Optimize sequential insert into memtable - Part 2: Implementation

Summary:
Implement a insert hint into skip-list to hint insert position. This is
to optimize for the write workload where there are multiple stream of
sequential writes. For example, there is a stream of keys of a1, a2,
a3... but also b1, b2, b2... Each stream are not neccessary strictly
sequential, but can get reorder a little bit. User can specify a prefix
extractor and the `SkipListRep` can thus maintan a hint for each of the
stream for fast insert into memtable.

This is the internal implementation part. See #1419 for the interface part.
See inline comments for details.
Closes https://github.com/facebook/rocksdb/pull/1449

Differential Revision: D4106781

Pulled By: yiwu-arbug

fbshipit-source-id: f4d48c4
main
Yi Wu 8 years ago committed by Facebook Github Bot
parent 5ed650857d
commit df5eeb85ca
  1. 334
      db/inlineskiplist.h
  2. 142
      db/inlineskiplist_test.cc

@ -44,6 +44,7 @@
#pragma once
#include <assert.h>
#include <stdlib.h>
#include <algorithm>
#include <atomic>
#include "port/port.h"
#include "util/allocator.h"
@ -53,6 +54,9 @@ namespace rocksdb {
template <class Comparator>
class InlineSkipList {
public:
struct InsertHint;
private:
struct Node;
@ -77,6 +81,19 @@ class InlineSkipList {
// REQUIRES: no concurrent calls to INSERT
void Insert(const char* key);
// Inserts a key allocated by AllocateKey with a hint. It can be used to
// optimize sequential inserts, or inserting a key close to the largest
// key inserted previously with the same hint.
//
// If hint points to nullptr, a new hint will be populated, which can be
// used in subsequent calls.
//
// REQUIRES: All keys inserted with the same hint must be consecutive in the
// skip-list, i.e. let [k1..k2] be the range of keys inserted with hint h,
// there shouldn't be a key k in the skip-list with k1 < k < k2, unless k is
// also inserted with the same hint.
void InsertWithHint(const char* key, InsertHint** hint);
// Like Insert, but external synchronization is not required.
void InsertConcurrently(const char* key);
@ -86,6 +103,9 @@ class InlineSkipList {
// Return estimated number of entries smaller than `key`.
uint64_t EstimateCount(const char* key) const;
// Validate correctness of the skip-list.
void TEST_Validate() const;
// Iteration over the contents of a skip list
class Iterator {
public:
@ -134,7 +154,7 @@ class InlineSkipList {
};
private:
enum MaxPossibleHeightEnum : uint16_t { kMaxPossibleHeight = 32 };
static const uint16_t kMaxPossibleHeight = 32;
const uint16_t kMaxHeight_;
const uint16_t kBranching_;
@ -156,7 +176,7 @@ class InlineSkipList {
// prev_height_ is the height of prev_[0]. prev_[0] can only be equal
// to head when max_height_ and prev_height_ are both 1.
Node** prev_;
std::atomic<int32_t> prev_height_;
std::atomic<uint16_t> prev_height_;
inline int GetMaxHeight() const {
return max_height_.load(std::memory_order_relaxed);
@ -166,6 +186,13 @@ class InlineSkipList {
Node* AllocateNode(size_t key_size, int height);
// Allocate a hint used by InsertWithHint().
InsertHint* AllocateInsertHint();
// Extract the node from a key allocated by AllocateKey(), and populate
// height of the node.
Node* GetNodeForInsert(const char* key, int* height);
bool Equal(const char* a, const char* b) const {
return (compare_(a, b) == 0);
}
@ -188,6 +215,13 @@ class InlineSkipList {
// level in [0..max_height_-1], if prev is non-null.
Node* FindLessThan(const char* key, Node** prev = nullptr) const;
// Return the latest node with a key < key on bottom_level. Start searching
// from root node on the level below top_level.
// Fills prev[level] with pointer to previous node at "level" for every
// level in [bottom_level..top_level-1], if prev is non-null.
Node* FindLessThan(const char* key, Node** prev, Node* root, int top_level,
int bottom_level) const;
// Return the last node in the list.
// Return head_ if list is empty.
