create compressed_levels_ in Version, allocate its space using arena. Make Version::Get, Version::FindFile faster

Summary:
    Define CompressedFileMetaData that just contains fd, smallest_slice, largest_slice. Create compressed_levels_ in Version, the space is allocated using arena
    Thus increase the file meta data locality, speed up "Get" and "FindFile"

    benchmark with in-memory tmpfs, could have 4% improvement under "random read" and 2% improvement under "read while writing"

benchmark command:
./db_bench --db=/mnt/db/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --block_size=4096 --cache_size=17179869184 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --disable_wal=0 --sync=0 --disable_data_sync=1 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_grandparent_overlap_factor=10 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --perf_level=0 --benchmarks=readwhilewriting,readwhilewriting,readwhilewriting --use_existing_db=1 --num=52428800 --threads=1 —writes_per_second=81920

Read Random:
From 1.8363 ms/op, improve to 1.7587 ms/op.
Read while writing:
From 2.985 ms/op, improve to 2.924 ms/op.

Test Plan:
    make all check

Reviewers: ljin, haobo, yhchiang, sdong

Reviewed By: sdong

Subscribers: dhruba, igor

Differential Revision: https://reviews.facebook.net/D19419
main
Feng Zhu 10 years ago
parent cae316d758
commit f697cad15c
  1. 2
      db/compaction.h
  2. 32
      db/version_edit.h
  3. 169
      db/version_set.cc
  4. 22
      db/version_set.h
  5. 113
      db/version_set_test.cc

@ -53,7 +53,7 @@ class Compaction {
// Whether need to write output file to second DB path.
uint32_t GetOutputPathId() const { return output_path_id_; }
// Is this a trivial compaction that can be implemented by just
// Is this a trivial compaction that can be implemented by just
// moving a single input file to the next level (no merging or splitting)
bool IsTrivialMove() const;

@ -91,6 +91,38 @@ struct FileMetaData {
raw_value_size(0) {}
};
// A compressed copy of file meta data that just contain
// smallest and largest key's slice
struct FdWithKeyRange {
FileDescriptor fd;
Slice smallest_key; // slice that contain smallest key
Slice largest_key; // slice that contain largest key
FdWithKeyRange()
: fd(0, 0),
smallest_key(),
largest_key() {
}
FdWithKeyRange(FileDescriptor fd,
Slice smallest_key, Slice largest_key)
: fd(fd),
smallest_key(smallest_key),
largest_key(largest_key) {
}
};
// Data structure to store an array of FdWithKeyRange in one level
// Actual data is guaranteed to be stored closely
struct FileLevel {
size_t num_files;
FdWithKeyRange* files;
FileLevel() {
num_files = 0;
files = nullptr;
}
};
class VersionEdit {
public:
VersionEdit() { Clear(); }

