Summary: Added benchmark functionality on the lines of folly/Benchmark.h Test Plan: Added unit tests Reviewers: igor, haobo, sdong, ljin, yhchiang, dhruba Reviewed By: igor CC: leveldb Differential Revision: https://reviews.facebook.net/D17973main
parent
c7076a7a05
commit
ff1b5df4c6
@ -0,0 +1,414 @@ |
||||
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
//
|
||||
// This code is derived from Benchmark.cpp implemented in Folly, the opensourced
|
||||
// Facebook C++ library available at https://github.com/facebook/folly
|
||||
// The code has removed any dependence on other folly and boost libraries
|
||||
|
||||
#include "util/benchmarkharness.h" |
||||
|
||||
#include <algorithm> |
||||
#include <cmath> |
||||
#include <cstring> |
||||
#include <iostream> |
||||
#include <limits> |
||||
#include <string> |
||||
#include <utility> |
||||
#include <vector> |
||||
|
||||
using std::function; |
||||
using std::get; |
||||
using std::make_pair; |
||||
using std::max; |
||||
using std::min; |
||||
using std::pair; |
||||
using std::sort; |
||||
using std::string; |
||||
using std::tuple; |
||||
using std::vector; |
||||
|
||||
DEFINE_bool(benchmark, false, "Run benchmarks."); |
||||
|
||||
DEFINE_int64(bm_min_usec, 100, |
||||
"Minimum # of microseconds we'll accept for each benchmark."); |
||||
|
||||
DEFINE_int64(bm_min_iters, 1, |
||||
"Minimum # of iterations we'll try for each benchmark."); |
||||
|
||||
DEFINE_int32(bm_max_secs, 1, |
||||
"Maximum # of seconds we'll spend on each benchmark."); |
||||
|
||||
|
||||
namespace rocksdb { |
||||
namespace benchmark { |
||||
|
||||
BenchmarkSuspender::NanosecondsSpent BenchmarkSuspender::nsSpent; |
||||
|
||||
typedef function<uint64_t(unsigned int)> BenchmarkFun; |
||||
static vector<tuple<const char*, const char*, BenchmarkFun>> benchmarks; |
||||
|
||||
// Add the global baseline
|
||||
BENCHMARK(globalBenchmarkBaseline) { |
||||
asm volatile(""); |
||||
} |
||||
|
||||
void detail::AddBenchmarkImpl(const char* file, const char* name, |
||||
BenchmarkFun fun) { |
||||
benchmarks.emplace_back(file, name, std::move(fun)); |
||||
} |
||||
|
||||
/**
|
||||
* Given a point, gives density at that point as a number 0.0 < x <= |
||||
* 1.0. The result is 1.0 if all samples are equal to where, and |
||||
* decreases near 0 if all points are far away from it. The density is |
||||
* computed with the help of a radial basis function. |
||||
*/ |
||||
static double Density(const double * begin, const double *const end, |
||||
const double where, const double bandwidth) { |
||||
assert(begin < end); |
||||
assert(bandwidth > 0.0); |
||||
double sum = 0.0; |
||||
for (auto i = begin; i < end; i++) { |
||||
auto d = (*i - where) / bandwidth; |
||||
sum += exp(- d * d); |
||||
} |
||||
return sum / (end - begin); |
||||
} |
||||
|
||||
/**
|
||||
* Computes mean and variance for a bunch of data points. Note that |
||||
* mean is currently not being used. |
||||
*/ |
||||
static pair<double, double> |
||||
MeanVariance(const double * begin, const double *const end) { |
||||
assert(begin < end); |
||||
double sum = 0.0, sum2 = 0.0; |
||||
for (auto i = begin; i < end; i++) { |
||||
sum += *i; |
||||
sum2 += *i * *i; |
||||
} |
||||
auto const n = end - begin; |
||||
return make_pair(sum / n, sqrt((sum2 - sum * sum / n) / n)); |
||||
} |
||||
|
||||
/**
|
||||
* Computes the mode of a sample set through brute force. Assumes |
||||
* input is sorted. |
||||
*/ |
||||
static double Mode(const double * begin, const double *const end) { |
||||
assert(begin < end); |
||||
// Lower bound and upper bound for result and their respective
|
||||
// densities.