Node* FindLast() const;
@ -201,6 +235,10 @@ class InlineSkipList {
void FindLevelSplice(const char* key, Node* before, Node* after, int level,
Node** out_prev, Node** out_next);
// Check if we need to invalidate prev_ cache after inserting a node of
// given height.
void MaybeInvalidatePrev(int height);
// No copying allowed
InlineSkipList(const InlineSkipList&);
InlineSkipList& operator=(const InlineSkipList&);
@ -265,12 +303,31 @@ struct InlineSkipList<Comparator>::Node {
next_[-n].store(x, std::memory_order_relaxed);
}
// Insert node after prev on specific level.
void InsertAfter(Node* prev, int level) {
// NoBarrier_SetNext() suffices since we will add a barrier when
// we publish a pointer to "this" in prev.
NoBarrier_SetNext(level, prev->NoBarrier_Next(level));
prev->SetNext(level, this);
}
private:
// next_[0] is the lowest level link (level 0). Higher levels are
// stored _earlier_, so level 1 is at next_[-1].
std::atomic<Node*> next_[1];
};
//
//
// Hint to insert position to speed-up inserts. See implementation of
// InsertWithHint() for more details.
template <class Comparator>
struct InlineSkipList<Comparator>::InsertHint {
Node** prev;
uint8_t* prev_height;
int num_levels;
};
template <class Comparator>
inline InlineSkipList<Comparator>::Iterator::Iterator(
const InlineSkipList* list) {
@ -401,8 +458,17 @@ InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
Node* x = head_;
int level = GetMaxHeight() - 1;
return FindLessThan(key, prev, head_, GetMaxHeight(), 0);
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev,
Node* root, int top_level,
int bottom_level) const {
assert(top_level > bottom_level);
int level = top_level - 1;
Node* x = root;
// KeyIsAfter(key, last_not_after) is definitely false
Node* last_not_after = nullptr;
while (true) {
@ -416,10 +482,10 @@ InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
if (prev != nullptr) {
prev[level] = x;
}
if (level == 0) {
if (level == bottom_level) {
return x;
} else {
// Switch to next list, reuse KeyIUsAfterNode() result
// Switch to next list, reuse KeyIsAfterNode() result
last_not_after = next;
level--;
}
@ -528,6 +594,63 @@ InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
return x;
}
template <class Comparator>
typename InlineSkipList<Comparator>::InsertHint*
InlineSkipList<Comparator>::AllocateInsertHint() {
InsertHint* hint = reinterpret_cast<InsertHint*>(
allocator_->AllocateAligned(sizeof(InsertHint)));
// Allocate an extra level on kMaxHeight_, to make boundary cases easier to
// handle.
hint->prev = reinterpret_cast<Node**>(
allocator_->AllocateAligned(sizeof(Node*) * (kMaxHeight_ + 1)));
hint->prev_height = reinterpret_cast<uint8_t*>(
allocator_->AllocateAligned(sizeof(uint8_t*) * kMaxHeight_));
for (int i = 0; i <= kMaxHeight_; i++) {
hint->prev[i] = head_;
}
hint->num_levels = 0;
return hint;
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::GetNodeForInsert(const char* key, int* height) {
// Find the Node that we placed before the key in AllocateKey
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
assert(height != nullptr);
*height = x->UnstashHeight();
assert(*height >= 1 && *height <= kMaxHeight_);
if (*height > GetMaxHeight()) {
// It is ok to mutate max_height_ without any synchronization
// with concurrent readers. A concurrent reader that observes
// the new value of max_height_ will see either the old value of
// new level pointers from head_ (nullptr), or a new value set in
// the loop below. In the former case the reader will
// immediately drop to the next level since nullptr sorts after all
// keys. In the latter case the reader will use the new node.
max_height_.store(*height, std::memory_order_relaxed);
}
return x;
}
template <class Comparator>
void InlineSkipList<Comparator>::MaybeInvalidatePrev(int height) {
// We don't have a lock-free algorithm for updating prev_, but we do have
// the option of invalidating the entire sequential-insertion cache.
// prev_'s invariant is that prev_[i] (i > 0) is the predecessor of
// prev_[0] at that level. We're only going to violate that if height
// > 1 and key lands after prev_[height - 1] but before prev_[0].