@ -109,31 +109,61 @@ int FindFile(const InternalKeyComparator& icmp,
return FindFileInRange(icmp, files, key, 0, files.size());
}
// Find File in FileLevel data structure
// Within an index range defined by left and right
int FindFileInRange(const InternalKeyComparator& icmp,
const FileLevel& file_level,
const Slice& key,
uint32_t left,
uint32_t right) {
while (left < right) {
uint32_t mid = (left + right) / 2;
const FdWithKeyRange& f = file_level.files[mid];
if (icmp.InternalKeyComparator::Compare(f.largest_key, key) < 0) {
// Key at "mid.largest" is < "target". Therefore all
// files at or before "mid" are uninteresting.
left = mid + 1;
} else {
// Key at "mid.largest" is >= "target". Therefore all files
// after "mid" are uninteresting.
right = mid;
}
}
return right;
}
int FindFile(const InternalKeyComparator& icmp,
const FileLevel& file_level,
const Slice& key) {
return FindFileInRange(icmp, file_level, key, 0, file_level.num_files);
}
static bool AfterFile(const Comparator* ucmp,
const Slice* user_key, const FileMetaData* f) {
const Slice* user_key, const FdWithKeyRange* f) {
// nullptr user_key occurs before all keys and is therefore never after *f
return (user_key != nullptr &&
ucmp->Compare(*user_key, f->largest.user_key()) > 0);
ucmp->Compare(*user_key, ExtractUserKey(f->largest_key)) > 0);
}
static bool BeforeFile(const Comparator* ucmp,
const Slice* user_key, const FileMetaData* f) {
const Slice* user_key, const FdWithKeyRange* f) {
// nullptr user_key occurs after all keys and is therefore never before *f
return (user_key != nullptr &&
ucmp->Compare(*user_key, f->smallest.user_key()) < 0);
ucmp->Compare(*user_key, ExtractUserKey(f->smallest_key)) < 0);
}
bool SomeFileOverlapsRange(
const InternalKeyComparator& icmp,
bool disjoint_sorted_files,
const std::vector<FileMetaData*>& files,
const FileLevel& file_level,
const Slice* smallest_user_key,
const Slice* largest_user_key) {
const Comparator* ucmp = icmp.user_comparator();
if (!disjoint_sorted_files) {
// Need to check against all files
for (size_t i = 0; i < files.size(); i++) {
const FileMetaData* f = files[i];
for (size_t i = 0; i < file_level.num_files; i++) {
const FdWithKeyRange* f = &(file_level.files[i]);
if (AfterFile(ucmp, smallest_user_key, f) ||
BeforeFile(ucmp, largest_user_key, f)) {
// No overlap
@ -149,15 +179,15 @@ bool SomeFileOverlapsRange(
if (smallest_user_key != nullptr) {
// Find the earliest possible internal key for smallest_user_key
InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek);
index = FindFile(icmp, files, small.Encode());
index = FindFile(icmp, file_level, small.Encode());
}
if (index >= files.size()) {
if (index >= file_level.num_files) {
// beginning of range is after all files, so no overlap.
return false;
}
return !BeforeFile(ucmp, largest_user_key, files[index]);
return !BeforeFile(ucmp, largest_user_key, &file_level.files[index]);
}
// An internal iterator. For a given version/level pair, yields
@ -563,7 +593,7 @@ void Version::Get(const ReadOptions& options,
int32_t search_left_bound = 0;
int32_t search_right_bound = FileIndexer::kLevelMaxIndex;
for (int level = 0; level < num_non_empty_levels_; ++level) {
int num_files = files_[level].size();
int num_files = file_levels_[level].num_files;
if (num_files == 0) {
// When current level is empty, the search bound generated from upper
// level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is
@ -581,7 +611,7 @@ void Version::Get(const ReadOptions& options,
// Prefetch table data to avoid cache miss if possible
if (level == 0) {
for (int i = 0; i < num_files; ++i) {
auto* r = files_[0][i]->fd.table_reader;
auto* r = file_levels_[0].files[i].fd.table_reader;
if (r) {
r->Prepare(ikey);
}
@ -589,7 +619,7 @@ void Version::Get(const ReadOptions& options,
}
// Get the list of files to search in this level
FileMetaData* const* files = &files_[level][0];
FdWithKeyRange* files = file_levels_[level].files;
// Some files may overlap each other. We find
// all files that overlap user_key and process them in order from
@ -611,7 +641,8 @@ void Version::Get(const ReadOptions& options,
search_right_bound = num_files - 1;
}
start_index = FindFileInRange(cfd_->internal_comparator(),
files_[level], ikey, search_left_bound, search_right_bound);
file_levels_[level], ikey,
search_left_bound, search_right_bound);
} else {
// search_left_bound > search_right_bound, key does not exist in this
// level. Since no comparision is done in this level, it will need to
@ -623,11 +654,11 @@ void Version::Get(const ReadOptions& options,