|
||||
auto |
||||
result = 0.0, |
||||
bestDensity = 0.0; |
||||
|
||||
// Get the variance so we pass it down to Density()
|
||||
auto const sigma = MeanVariance(begin, end).second; |
||||
if (!sigma) { |
||||
// No variance means constant signal
|
||||
return *begin; |
||||
} |
||||
|
||||
for (auto i = begin; i < end; i++) { |
||||
assert(i == begin || *i >= i[-1]); |
||||
auto candidate = Density(begin, end, *i, sigma * sqrt(2.0)); |
||||
if (candidate > bestDensity) { |
||||
// Found a new best
|
||||
bestDensity = candidate; |
||||
result = *i; |
||||
} else { |
||||
// Density is decreasing... we could break here if we definitely
|
||||
// knew this is unimodal.
|
||||
} |
||||
} |
||||
|
||||
return result; |
||||
} |
||||
|
||||
/**
|
||||
* Given a bunch of benchmark samples, estimate the actual run time. |
||||
*/ |
||||
static double EstimateTime(double * begin, double * end) { |
||||
assert(begin < end); |
||||
|
||||
// Current state of the art: get the minimum. After some
|
||||
// experimentation, it seems taking the minimum is the best.
|
||||
|
||||
return *std::min_element(begin, end); |
||||
|
||||
// What follows after estimates the time as the mode of the
|
||||
// distribution.
|
||||
|
||||
// Select the awesomest (i.e. most frequent) result. We do this by
|
||||
// sorting and then computing the longest run length.
|
||||
sort(begin, end); |
||||
|
||||
// Eliminate outliers. A time much larger than the minimum time is
|
||||
// considered an outlier.
|
||||
while (end[-1] > 2.0 * *begin) { |
||||
--end; |
||||
if (begin == end) { |
||||
// LOG(INFO) << *begin;
|
||||
} |
||||
assert(begin < end); |
||||
} |
||||
|
||||
double result = 0; |
||||
|
||||
/* Code used just for comparison purposes */ { |
||||
unsigned bestFrequency = 0; |
||||
unsigned candidateFrequency = 1; |
||||
double candidateValue = *begin; |
||||
for (auto current = begin + 1; ; ++current) { |
||||
if (current == end || *current != candidateValue) { |
||||
// Done with the current run, see if it was best
|
||||
if (candidateFrequency > bestFrequency) { |
||||
bestFrequency = candidateFrequency; |
||||
result = candidateValue; |
||||
} |
||||
if (current == end) { |
||||
break; |
||||
} |
||||
// Start a new run
|
||||
candidateValue = *current; |
||||
candidateFrequency = 1; |
||||
} else { |
||||
// Cool, inside a run, increase the frequency
|
||||
++candidateFrequency; |
||||
} |
||||
} |
||||
} |
||||
|
||||
result = Mode(begin, end); |
||||
|
||||
return result; |
||||
} |
||||
|
||||
static double RunBenchmarkGetNSPerIteration(const BenchmarkFun& fun, |
||||
const double globalBaseline) { |
||||
// They key here is accuracy; too low numbers means the accuracy was
|
||||
// coarse. We up the ante until we get to at least minNanoseconds
|
||||
// timings.
|
||||
static uint64_t resolutionInNs = 0; |
||||
if (!resolutionInNs) { |
||||
timespec ts; |
||||
ASSERT_EQ(0, clock_getres(detail::DEFAULT_CLOCK_ID, &ts)); |
||||
ASSERT_EQ(0, ts.tv_sec); // "Clock sucks.";
|
||||
ASSERT_LT(0, ts.tv_nsec); // "Clock too fast for its own good.";
|
||||
ASSERT_EQ(1, ts.tv_nsec); // "Clock too coarse, upgrade your kernel.";
|
||||
resolutionInNs = ts.tv_nsec; |
||||
} |
||||
// We choose a minimum minimum (sic) of 100,000 nanoseconds, but if
|
||||
// the clock resolution is worse than that, it will be larger. In
|
||||
// essence we're aiming at making the quantization noise 0.01%.
|
||||
static const auto minNanoseconds = |
||||
max(FLAGS_bm_min_usec * 1000UL, |
||||
min<uint64_t>(resolutionInNs * 100000, 1000000000ULL)); |
||||
|
||||
// We do measurements in several epochs and take the minimum, to
|
||||
// account for jitter.