// Comparisons are pretty expensive, so an easier version is to just
// clear the cache if height > 1. We only write to prev_height_ if the
// nobody else has, to avoid invalidating the root of the skip list in
// all of the other CPU caches.
if (height > 1 && prev_height_.load(std::memory_order_relaxed) != 0) {
prev_height_.store(0, std::memory_order_relaxed);
}
}
template <class Comparator>
void InlineSkipList<Comparator>::Insert(const char* key) {
// InsertConcurrently often can't maintain the prev_ invariants, so
@ -558,36 +681,135 @@ void InlineSkipList<Comparator>::Insert(const char* key) {
// Our data structure does not allow duplicate insertion
assert(prev_[0]->Next(0) == nullptr || !Equal(key, prev_[0]->Next(0)->Key()));
// Find the Node that we placed before the key in AllocateKey
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
int height = x->UnstashHeight();
assert(height >= 1 && height <= kMaxHeight_);
if (height > GetMaxHeight()) {
for (int i = GetMaxHeight(); i < height; i++) {
prev_[i] = head_;
}
// It is ok to mutate max_height_ without any synchronization
// with concurrent readers. A concurrent reader that observes
// the new value of max_height_ will see either the old value of
// new level pointers from head_ (nullptr), or a new value set in
// the loop below. In the former case the reader will
// immediately drop to the next level since nullptr sorts after all
// keys. In the latter case the reader will use the new node.
max_height_.store(height, std::memory_order_relaxed);
}
int height = 0;
Node* x = GetNodeForInsert(key, &height);
for (int i = 0; i < height; i++) {
// NoBarrier_SetNext() suffices since we will add a barrier when
// we publish a pointer to "x" in prev[i].
x->NoBarrier_SetNext(i, prev_[i]->NoBarrier_Next(i));
prev_[i]->SetNext(i, x);
x->InsertAfter(prev_[i], i);
}
prev_[0] = x;
prev_height_.store(height, std::memory_order_relaxed);
}
// The goal here is to reduce the number of key comparisons, as it can be
// expensive. We maintain a hint which help us to find a insert position
// between or next to previously inserted keys with the same hint.
// Note that we require all keys inserted with the same hint are consecutive
// in the skip-list.
//
// The hint keeps a list of nodes previous inserted with the same hint:
// * The first level, prev[0], points to the largest key of them.
// * For 0 < i < num_levels, prev[i] is the previous node of prev[i-1]
// on level i, i.e.
// prev[i] < prev[i-1] <= prev[i]->Next(i)
// (prev[i-1] and prev[i]->Next(i) could be the same node.)
// In addition prev_height keeps the height of prev[i].
//
// When inserting a new key, we look for the lowest level L where
// prev[L] < key < prev[L-1]. Let
// M = max(prev_height[i]..prev_height[num_levels-1])
// For each level between in [L, M), the previous node of
// the new key must be one of prev[i]. For levels below L and above M
// we do normal skip-list search if needed.
//
// The optimization is suitable for stream of keys where new inserts are next
// to or close to the largest key ever inserted, e.g. sequential inserts.
template <class Comparator>
void InlineSkipList<Comparator>::InsertWithHint(const char* key,
InsertHint** hint_ptr) {
int height = 0;
Node* x = GetNodeForInsert(key, &height);
// InsertWithHint() is not compatible with prev_ optimization used by
// Insert().
MaybeInvalidatePrev(height);
assert(hint_ptr != nullptr);
InsertHint* hint = *hint_ptr;
if (hint == nullptr) {
// AllocateInsertHint will initialize hint with num_levels = 0 and
// prev[i] = head_ for all i.
hint = AllocateInsertHint();
*hint_ptr = hint;
}
// Look for the first level i < num_levels with prev[i] < key.
int level = 0;
for (; level < hint->num_levels; level++) {
if (KeyIsAfterNode(key, hint->prev[level])) {
assert(!KeyIsAfterNode(key, hint->prev[level]->Next(level)));
break;
}
}
Node* tmp_prev[kMaxPossibleHeight];
if (level >= hint->num_levels) {
// The hint is not useful in this case. Fallback to full search.