}
// Traverse each relevant file to find the desired key
#ifndef NDEBUG
FileMetaData* prev_file = nullptr;
FdWithKeyRange* prev_file = nullptr;
#endif
for (int32_t i = start_index; i < num_files;) {
FileMetaData* f = files[i];
FdWithKeyRange* f = &files[i];
int cmp_largest = -1;
// Do key range filtering of files or/and fractional cascading if:
@ -642,15 +673,14 @@ void Version::Get(const ReadOptions& options,
// Check if key is within a file's range. If search left bound and right
// bound point to the same find, we are sure key falls in range.
assert(
level == 0 || i == start_index
|| user_comparator_->Compare(user_key, f->smallest.user_key())
<= 0);
level == 0 || i == start_index || user_comparator_->Compare(
user_key, ExtractUserKey(f->smallest_key)) <= 0);
int cmp_smallest = user_comparator_->Compare(user_key,
f->smallest.user_key());
ExtractUserKey(f->smallest_key));
if (cmp_smallest >= 0) {
cmp_largest = user_comparator_->Compare(user_key,
f->largest.user_key());
ExtractUserKey(f->largest_key));
}
// Setup file search bound for the next level based on the comparison
@ -675,12 +705,14 @@ void Version::Get(const ReadOptions& options,
// Sanity check to make sure that the files are correctly sorted
if (prev_file) {
if (level != 0) {
int comp_sign =
internal_comparator_->Compare(prev_file->largest, f->smallest);
int comp_sign = internal_comparator_->Compare(prev_file->largest_key,
f->smallest_key);
assert(comp_sign < 0);
} else {
// level == 0, the current file cannot be newer than the previous one.
assert(!NewestFirstBySeqNo(f, prev_file));
// Use compressed data structure, has no attribute seqNo
assert(i > 0);
assert(!NewestFirstBySeqNo(files_[0][i], files_[0][i-1]));
}
}
prev_file = f;
@ -732,11 +764,41 @@ void Version::Get(const ReadOptions& options,
}
}
void Version::GenerateFileLevels() {
file_levels_.resize(num_non_empty_levels_);
for (int level = 0; level < num_non_empty_levels_; level++) {
const auto& files = files_[level];
auto& file_level = file_levels_[level];
size_t num = files.size();
file_level.num_files = num;
char* mem = arena_.AllocateAligned(num * sizeof(FdWithKeyRange));
file_level.files = new (mem)FdWithKeyRange[num];
for (size_t i = 0; i < files.size(); i++) {
Slice smallest_key = files[i]->smallest.Encode();
Slice largest_key = files[i]->largest.Encode();
// Copy key slice to sequential memory
size_t smallest_size = smallest_key.size();
size_t largest_size = largest_key.size();
mem = arena_.AllocateAligned(smallest_size + largest_size);
memcpy(mem, smallest_key.data(), smallest_size);
memcpy(mem + smallest_size, largest_key.data(), largest_size);
file_level.files[i].fd = files[i]->fd;
file_level.files[i].smallest_key = Slice(mem, smallest_size);
file_level.files[i].largest_key = Slice(mem+smallest_size, largest_size);
}
}
}
void Version::PrepareApply(std::vector<uint64_t>& size_being_compacted) {
UpdateTemporaryStats();
ComputeCompactionScore(size_being_compacted);
UpdateFilesBySize();
UpdateNumNonEmptyLevels();
GenerateFileLevels();
}
bool Version::MaybeInitializeFileMetaData(FileMetaData* file_meta) {
@ -972,7 +1034,7 @@ bool Version::OverlapInLevel(int level,
const Slice* smallest_user_key,
const Slice* largest_user_key) {
return SomeFileOverlapsRange(cfd_->internal_comparator(), (level > 0),
files_[level], smallest_user_key,
file_levels_[level], smallest_user_key,
largest_user_key);
}
@ -1034,16 +1096,16 @@ void Version::GetOverlappingInputs(int level,
hint_index, file_index);
return;
}
for (size_t i = 0; i < files_[level].size(); ) {
FileMetaData* f = files_[level][i++];
const Slice file_start = f->smallest.user_key();
const Slice file_limit = f->largest.user_key();
for (size_t i = 0; i < file_levels_[level].num_files; ) {
FdWithKeyRange* f = &(file_levels_[level].files[i++]);
const Slice file_start = ExtractUserKey(f->smallest_key);
const Slice file_limit = ExtractUserKey(f->largest_key);
if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) {
// "f" is completely before specified range; skip it
} else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) {
// "f" is completely after specified range; skip it
} else {
inputs->push_back(f);
inputs->push_back(files_[level][i-1]);
if (level == 0) {
// Level-0 files may overlap each other. So check if the newly
// added file has expanded the range. If so, restart search.
@ -1091,9 +1153,9 @@ void Version::GetOverlappingInputsBinarySearch(
while (!foundOverlap && min <= max) {
mid = (min + max)/2;
FileMetaData* f = files_[level][mid];
const Slice file_start = f->smallest.user_key();