|
||||
static const unsigned int epochs = 1000; |
||||
// We establish a total time budget as we don't want a measurement
|
||||
// to take too long. This will curtail the number of actual epochs.
|
||||
const uint64_t timeBudgetInNs = FLAGS_bm_max_secs * 1000000000; |
||||
timespec global; |
||||
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &global)); |
||||
|
||||
double epochResults[epochs] = { 0 }; |
||||
size_t actualEpochs = 0; |
||||
|
||||
for (; actualEpochs < epochs; ++actualEpochs) { |
||||
for (unsigned int n = FLAGS_bm_min_iters; n < (1UL << 30); n *= 2) { |
||||
auto const nsecs = fun(n); |
||||
if (nsecs < minNanoseconds) { |
||||
continue; |
||||
} |
||||
// We got an accurate enough timing, done. But only save if
|
||||
// smaller than the current result.
|
||||
epochResults[actualEpochs] = max(0.0, |
||||
static_cast<double>(nsecs) / n - globalBaseline); |
||||
// Done with the current epoch, we got a meaningful timing.
|
||||
break; |
||||
} |
||||
timespec now; |
||||
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &now)); |
||||
if (detail::TimespecDiff(now, global) >= timeBudgetInNs) { |
||||
// No more time budget available.
|
||||
++actualEpochs; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
// If the benchmark was basically drowned in baseline noise, it's
|
||||
// possible it became negative.
|
||||
return max(0.0, EstimateTime(epochResults, epochResults + actualEpochs)); |
||||
} |
||||
|
||||
struct ScaleInfo { |
||||
double boundary; |
||||
const char* suffix; |
||||
}; |
||||
|
||||
static const ScaleInfo kTimeSuffixes[] { |
||||
{ 365.25 * 24 * 3600, "years" }, |
||||
{ 24 * 3600, "days" }, |
||||
{ 3600, "hr" }, |
||||
{ 60, "min" }, |
||||
{ 1, "s" }, |
||||
{ 1E-3, "ms" }, |
||||
{ 1E-6, "us" }, |
||||
{ 1E-9, "ns" }, |
||||
{ 1E-12, "ps" }, |
||||
{ 1E-15, "fs" }, |
||||
{ 0, nullptr }, |
||||
}; |
||||
|
||||
static const ScaleInfo kMetricSuffixes[] { |
||||
{ 1E24, "Y" }, // yotta
|
||||
{ 1E21, "Z" }, // zetta
|
||||
{ 1E18, "X" }, // "exa" written with suffix 'X' so as to not create
|
||||
// confusion with scientific notation
|
||||
{ 1E15, "P" }, // peta
|
||||
{ 1E12, "T" }, // terra
|
||||
{ 1E9, "G" }, // giga
|
||||
{ 1E6, "M" }, // mega
|
||||
{ 1E3, "K" }, // kilo
|
||||
{ 1, "" }, |
||||
{ 1E-3, "m" }, // milli
|
||||
{ 1E-6, "u" }, // micro
|
||||
{ 1E-9, "n" }, // nano
|
||||
{ 1E-12, "p" }, // pico
|
||||
{ 1E-15, "f" }, // femto
|
||||
{ 1E-18, "a" }, // atto
|
||||
{ 1E-21, "z" }, // zepto
|
||||
{ 1E-24, "y" }, // yocto
|
||||
{ 0, nullptr }, |
||||
}; |
||||
|
||||
static string HumanReadable(double n, unsigned int decimals, |
||||
const ScaleInfo* scales) { |
||||
if (std::isinf(n) || std::isnan(n)) { |
||||
return std::to_string(n); |
||||
} |
||||
|
||||
const double absValue = fabs(n); |
||||
const ScaleInfo* scale = scales; |
||||
while (absValue < scale[0].boundary && scale[1].suffix != nullptr) { |
||||
++scale; |
||||
} |
||||
|
||||
const double scaledValue = n / scale->boundary; |
||||
char a[80]; |
||||
snprintf(a, sizeof(a), "%.*f%s", decimals, scaledValue, scale->suffix); |
||||
return a; |
||||
} |
||||
|
||||
