
CuckooStep& current_step = step_buffer_.NextWriteBuffer();
current_step.bucket_id_ = bucket_ids[hid];
current_step.prev_step_id_ = CuckooStep::kNullStep;
current_step.depth_ = 1;
}
while (step_buffer_.HasNewWrite()) {
int step_id = step_buffer_.read_index_;
const CuckooStep& step = step_buffer_.ReadNext();
// Since it's a BFS process, then the first step with its depth deeper
// than the maximum allowed depth indicates all the remaining steps
// in the step buffer queue will all exceed the maximum depth.
// Return false immediately indicating we can't find a vacant bucket
// for the input key before the maximum allowed depth.
if (step.depth_ >= cuckoo_path_max_depth_) {
return false;
}
// again, we can perform no barrier load safely here as the current
// thread is the only writer.
auto bucket_user_key =
UserKey(cuckoo_array_[step.bucket_id_].load(std::memory_order_relaxed));
if (step.prev_step_id_ != CuckooStep::kNullStep) {
if (bucket_user_key.compare(user_key) == 0) {
// then there is a loop in the current path, stop discovering this path.
continue;
}
}
// if the current bucket stores at its nth location, then we only consider
// its mth location where m > n. This property makes sure that all reads
// will not miss if we do have data associated to the query key.
//
// The n and m in the above statement is the start_hid and hid in the code.
unsigned int start_hid = hash_function_count_;
for (unsigned int hid = 0; hid < hash_function_count_; ++hid) {
bucket_ids[hid] = GetHash(bucket_user_key, hid);
if (step.bucket_id_ == bucket_ids[hid]) {
start_hid = hid;
}
}
// must found a bucket which is its current "home".
assert(start_hid != hash_function_count_);
// explore all possible next steps from the current step.
for (unsigned int hid = start_hid + 1; hid < hash_function_count_; ++hid) {
CuckooStep& next_step = step_buffer_.NextWriteBuffer();
next_step.bucket_id_ = bucket_ids[hid];
next_step.prev_step_id_ = step_id;
next_step.depth_ = step.depth_ + 1;
// once a vacant bucket is found, trace back all its previous steps
// to generate a cuckoo path.
if (cuckoo_array_[next_step.bucket_id_].load(std::memory_order_relaxed) ==
nullptr) {
// store the last step in the cuckoo path. Note that cuckoo_path
// stores steps in reverse order. This allows us to move keys along
// the cuckoo path by storing each key to the new place first before
// removing it from the old place. This property ensures reads will
// not missed due to moving keys along the cuckoo path.
cuckoo_path[(*cuckoo_path_length)++] = next_step.bucket_id_;
int depth;
for (depth = step.depth_; depth > 0 && step_id != CuckooStep::kNullStep;
depth--) {
const CuckooStep& prev_step = step_buffer_.steps_[step_id];
cuckoo_path[(*cuckoo_path_length)++] = prev_step.bucket_id_;
step_id = prev_step.prev_step_id_;
}
assert(depth == 0 && step_id == CuckooStep::kNullStep);
return true;
}
if (step_buffer_.IsFull()) {
// if true, then it reaches maxinum number of cuckoo search steps.
return false;
}
}
}
// tried all possible paths but still not unable to find a cuckoo path
// which path leads to a vacant bucket.
return false;
}
HashCuckooRep::Iterator::Iterator(
std::shared_ptr<std::vector<const char*>> bucket,
const KeyComparator& compare)
: bucket_(bucket),
cit_(bucket_->end()),
compare_(compare),
sorted_(false) {}
void HashCuckooRep::Iterator::DoSort() const {
if (!sorted_) {
std::sort(bucket_->begin(), bucket_->end(),
stl_wrappers::Compare(compare_));
cit_ = bucket_->begin();
sorted_ = true;
}
}
// Returns true iff the iterator is positioned at a valid node.
bool HashCuckooRep::Iterator::Valid() const {
DoSort();
return cit_ != bucket_->end();
}
// Returns the key at the current position.