const Slice file_limit = f->largest.user_key();
FdWithKeyRange* f = &(file_levels_[level].files[mid]);
const Slice file_start = ExtractUserKey(f->smallest_key);
const Slice file_limit = ExtractUserKey(f->largest_key);
if (user_cmp->Compare(file_limit, user_begin) < 0) {
min = mid + 1;
} else if (user_cmp->Compare(user_end, file_start) < 0) {
@ -1119,6 +1181,7 @@ void Version::GetOverlappingInputsBinarySearch(
// The midIndex specifies the index of at least one file that
// overlaps the specified range. From that file, iterate backward
// and forward to find all overlapping files.
// Use compressed file meda data, make search faster
void Version::ExtendOverlappingInputs(
int level,
const Slice& user_begin,
@ -1127,13 +1190,14 @@ void Version::ExtendOverlappingInputs(
unsigned int midIndex) {
const Comparator* user_cmp = cfd_->internal_comparator().user_comparator();
const FdWithKeyRange* files = file_levels_[level].files;
#ifndef NDEBUG
{
// assert that the file at midIndex overlaps with the range
assert(midIndex < files_[level].size());
FileMetaData* f = files_[level][midIndex];
const Slice fstart = f->smallest.user_key();
const Slice flimit = f->largest.user_key();
assert(midIndex < file_levels_[level].num_files);
const FdWithKeyRange* f = &files[midIndex];
const Slice fstart = ExtractUserKey(f->smallest_key);
const Slice flimit = ExtractUserKey(f->largest_key);
if (user_cmp->Compare(fstart, user_begin) >= 0) {
assert(user_cmp->Compare(fstart, user_end) <= 0);
} else {
@ -1147,8 +1211,8 @@ void Version::ExtendOverlappingInputs(
// check backwards from 'mid' to lower indices
for (int i = midIndex; i >= 0 ; i--) {
FileMetaData* f = files_[level][i];
const Slice file_limit = f->largest.user_key();
const FdWithKeyRange* f = &files[i];
const Slice file_limit = ExtractUserKey(f->largest_key);
if (user_cmp->Compare(file_limit, user_begin) >= 0) {
startIndex = i;
assert((count++, true));
@ -1157,9 +1221,9 @@ void Version::ExtendOverlappingInputs(
}
}
// check forward from 'mid+1' to higher indices
for (unsigned int i = midIndex+1; i < files_[level].size(); i++) {
FileMetaData* f = files_[level][i];
const Slice file_start = f->smallest.user_key();
for (unsigned int i = midIndex+1; i < file_levels_[level].num_files; i++) {
const FdWithKeyRange* f = &files[i];
const Slice file_start = ExtractUserKey(f->smallest_key);
if (user_cmp->Compare(file_start, user_end) <= 0) {
assert((count++, true));
endIndex = i;
@ -1191,16 +1255,19 @@ bool Version::HasOverlappingUserKey(
}
const Comparator* user_cmp = cfd_->internal_comparator().user_comparator();
const std::vector<FileMetaData*>& files = files_[level];
const size_t kNumFiles = files.size();
const FileLevel& file_level = file_levels_[level];
const FdWithKeyRange* files = file_levels_[level].files;
const size_t kNumFiles = file_level.num_files;
// Check the last file in inputs against the file after it
size_t last_file = FindFile(cfd_->internal_comparator(), files,
size_t last_file = FindFile(cfd_->internal_comparator(), file_level,
inputs->back()->largest.Encode());
assert(0 <= last_file && last_file < kNumFiles); // File should exist!
if (last_file < kNumFiles-1) { // If not the last file
const Slice last_key_in_input = files[last_file]->largest.user_key();
const Slice first_key_after = files[last_file+1]->smallest.user_key();
const Slice last_key_in_input = ExtractUserKey(
files[last_file].largest_key);
const Slice first_key_after = ExtractUserKey(
files[last_file+1].smallest_key);
if (user_cmp->Compare(last_key_in_input, first_key_after) == 0) {
// The last user key in input overlaps with the next file's first key
return true;
@ -1208,12 +1275,14 @@ bool Version::HasOverlappingUserKey(
}
// Check the first file in inputs against the file just before it
size_t first_file = FindFile(cfd_->internal_comparator(), files,
size_t first_file = FindFile(cfd_->internal_comparator(), file_level,
inputs->front()->smallest.Encode());
assert(0 <= first_file && first_file <= last_file); // File should exist!
if (first_file > 0) { // If not first file
const Slice& first_key_in_input = files[first_file]->smallest.user_key();
const Slice& last_key_before = files[first_file-1]->largest.user_key();
const Slice& first_key_in_input = ExtractUserKey(
files[first_file].smallest_key);
const Slice& last_key_before = ExtractUserKey(
files[first_file-1].largest_key);
if (user_cmp->Compare(first_key_in_input, last_key_before) == 0) {
// The first user key in input overlaps with the previous file's last key
return true;