static string ReadableTime(double n, unsigned int decimals) { |
||||
return HumanReadable(n, decimals, kTimeSuffixes); |
||||
} |
||||
|
||||
static string MetricReadable(double n, unsigned int decimals) { |
||||
return HumanReadable(n, decimals, kMetricSuffixes); |
||||
} |
||||
|
||||
static void PrintBenchmarkResultsAsTable( |
||||
const vector<tuple<const char*, const char*, double> >& data) { |
||||
// Width available
|
||||
static const uint columns = 76; |
||||
|
||||
// Compute the longest benchmark name
|
||||
size_t longestName = 0; |
||||
for (auto i = 1; i < benchmarks.size(); i++) { |
||||
longestName = max(longestName, strlen(get<1>(benchmarks[i]))); |
||||
} |
||||
|
||||
// Print a horizontal rule
|
||||
auto separator = [&](char pad) { |
||||
puts(string(columns, pad).c_str()); |
||||
}; |
||||
|
||||
// Print header for a file
|
||||
auto header = [&](const char* file) { |
||||
separator('='); |
||||
printf("%-*srelative time/iter iters/s\n", |
||||
columns - 28, file); |
||||
separator('='); |
||||
}; |
||||
|
||||
double baselineNsPerIter = std::numeric_limits<double>::max(); |
||||
const char* lastFile = ""; |
||||
|
||||
for (auto& datum : data) { |
||||
auto file = get<0>(datum); |
||||
if (strcmp(file, lastFile)) { |
||||
// New file starting
|
||||
header(file); |
||||
lastFile = file; |
||||
} |
||||
|
||||
string s = get<1>(datum); |
||||
if (s == "-") { |
||||
separator('-'); |
||||
continue; |
||||
} |
||||
bool useBaseline /* = void */; |
||||
if (s[0] == '%') { |
||||
s.erase(0, 1); |
||||
useBaseline = true; |
||||
} else { |
||||
baselineNsPerIter = get<2>(datum); |
||||
useBaseline = false; |
||||
} |
||||
s.resize(columns - 29, ' '); |
||||
auto nsPerIter = get<2>(datum); |
||||
auto secPerIter = nsPerIter / 1E9; |
||||
auto itersPerSec = 1 / secPerIter; |
||||
if (!useBaseline) { |
||||
// Print without baseline
|
||||
printf("%*s %9s %7s\n", |
||||
static_cast<int>(s.size()), s.c_str(), |
||||
ReadableTime(secPerIter, 2).c_str(), |
||||
MetricReadable(itersPerSec, 2).c_str()); |
||||
} else { |
||||
// Print with baseline
|
||||
auto rel = baselineNsPerIter / nsPerIter * 100.0; |
||||
printf("%*s %7.2f%% %9s %7s\n", |
||||
static_cast<int>(s.size()), s.c_str(), |
||||
rel, |
||||
ReadableTime(secPerIter, 2).c_str(), |
||||
MetricReadable(itersPerSec, 2).c_str()); |
||||
} |
||||
} |
||||
separator('='); |
||||
} |
||||
|
||||
void RunBenchmarks() { |
||||
ASSERT_TRUE(!benchmarks.empty()); |
||||
|
||||
vector<tuple<const char*, const char*, double>> results; |
||||
results.reserve(benchmarks.size() - 1); |
||||
|
||||
// PLEASE KEEP QUIET. MEASUREMENTS IN PROGRESS.
|
||||
|
||||
auto const globalBaseline = RunBenchmarkGetNSPerIteration( |
||||
get<2>(benchmarks.front()), 0); |
||||
for (auto i = 1; i < benchmarks.size(); i++) { |
||||
double elapsed = 0.0; |
||||
if (strcmp(get<1>(benchmarks[i]), "-") != 0) { // skip separators
|
||||
elapsed = RunBenchmarkGetNSPerIteration(get<2>(benchmarks[i]), |
||||
globalBaseline); |
||||
} |
||||
results.emplace_back(get<0>(benchmarks[i]), |
||||
get<1>(benchmarks[i]), elapsed); |
||||
} |
||||
|
||||
// PLEASE MAKE NOISE. MEASUREMENTS DONE.