FindLessThan(key, tmp_prev);
for (int i = 0; i < height; i++) {
assert(tmp_prev[i] == head_ || KeyIsAfterNode(key, tmp_prev[i]));
assert(!KeyIsAfterNode(key, tmp_prev[i]->Next(i)));
x->InsertAfter(tmp_prev[i], i);
}
} else {
// Search on levels below "level", using prev[level] as root.
if (level > 0) {
FindLessThan(key, tmp_prev, hint->prev[level], level, 0);
for (int i = 0; i < level && i < height; i++) {
assert(tmp_prev[i] == head_ || KeyIsAfterNode(key, tmp_prev[i]));
assert(!KeyIsAfterNode(key, tmp_prev[i]->Next(i)));
x->InsertAfter(tmp_prev[i], i);
}
}
// The current level where the new node is to insert into skip-list.
int current_level = level;
for (int i = level; i < hint->num_levels; i++) {
while (current_level < height && current_level < hint->prev_height[i]) {
// In this case, prev[i] is the previous node of key on current_level,
// since:
// * prev[i] < key;
// * no other nodes less than prev[level-1] has height greater than
// current_level, and prev[level-1] > key.
assert(KeyIsAfterNode(key, hint->prev[i]));
assert(!KeyIsAfterNode(key, hint->prev[i]->Next(current_level)));
x->InsertAfter(hint->prev[i], current_level);
current_level++;
}
}
// Full search on levels above current_level if needed.
if (current_level < height) {
FindLessThan(key, tmp_prev, head_, GetMaxHeight(), current_level);
for (int i = current_level; i < height; i++) {
assert(tmp_prev[i] == head_ || KeyIsAfterNode(key, tmp_prev[i]));
assert(!KeyIsAfterNode(key, tmp_prev[i]->Next(i)));
x->InsertAfter(tmp_prev[i], i);
}
}
}
// The last step is update the new node into the hint.
// * If "height" <= "level", prev[level] is still the previous node of
// prev[level-1] on level "level". Stop.
// * Otherwise, the new node becomes the new previous node of
// prev[level-1], or if level=0, the new node becomes the largest node
// inserted with the same hint. Replace prev[level] with the new node.
// * If prev[i] is replaced by another node, check if it can replace
// prev[i+1] using a similar rule, up till "num_levels" level.
Node* p = x;
uint8_t h = static_cast<uint8_t>(height);
for (int i = level; i < hint->num_levels; i++) {
if (h <= i) {
p = nullptr;
break;
}
std::swap(p, hint->prev[i]);
std::swap(h, hint->prev_height[i]);
}
if (p != nullptr && h > hint->num_levels) {
hint->prev[hint->num_levels] = p;
hint->prev_height[hint->num_levels] = h;
hint->num_levels++;
}
}
template <class Comparator>
void InlineSkipList<Comparator>::FindLevelSplice(const char* key, Node* before,
Node* after, int level,
@ -613,19 +835,7 @@ void InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
int height = x->UnstashHeight();
assert(height >= 1 && height <= kMaxHeight_);
// We don't have a lock-free algorithm for updating prev_, but we do have
// the option of invalidating the entire sequential-insertion cache.
// prev_'s invariant is that prev_[i] (i > 0) is the predecessor of
// prev_[0] at that level. We're only going to violate that if height
// > 1 and key lands after prev_[height - 1] but before prev_[0].
// Comparisons are pretty expensive, so an easier version is to just
// clear the cache if height > 1. We only write to prev_height_ if the
// nobody else has, to avoid invalidating the root of the skip list in
// all of the other CPU caches.
if (height > 1 && prev_height_.load(std::memory_order_relaxed) != 0) {
prev_height_.store(0, std::memory_order_relaxed);
}
MaybeInvalidatePrev(height);
int max_height = max_height_.load(std::memory_order_relaxed);
while (height > max_height) {
@ -673,4 +883,44 @@ bool InlineSkipList<Comparator>::Contains(const char* key) const {
}
}
template <class Comparator>
void InlineSkipList<Comparator>::TEST_Validate() const {
// Interate over all levels at the same time, and verify nodes appear in
// the right order, and nodes appear in upper level also appear in lower
// levels.