@ -53,6 +53,7 @@ class ColumnFamilySet;
class TableCache;
class MergeIteratorBuilder;
// Return the smallest index i such that files[i]->largest >= key.
// Return files.size() if there is no such file.
// REQUIRES: "files" contains a sorted list of non-overlapping files.
@ -60,16 +61,24 @@ extern int FindFile(const InternalKeyComparator& icmp,
const std::vector<FileMetaData*>& files,
const Slice& key);
// Return the smallest index i such that file_level.files[i]->largest >= key.
// Return file_level.num_files if there is no such file.
// REQUIRES: "file_level.files" contains a sorted list of
// non-overlapping files.
extern int FindFile(const InternalKeyComparator& icmp,
const FileLevel& file_level,
const Slice& key);
// Returns true iff some file in "files" overlaps the user key range
// [*smallest,*largest].
// smallest==nullptr represents a key smaller than all keys in the DB.
// largest==nullptr represents a key largest than all keys in the DB.
// REQUIRES: If disjoint_sorted_files, files[] contains disjoint ranges
// in sorted order.
// REQUIRES: If disjoint_sorted_files, file_level.files[]
// contains disjoint ranges in sorted order.
extern bool SomeFileOverlapsRange(
const InternalKeyComparator& icmp,
bool disjoint_sorted_files,
const std::vector<FileMetaData*>& files,
const FileLevel& file_level,
const Slice* smallest_user_key,
const Slice* largest_user_key);
@ -98,6 +107,9 @@ class Version {
// a lock. Once a version is saved to current_, call only with mutex held
void ComputeCompactionScore(std::vector<uint64_t>& size_being_compacted);
// Generate file_levels_ from files_
void GenerateFileLevels();
// Update scores, pre-calculated variables. It needs to be called before
// applying the version to the version set.
void PrepareApply(std::vector<uint64_t>& size_being_compacted);
@ -265,12 +277,15 @@ class Version {
const Comparator* user_comparator_;
TableCache* table_cache_;
const MergeOperator* merge_operator_;
autovector<FileLevel> file_levels_; // A copy of list of files per level
Logger* info_log_;
Statistics* db_statistics_;
int num_levels_; // Number of levels
int num_non_empty_levels_; // Number of levels. Any level larger than it
// is guaranteed to be empty.
VersionSet* vset_; // VersionSet to which this Version belongs
Arena arena_; // Used to allocate space for file_levels_
Version* next_; // Next version in linked list
Version* prev_; // Previous version in linked list
int refs_; // Number of live refs to this version
@ -279,6 +294,7 @@ class Version {
// in increasing order of keys
std::vector<FileMetaData*>* files_;
// A list for the same set of files that are stored in files_,
// but files in each level are now sorted based on file
// size. The file with the largest size is at the front.