|
||||
|
||||
PrintBenchmarkResultsAsTable(results); |
||||
} |
||||
|
||||
} // namespace benchmark
|
||||
} // namespace rocksdb
|
@ -0,0 +1,407 @@ |
||||
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
//
|
||||
// This code is derived from Benchmark.h implemented in Folly, the opensourced
|
||||
// Facebook C++ library available at https://github.com/facebook/folly
|
||||
// The code has removed any dependence on other folly and boost libraries
|
||||
|
||||
#pragma once |
||||
|
||||
#include <gflags/gflags.h> |
||||
|
||||
#include <cassert> |
||||
#include <ctime> |
||||
#include <functional> |
||||
#include <limits> |
||||
|
||||
#include "util/testharness.h" |
||||
|
||||
namespace rocksdb { |
||||
namespace benchmark { |
||||
|
||||
/**
|
||||
* Runs all benchmarks defined. Usually put in main(). |
||||
*/ |
||||
void RunBenchmarks(); |
||||
|
||||
namespace detail { |
||||
|
||||
/**
|
||||
* This is the clock ID used for measuring time. On older kernels, the |
||||
* resolution of this clock will be very coarse, which will cause the |
||||
* benchmarks to fail. |
||||
*/ |
||||
enum Clock { DEFAULT_CLOCK_ID = CLOCK_REALTIME }; |
||||
|
||||
/**
|
||||
* Adds a benchmark wrapped in a std::function. Only used |
||||
* internally. Pass by value is intentional. |
||||
*/ |
||||
void AddBenchmarkImpl(const char* file, |
||||
const char* name, |
||||
std::function<uint64_t(unsigned int)>); |
||||
|
||||
/**
|
||||
* Takes the difference between two timespec values. end is assumed to |
||||
* occur after start. |
||||
*/ |
||||
inline uint64_t TimespecDiff(timespec end, timespec start) { |
||||
if (end.tv_sec == start.tv_sec) { |
||||
assert(end.tv_nsec >= start.tv_nsec); |
||||
return end.tv_nsec - start.tv_nsec; |
||||
} |
||||
assert(end.tv_sec > start.tv_sec && |
||||
end.tv_sec - start.tv_sec < |
||||
std::numeric_limits<uint64_t>::max() / 1000000000UL); |
||||
return (end.tv_sec - start.tv_sec) * 1000000000UL |
||||
+ end.tv_nsec - start.tv_nsec; |
||||
} |
||||
|
||||
/**
|
||||
* Takes the difference between two sets of timespec values. The first |
||||
* two come from a high-resolution clock whereas the other two come |
||||
* from a low-resolution clock. The crux of the matter is that |
||||
* high-res values may be bogus as documented in |
||||
* http://linux.die.net/man/3/clock_gettime. The trouble is when the
|
||||
* running process migrates from one CPU to another, which is more |
||||
* likely for long-running processes. Therefore we watch for high |
||||
* differences between the two timings. |
||||
* |
||||
* This function is subject to further improvements. |
||||
*/ |
||||
inline uint64_t TimespecDiff(timespec end, timespec start, |
||||
timespec endCoarse, timespec startCoarse) { |
||||
auto fine = TimespecDiff(end, start); |
||||
auto coarse = TimespecDiff(endCoarse, startCoarse); |
||||
if (coarse - fine >= 1000000) { |
||||
// The fine time is in all likelihood bogus
|
||||
return coarse; |
||||
} |
||||
return fine; |
||||
} |
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
/**
|
||||
* Supporting type for BENCHMARK_SUSPEND defined below. |
||||
*/ |
||||
struct BenchmarkSuspender { |
||||
BenchmarkSuspender() { |
||||
ASSERT_EQ(0, clock_gettime(detail::DEFAULT_CLOCK_ID, &start_)); |
||||
} |
||||
|
||||
BenchmarkSuspender(const BenchmarkSuspender &) = delete; |
||||
BenchmarkSuspender(BenchmarkSuspender && rhs) { |