// REQUIRES: Valid()
const char* HashCuckooRep::Iterator::key() const {
assert(Valid());
return *cit_;
}
// Advances to the next position.
// REQUIRES: Valid()
void HashCuckooRep::Iterator::Next() {
assert(Valid());
if (cit_ == bucket_->end()) {
return;
}
++cit_;
}
// Advances to the previous position.
// REQUIRES: Valid()
void HashCuckooRep::Iterator::Prev() {
assert(Valid());
if (cit_ == bucket_->begin()) {
// If you try to go back from the first element, the iterator should be
// invalidated. So we set it to past-the-end. This means that you can
// treat the container circularly.
cit_ = bucket_->end();
} else {
--cit_;
}
}
// Advance to the first entry with a key >= target
void HashCuckooRep::Iterator::Seek(const Slice& user_key,
const char* memtable_key) {
DoSort();
// Do binary search to find first value not less than the target
const char* encoded_key =
(memtable_key != nullptr) ? memtable_key : EncodeKey(&tmp_, user_key);
cit_ = std::equal_range(bucket_->begin(), bucket_->end(), encoded_key,
[this](const char* a, const char* b) {
return compare_(a, b) < 0;
}).first;
}
// Position at the first entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
void HashCuckooRep::Iterator::SeekToFirst() {
DoSort();
cit_ = bucket_->begin();
}
// Position at the last entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
void HashCuckooRep::Iterator::SeekToLast() {
DoSort();
cit_ = bucket_->end();
if (bucket_->size() != 0) {
--cit_;
}
}
} // anom namespace
MemTableRep* HashCuckooRepFactory::CreateMemTableRep(
const MemTableRep::KeyComparator& compare, Arena* arena,
const SliceTransform* transform) {
// The estimated average fullness. The write performance of any close hash
// degrades as the fullness of the mem-table increases. Setting kFullness
// to a value around 0.7 can better avoid write performance degradation while
// keeping efficient memory usage.
static const float kFullness = 0.7;
size_t pointer_size = sizeof(std::atomic<const char*>);
assert(write_buffer_size_ >= (average_data_size_ + pointer_size));
size_t bucket_count =
(write_buffer_size_ / (average_data_size_ + pointer_size)) / kFullness +
1;
unsigned int hash_function_count = hash_function_count_;
if (hash_function_count < 2) {
hash_function_count = 2;
}
if (hash_function_count > kMaxHashCount) {
hash_function_count = kMaxHashCount;
}
return new HashCuckooRep(compare, arena, bucket_count, hash_function_count);
}
MemTableRepFactory* NewHashCuckooRepFactory(size_t write_buffer_size,
size_t average_data_size,
unsigned int hash_function_count) {
return new HashCuckooRepFactory(write_buffer_size, average_data_size,
hash_function_count);
}
} // namespace rocksdb
#endif // ROCKSDB_LITE

@ -0,0 +1,42 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef ROCKSDB_LITE
#pragma once
#include "rocksdb/slice_transform.h"
#include "rocksdb/memtablerep.h"
namespace rocksdb {
class HashCuckooRepFactory : public MemTableRepFactory {
public:
// maxinum number of hash functions used in the cuckoo hash.
static const int kMaxHashCount = 10;
explicit HashCuckooRepFactory(size_t write_buffer_size,
size_t average_data_size,
unsigned int hash_function_count)
: write_buffer_size_(write_buffer_size),
average_data_size_(average_data_size),
hash_function_count_(hash_function_count) {}
virtual ~HashCuckooRepFactory() {}
virtual MemTableRep* CreateMemTableRep(
const MemTableRep::KeyComparator& compare, Arena* arena,
const SliceTransform* transform) override;
virtual const char* Name() const override { return "HashCuckooRepFactory"; }
private:
size_t write_buffer_size_;
size_t average_data_size_;
const unsigned int hash_function_count_;
};
} // namespace rocksdb
#endif // ROCKSDB_LITE
Loading…
Cancel
Save