@ -42,18 +42,108 @@ class FindFileTest {
InternalKeyComparator cmp(BytewiseComparator());
return FindFile(cmp, files_, target.Encode());
}
};
TEST(FindFileTest, Empty) {
ASSERT_EQ(0, Find("foo"));
}
TEST(FindFileTest, Single) {
Add("p", "q");
ASSERT_EQ(0, Find("a"));
ASSERT_EQ(0, Find("p"));
ASSERT_EQ(0, Find("p1"));
ASSERT_EQ(0, Find("q"));
ASSERT_EQ(1, Find("q1"));
ASSERT_EQ(1, Find("z"));
}
TEST(FindFileTest, Multiple) {
Add("150", "200");
Add("200", "250");
Add("300", "350");
Add("400", "450");
ASSERT_EQ(0, Find("100"));
ASSERT_EQ(0, Find("150"));
ASSERT_EQ(0, Find("151"));
ASSERT_EQ(0, Find("199"));
ASSERT_EQ(0, Find("200"));
ASSERT_EQ(1, Find("201"));
ASSERT_EQ(1, Find("249"));
ASSERT_EQ(1, Find("250"));
ASSERT_EQ(2, Find("251"));
ASSERT_EQ(2, Find("299"));
ASSERT_EQ(2, Find("300"));
ASSERT_EQ(2, Find("349"));
ASSERT_EQ(2, Find("350"));
ASSERT_EQ(3, Find("351"));
ASSERT_EQ(3, Find("400"));
ASSERT_EQ(3, Find("450"));
ASSERT_EQ(4, Find("451"));
}
class FindLevelFileTest {
public:
FileLevel level_files_;
bool disjoint_sorted_files_;
Arena arena_;
FindLevelFileTest() : disjoint_sorted_files_(true) { }
~FindLevelFileTest() {
}
void LevelFileInit(size_t num = 0) {
char* mem = arena_.AllocateAligned(num * sizeof(FdWithKeyRange));
level_files_.files = new (mem)FdWithKeyRange[num];
level_files_.num_files = 0;
}
void Add(const char* smallest, const char* largest,
SequenceNumber smallest_seq = 100,
SequenceNumber largest_seq = 100) {
InternalKey smallest_key = InternalKey(smallest, smallest_seq, kTypeValue);
InternalKey largest_key = InternalKey(largest, largest_seq, kTypeValue);
Slice smallest_slice = smallest_key.Encode();
Slice largest_slice = largest_key.Encode();
char* mem = arena_.AllocateAligned(
smallest_slice.size() + largest_slice.size());
memcpy(mem, smallest_slice.data(), smallest_slice.size());
memcpy(mem + smallest_slice.size(), largest_slice.data(),
largest_slice.size());
// add compressd_level_
size_t num = level_files_.num_files;
auto& file = level_files_.files[num];
file.fd = FileDescriptor(num + 1, 0);
file.smallest_key = Slice(mem, smallest_slice.size());
file.largest_key = Slice(mem + smallest_slice.size(),
largest_slice.size());
level_files_.num_files++;
}
int Find(const char* key) {
InternalKey target(key, 100, kTypeValue);
InternalKeyComparator cmp(BytewiseComparator());
return FindFile(cmp, level_files_, target.Encode());
}
bool Overlaps(const char* smallest, const char* largest) {
InternalKeyComparator cmp(BytewiseComparator());
Slice s(smallest != nullptr ? smallest : "");
Slice l(largest != nullptr ? largest : "");
return SomeFileOverlapsRange(cmp, disjoint_sorted_files_, files_,
return SomeFileOverlapsRange(cmp, disjoint_sorted_files_, level_files_,
(smallest != nullptr ? &s : nullptr),
(largest != nullptr ? &l : nullptr));
}
};
TEST(FindFileTest, Empty) {
TEST(FindLevelFileTest, LevelEmpty) {
LevelFileInit(0);
ASSERT_EQ(0, Find("foo"));
ASSERT_TRUE(! Overlaps("a", "z"));
ASSERT_TRUE(! Overlaps(nullptr, "z"));
@ -61,7 +151,9 @@ TEST(FindFileTest, Empty) {
ASSERT_TRUE(! Overlaps(nullptr, nullptr));
}
TEST(FindFileTest, Single) {
TEST(FindLevelFileTest, LevelSingle) {
LevelFileInit(1);
Add("p", "q");
ASSERT_EQ(0, Find("a"));
ASSERT_EQ(0, Find("p"));
@ -91,8 +183,9 @@ TEST(FindFileTest, Single) {
ASSERT_TRUE(Overlaps(nullptr, nullptr));
}
TEST(FindLevelFileTest, LevelMultiple) {
LevelFileInit(4);
TEST(FindFileTest, Multiple) {
Add("150", "200");
Add("200", "250");
Add("300", "350");
@ -130,7 +223,9 @@ TEST(FindFileTest, Multiple) {
ASSERT_TRUE(Overlaps("450", "500"));
}
TEST(FindFileTest, MultipleNullBoundaries) {
TEST(FindLevelFileTest, LevelMultipleNullBoundaries) {
LevelFileInit(4);
Add("150", "200");
Add("200", "250");
Add("300", "350");
@ -150,7 +245,9 @@ TEST(FindFileTest, MultipleNullBoundaries) {
ASSERT_TRUE(Overlaps("450", nullptr));
}
TEST(FindFileTest, OverlapSequenceChecks) {
TEST(FindLevelFileTest, LevelOverlapSequenceChecks) {
LevelFileInit(1);
Add("200", "200", 5000, 3000);
ASSERT_TRUE(! Overlaps("199", "199"));
ASSERT_TRUE(! Overlaps("201", "300"));
@ -159,7 +256,9 @@ TEST(FindFileTest, OverlapSequenceChecks) {
ASSERT_TRUE(Overlaps("200", "210"));
}
TEST(FindFileTest, OverlappingFiles) {
TEST(FindLevelFileTest, LevelOverlappingFiles) {
LevelFileInit(2);
Add("150", "600");
Add("400", "500");
disjoint_sorted_files_ = false;

Loading…
Cancel
Save