||||
start_ = rhs.start_; |
||||
rhs.start_.tv_nsec = rhs.start_.tv_sec = 0; |
||||
} |
||||
|
||||
BenchmarkSuspender& operator=(const BenchmarkSuspender &) = delete; |
||||
BenchmarkSuspender& operator=(BenchmarkSuspender && rhs) { |
||||
if (start_.tv_nsec > 0 || start_.tv_sec > 0) { |
||||
tally(); |
||||
} |
||||
start_ = rhs.start_; |
||||
rhs.start_.tv_nsec = rhs.start_.tv_sec = 0; |
||||
return *this; |
||||
} |
||||
|
||||
~BenchmarkSuspender() { |
||||
if (start_.tv_nsec > 0 || start_.tv_sec > 0) { |
||||
tally(); |
||||
} |
||||
} |
||||
|
||||
void Dismiss() { |
||||
assert(start_.tv_nsec > 0 || start_.tv_sec > 0); |
||||
tally(); |
||||
start_.tv_nsec = start_.tv_sec = 0; |
||||
} |
||||
|
||||
void Rehire() { |
||||
assert(start_.tv_nsec == 0 || start_.tv_sec == 0); |
||||
ASSERT_EQ(0, clock_gettime(detail::DEFAULT_CLOCK_ID, &start_)); |
||||
} |
||||
|
||||
/**
|
||||
* This helps the macro definition. To get around the dangers of |
||||
* operator bool, returns a pointer to member (which allows no |
||||
* arithmetic). |
||||
*/ |
||||
/* implicit */ |
||||
operator int BenchmarkSuspender::*() const { |
||||
return nullptr; |
||||
} |
||||
|
||||
/**
|
||||
* Accumulates nanoseconds spent outside benchmark. |
||||
*/ |
||||
typedef uint64_t NanosecondsSpent; |
||||
static NanosecondsSpent nsSpent; |
||||
|
||||
private: |
||||
void tally() { |
||||
timespec end; |
||||
ASSERT_EQ(0, clock_gettime(detail::DEFAULT_CLOCK_ID, &end)); |
||||
nsSpent += detail::TimespecDiff(end, start_); |
||||
start_ = end; |
||||
} |
||||
|
||||
timespec start_; |
||||
}; |
||||
|
||||
/**
|
||||
* Adds a benchmark. Usually not called directly but instead through |
||||
* the macro BENCHMARK defined below. The lambda function involved |
||||
* must take exactly one parameter of type unsigned, and the benchmark |
||||
* uses it with counter semantics (iteration occurs inside the |
||||
* function). |
||||
*/ |
||||
template <typename Lambda> |
||||
void |
||||
AddBenchmark_n(const char* file, const char* name, Lambda&& lambda) { |
||||
auto execute = [=](unsigned int times) -> uint64_t { |
||||
BenchmarkSuspender::nsSpent = 0; |
||||
timespec start, end; |
||||
|
||||
// CORE MEASUREMENT STARTS
|
||||
auto const r1 = clock_gettime(detail::DEFAULT_CLOCK_ID, &start); |
||||
lambda(times); |
||||
auto const r2 = clock_gettime(detail::DEFAULT_CLOCK_ID, &end); |
||||
// CORE MEASUREMENT ENDS
|
||||
|
||||
ASSERT_EQ(0, r1); |
||||
ASSERT_EQ(0, r2); |
||||
|
||||
return detail::TimespecDiff(end, start) - BenchmarkSuspender::nsSpent; |
||||
}; |
||||
|
||||
detail::AddBenchmarkImpl(file, name, |
||||
std::function<uint64_t(unsigned int)>(execute)); |
||||
} |
||||
|
||||
/**
|
||||
* Adds a benchmark. Usually not called directly but instead through |
||||
* the macro BENCHMARK defined below. The lambda function involved |
||||
* must take zero parameters, and the benchmark calls it repeatedly |
||||
* (iteration occurs outside the function). |
||||
*/ |
||||
template <typename Lambda> |
||||
void |
||||
AddBenchmark(const char* file, const char* name, Lambda&& lambda) { |
||||
AddBenchmark_n(file, name, [=](unsigned int times) { |
||||
while (times-- > 0) { |
||||
lambda(); |
||||
} |
||||
}); |
||||
} |
||||
|
||||
} // namespace benchmark
|
||||
} // namespace rocksdb
|
||||
|
||||
/**
|
||||
* FB_ONE_OR_NONE(hello, world) expands to hello and |
||||
