Arm64 CRC32 parallel computation optimization for RocksDB (#5494)

Summary:
Crc32c Parallel computation optimization:
Algorithm comes from Intel whitepaper: [crc-iscsi-polynomial-crc32-instruction-paper](https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf)
 Input data is divided into three equal-sized blocks
Three parallel blocks (crc0, crc1, crc2) for 1024 Bytes
One Block: 42(BLK_LENGTH) * 8(step length: crc32c_u64) bytes

1. crc32c_test:
```
[==========] Running 4 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 4 tests from CRC
[ RUN      ] CRC.StandardResults
[       OK ] CRC.StandardResults (1 ms)
[ RUN      ] CRC.Values
[       OK ] CRC.Values (0 ms)
[ RUN      ] CRC.Extend
[       OK ] CRC.Extend (0 ms)
[ RUN      ] CRC.Mask
[       OK ] CRC.Mask (0 ms)
[----------] 4 tests from CRC (1 ms total)

[----------] Global test environment tear-down
[==========] 4 tests from 1 test case ran. (1 ms total)
[  PASSED  ] 4 tests.
```

2. RocksDB benchmark: db_bench --benchmarks="crc32c"

```
Linear Arm crc32c:
  crc32c: 1.005 micros/op 995133 ops/sec; 3887.2 MB/s (4096 per op)
```

```
Parallel optimization with Armv8 crypto extension:
  crc32c: 0.419 micros/op 2385078 ops/sec; 9316.7 MB/s (4096 per op)
```

It gets ~2.4x speedup compared to linear Arm crc32c instructions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5494

Differential Revision: D16340806

fbshipit-source-id: 95dae9a5b646fd20a8303671d82f17b2e162e945
main
Yuqi Gu 5 years ago committed by Facebook Github Bot
parent 74fb7f0ba5
commit a3c1832e86
  1. 4
      Makefile
  2. 83
      util/crc32c_arm64.cc
  3. 15
      util/crc32c_arm64.h

@ -144,8 +144,8 @@ HAVE_POWER8=1
endif
ifeq (,$(shell $(CXX) -fsyntax-only -march=armv8-a+crc -xc /dev/null 2>&1))
CXXFLAGS += -march=armv8-a+crc
CFLAGS += -march=armv8-a+crc
CXXFLAGS += -march=armv8-a+crc+crypto
CFLAGS += -march=armv8-a+crc+crypto
ARMCRC_SOURCE=1
endif

@ -19,35 +19,82 @@ uint32_t crc32c_runtime_check(void) {
uint32_t crc32c_arm64(uint32_t crc, unsigned char const *data,
unsigned len) {
const uint8_t *buf1;
const uint16_t *buf2;
const uint32_t *buf4;
const uint64_t *buf8;
const uint8_t *buf8;
const uint64_t *buf64 = (uint64_t *)data;
int length = (int)len;
crc ^= 0xffffffff;
int64_t length = (int64_t)len;
#ifdef HAVE_ARM64_CRYPTO
/* Crc32c Parallel computation
* Algorithm comes from Intel whitepaper:
* crc-iscsi-polynomial-crc32-instruction-paper
*
* Input data is divided into three equal-sized blocks
* Three parallel blocks (crc0, crc1, crc2) for 1024 Bytes
* One Block: 42(BLK_LENGTH) * 8(step length: crc32c_u64) bytes
*/
#define BLK_LENGTH 42
while (length >= 1024) {
uint64_t t0, t1;
uint32_t crc0 = 0, crc1 = 0, crc2 = 0;
crc ^= 0xffffffff;
buf8 = (const uint64_t *)data;
while ((length -= sizeof(uint64_t)) >= 0) {
crc = __crc32cd(crc, *buf8++);
/* Parallel Param:
* k0 = CRC32(x ^ (42 * 8 * 8 * 2 - 1));
* k1 = CRC32(x ^ (42 * 8 * 8 - 1));
*/
uint32_t k0 = 0xe417f38a, k1 = 0x8f158014;
/* First 8 bytei for better pipelining */
crc0 = crc32c_u64(crc, *buf64++);
/* 3 blocks crc32c parallel computation
*
* 42 * 8 * 3 = 1008 (bytes)
*/
for (int i = 0; i < BLK_LENGTH; i++, buf64++) {
crc0 = crc32c_u64(crc0, *buf64);
crc1 = crc32c_u64(crc1, *(buf64 + BLK_LENGTH));
crc2 = crc32c_u64(crc2, *(buf64 + (BLK_LENGTH * 2)));
}
buf64 += (BLK_LENGTH * 2);
/* Last 8 bytes */
crc = crc32c_u64(crc2, *buf64++);
t0 = (uint64_t)vmull_p64(crc0, k0);
t1 = (uint64_t)vmull_p64(crc1, k1);
/* Merge (crc0, crc1, crc2) -> crc */
crc1 = crc32c_u64(0, t1);
crc ^= crc1;
crc0 = crc32c_u64(0, t0);
crc ^= crc0;
length -= 1024;
}
#endif
buf8 = (const uint8_t *)buf64;
while (length >= 8) {
crc = crc32c_u64(crc, *(const uint64_t*)buf8);
buf8 += 8;
length -= 8;
}
/* The following is more efficient than the straight loop */
buf4 = (const uint32_t *)buf8;
if (length & sizeof(uint32_t)) {
crc = __crc32cw(crc, *buf4++);
if (length >= 4) {
crc = crc32c_u32(crc, *(const uint32_t*)buf8);
buf8 += 4;
length -= 4;
}
buf2 = (const uint16_t *)buf4;
if (length & sizeof(uint16_t)) {
crc = __crc32ch(crc, *buf2++);
if (length >= 2) {
crc = crc32c_u16(crc, *(const uint16_t*)buf8);
buf8 += 2;
length -= 2;
}
buf1 = (const uint8_t *)buf2;
if (length & sizeof(uint8_t))
crc = __crc32cb(crc, *buf1);
if (length >= 1)
crc = crc32c_u8(crc, *buf8);
crc ^= 0xffffffff;
return crc;

@ -9,13 +9,24 @@
#include <cinttypes>
#if defined(__aarch64__) || defined(__AARCH64__)
#ifdef __ARM_FEATURE_CRC32
#define HAVE_ARM64_CRC
#include <arm_acle.h>
#define crc32c_u8(crc, v) __crc32cb(crc, v)
#define crc32c_u16(crc, v) __crc32ch(crc, v)
#define crc32c_u32(crc, v) __crc32cw(crc, v)
#define crc32c_u64(crc, v) __crc32cd(crc, v)
extern uint32_t crc32c_arm64(uint32_t crc, unsigned char const *data, unsigned len);
extern uint32_t crc32c_runtime_check(void);
#endif
#endif
#ifdef __ARM_FEATURE_CRYPTO
#define HAVE_ARM64_CRYPTO
#include <arm_neon.h>
#endif // __ARM_FEATURE_CRYPTO
#endif // __ARM_FEATURE_CRC32
#endif // defined(__aarch64__) || defined(__AARCH64__)
#endif

Loading…
Cancel
Save