Node* nodes[kMaxPossibleHeight];
int max_height = GetMaxHeight();
for (int i = 0; i < max_height; i++) {
nodes[i] = head_;
}
while (nodes[0] != nullptr) {
Node* l0_next = nodes[0]->Next(0);
if (l0_next == nullptr) {
break;
}
assert(nodes[0] == head_ || compare_(nodes[0]->Key(), l0_next->Key()) < 0);
nodes[0] = l0_next;
int i = 1;
while (i < max_height) {
Node* next = nodes[i]->Next(i);
if (next == nullptr) {
break;
}
auto cmp = compare_(nodes[0]->Key(), next->Key());
assert(cmp <= 0);
if (cmp == 0) {
assert(next == nodes[0]);
nodes[i] = next;
} else {
break;
}
i++;
}
}
for (int i = 1; i < max_height; i++) {
assert(nodes[i]->Next(i) == nullptr);
}
}
} // namespace rocksdb

@ -9,6 +9,7 @@
#include "db/inlineskiplist.h"
#include <set>
#include <unordered_set>
#include "rocksdb/env.h"
#include "util/concurrent_arena.h"
#include "util/hash.h"
@ -42,7 +43,49 @@ struct TestComparator {
}
};
class InlineSkipTest : public testing::Test {};
typedef InlineSkipList<TestComparator> TestInlineSkipList;
class InlineSkipTest : public testing::Test {
public:
void Insert(TestInlineSkipList* list, Key key) {
char* buf = list->AllocateKey(sizeof(Key));
memcpy(buf, &key, sizeof(Key));
list->Insert(buf);
keys_.insert(key);
}
void InsertWithHint(TestInlineSkipList* list, Key key,
TestInlineSkipList::InsertHint** hint) {
char* buf = list->AllocateKey(sizeof(Key));
memcpy(buf, &key, sizeof(Key));
list->InsertWithHint(buf, hint);
keys_.insert(key);
}
void Validate(TestInlineSkipList* list) {
// Check keys exist.
for (Key key : keys_) {
ASSERT_TRUE(list->Contains(Encode(&key)));
}
// Iterate over the list, make sure keys appears in order and no extra
// keys exist.
TestInlineSkipList::Iterator iter(list);
ASSERT_FALSE(iter.Valid());
Key zero = 0;
iter.Seek(Encode(&zero));
for (Key key : keys_) {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(key, Decode(iter.key()));
iter.Next();
}
ASSERT_FALSE(iter.Valid());
// Validate the list is well-formed.
list->TEST_Validate();
}
private:
std::set<Key> keys_;
};
TEST_F(InlineSkipTest, Empty) {
Arena arena;
@ -153,6 +196,103 @@ TEST_F(InlineSkipTest, InsertAndLookup) {
}
}
TEST_F(InlineSkipTest, InsertWithHint_Sequential) {
const int N = 100000;
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
TestInlineSkipList::InsertHint* hint = nullptr;
for (int i = 0; i < N; i++) {
Key key = i;
InsertWithHint(&list, key, &hint);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_MultipleHints) {
const int N = 100000;
const int S = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
TestInlineSkipList::InsertHint* hints[S];
Key last_key[S];
for (int i = 0; i < S; i++) {
hints[i] = nullptr;
last_key[i] = 0;
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S);
Key key = (s << 32) + (++last_key[s]);
InsertWithHint(&list, key, &hints[s]);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_MultipleHintsRandom) {
const int N = 100000;
const int S = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
TestInlineSkipList::InsertHint* hints[S];
for (int i = 0; i < S; i++) {
hints[i] = nullptr;
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S);
Key key = (s << 32) + rnd.Next();
InsertWithHint(&list, key, &hints[s]);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_CompatibleWithInsertWithoutHint) {
const int N = 100000;
const int S1 = 100;
const int S2 = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
std::unordered_set<Key> used;
Key with_hint[S1];
Key without_hint[S2];
TestInlineSkipList::InsertHint* hints[S1];
for (int i = 0; i < S1; i++) {
hints[i] = nullptr;
while (true) {
Key s = rnd.Next();
if (used.insert(s).second) {
with_hint[i] = s;
break;
}
}
}
for (int i = 0; i < S2; i++) {
while (true) {
Key s = rnd.Next();
if (used.insert(s).second) {
without_hint[i] = s;
break;
}
}
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S1 + S2);
if (s < S1) {
Key key = (with_hint[s] << 32) + rnd.Next();
InsertWithHint(&list, key, &hints[s]);
} else {
Key key = (without_hint[s - S1] << 32) + rnd.Next();
Insert(&list, key);
}
}
Validate(&list);
}
// We want to make sure that with a single writer and multiple
// concurrent readers (with no synchronization other than when a
// reader's iterator is created), the reader always observes all the

Loading…
Cancel
Save