* FB_ONE_OR_NONE(hello) expands to nothing. This macro is used to |
||||
* insert or eliminate text based on the presence of another argument. |
||||
*/ |
||||
#define FB_ONE_OR_NONE(a, ...) FB_THIRD(a, ## __VA_ARGS__, a) |
||||
#define FB_THIRD(a, b, ...) __VA_ARGS__ |
||||
|
||||
#define FB_CONCATENATE_IMPL(s1, s2) s1##s2 |
||||
#define FB_CONCATENATE(s1, s2) FB_CONCATENATE_IMPL(s1, s2) |
||||
|
||||
#define FB_ANONYMOUS_VARIABLE(str) FB_CONCATENATE(str, __LINE__) |
||||
|
||||
#define FB_STRINGIZE(x) #x |
||||
|
||||
/**
|
||||
* Introduces a benchmark function. Used internally, see BENCHMARK and |
||||
* friends below. |
||||
*/ |
||||
#define BENCHMARK_IMPL_N(funName, stringName, paramType, paramName) \ |
||||
static void funName(paramType); \
|
||||
static bool FB_ANONYMOUS_VARIABLE(rocksdbBenchmarkUnused) = ( \
|
||||
::rocksdb::benchmark::AddBenchmark_n(__FILE__, stringName, \
|
||||
[](paramType paramName) { funName(paramName); }), \
|
||||
true); \
|
||||
static void funName(paramType paramName) |
||||
|
||||
#define BENCHMARK_IMPL(funName, stringName) \ |
||||
static void funName(); \
|
||||
static bool FB_ANONYMOUS_VARIABLE(rocksdbBenchmarkUnused) = ( \
|
||||
::rocksdb::benchmark::AddBenchmark(__FILE__, stringName, \
|
||||
[]() { funName(); }), \
|
||||
true); \
|
||||
static void funName() |
||||
|
||||
/**
|
||||
* Introduces a benchmark function. Use with either one one or two |
||||
* arguments. The first is the name of the benchmark. Use something |
||||
* descriptive, such as insertVectorBegin. The second argument may be |
||||
* missing, or could be a symbolic counter. The counter dictates how |
||||
* many internal iteration the benchmark does. Example: |
||||
* |
||||
* BENCHMARK(vectorPushBack) { |
||||
* vector<int> v; |
||||
* v.push_back(42); |
||||
* } |
||||
* |
||||
* BENCHMARK_N(insertVectorBegin, n) { |
||||
* vector<int> v; |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* v.insert(v.begin(), 42); |
||||
* } |
||||
* } |
||||
*/ |
||||
#define BENCHMARK_N(name, ...) \ |
||||
BENCHMARK_IMPL_N( \
|
||||
name, \
|
||||
FB_STRINGIZE(name), \
|
||||
FB_ONE_OR_NONE(unsigned, ## __VA_ARGS__), \
|
||||
__VA_ARGS__) |
||||
|
||||
#define BENCHMARK(name) \ |
||||
BENCHMARK_IMPL( \
|
||||
name, \
|
||||
FB_STRINGIZE(name)) |
||||
|
||||
/**
|
||||
* Defines a benchmark that passes a parameter to another one. This is |
||||
* common for benchmarks that need a "problem size" in addition to |
||||
* "number of iterations". Consider: |
||||
* |
||||
* void pushBack(uint n, size_t initialSize) { |
||||
* vector<int> v; |
||||
* BENCHMARK_SUSPEND { |
||||
* v.resize(initialSize); |
||||
* } |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* v.push_back(i); |
||||
* } |
||||
* } |
||||
* BENCHMARK_PARAM(pushBack, 0) |
||||
* BENCHMARK_PARAM(pushBack, 1000) |
||||
* BENCHMARK_PARAM(pushBack, 1000000) |
||||
* |
||||
* The benchmark above estimates the speed of push_back at different |
||||
* initial sizes of the vector. The framework will pass 0, 1000, and |
||||
* 1000000 for initialSize, and the iteration count for n. |
||||
*/ |
||||
#define BENCHMARK_PARAM(name, param) \ |
||||
BENCHMARK_NAMED_PARAM(name, param, param) |
||||
|
||||
/*
|
||||
* Like BENCHMARK_PARAM(), but allows a custom name to be specified for each |
||||
* parameter, rather than using the parameter value. |
||||
* |
||||
* Useful when the parameter value is not a valid token for string pasting, |
||||
* of when you want to specify multiple parameter arguments. |
||||
* |
||||
* For example: |
||||
* |
||||
* void addValue(uint n, int64_t bucketSize, int64_t min, int64_t max) { |
||||
* Histogram<int64_t> hist(bucketSize, min, max); |
||||
* int64_t num = min; |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* hist.addValue(num); |
||||
* ++num; |
||||
* if (num > max) { num = min; } |
||||
* } |
||||
* } |
||||
* |
||||
* BENCHMARK_NAMED_PARAM(addValue, 0_to_100, 1, 0, 100) |
||||
* BENCHMARK_NAMED_PARAM(addValue, 0_to_1000, 10, 0, 1000) |
||||
* BENCHMARK_NAMED_PARAM(addValue, 5k_to_20k, 250, 5000, 20000) |
||||
*/ |
||||
#define BENCHMARK_NAMED_PARAM(name, param_name, ...) \ |
||||
BENCHMARK_IMPL( \
|
||||
FB_CONCATENATE(name, FB_CONCATENATE(_, param_name)), \
|
||||
FB_STRINGIZE(name) "(" FB_STRINGIZE(param_name) ")", \
|
||||
unsigned, \
|
||||
iters) { \
|
||||
name(iters, ## __VA_ARGS__); \
|
||||
} |
||||
|
||||
/**
|
||||
* Just like BENCHMARK, but prints the time relative to a |
||||
* baseline. The baseline is the most recent BENCHMARK() seen in |
||||
* lexical order. Example: |
||||
* |
||||
* // This is the baseline
|
||||
* BENCHMARK_N(insertVectorBegin, n) { |
||||
* vector<int> v; |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* v.insert(v.begin(), 42); |
||||
* } |
||||
* } |
||||
* |
||||
* BENCHMARK_RELATIVE_N(insertListBegin, n) { |
||||
* list<int> s; |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* s.insert(s.begin(), 42); |
||||
* } |
||||
* } |
||||
* |
||||
* Any number of relative benchmark can be associated with a |
||||
* baseline. Another BENCHMARK() occurrence effectively establishes a |
||||
* new baseline. |
||||
*/ |
||||
#define BENCHMARK_RELATIVE_N(name, ...) \ |
||||
BENCHMARK_IMPL_N( \
|
||||
name, \
|
||||
"%" FB_STRINGIZE(name), \
|
||||
FB_ONE_OR_NONE(unsigned, ## __VA_ARGS__), \
|
||||
__VA_ARGS__) |
||||
|
||||
#define BENCHMARK_RELATIVE(name) \ |
||||
BENCHMARK_IMPL( \
|
||||
name, \
|
||||
"%" FB_STRINGIZE(name)) |
||||
|
||||
/**
|
||||
* A combination of BENCHMARK_RELATIVE and BENCHMARK_PARAM. |
||||
*/ |
||||
#define BENCHMARK_RELATIVE_PARAM(name, param) \ |
||||
BENCHMARK_RELATIVE_NAMED_PARAM(name, param, param) |
||||
|
||||
/**
|
||||
* A combination of BENCHMARK_RELATIVE and BENCHMARK_NAMED_PARAM. |
||||
*/ |
||||
#define BENCHMARK_RELATIVE_NAMED_PARAM(name, param_name, ...) \ |
||||
BENCHMARK_IMPL( \
|
||||
FB_CONCATENATE(name, FB_CONCATENATE(_, param_name)), \
|
||||
"%" FB_STRINGIZE(name) "(" FB_STRINGIZE(param_name) ")", \
|
||||
unsigned, \
|
||||
iters) { \
|
||||
name(iters, ## __VA_ARGS__); \
|
||||
} |
||||
|
||||
/**
|
||||
* Draws a line of dashes. |
||||
*/ |
||||
#define BENCHMARK_DRAW_LINE() \ |
||||
static bool FB_ANONYMOUS_VARIABLE(rocksdbBenchmarkUnused) = ( \
|
||||
::rocksdb::benchmark::AddBenchmark(__FILE__, "-", []() { }), \
|
||||
true); |
||||
|
||||
/**
|
||||
* Allows execution of code that doesn't count torward the benchmark's |
||||
* time budget. Example: |
||||
* |
||||
* BENCHMARK_START_GROUP(insertVectorBegin, n) { |
||||
* vector<int> v; |
||||
* BENCHMARK_SUSPEND { |
||||
* v.reserve(n); |
||||
* } |
||||
* FOR_EACH_RANGE (i, 0, n) { |
||||
* v.insert(v.begin(), 42); |
||||
* } |
||||
* } |
||||
*/ |
||||
#define BENCHMARK_SUSPEND \ |
||||
if (auto FB_ANONYMOUS_VARIABLE(BENCHMARK_SUSPEND) = \
|
||||
::rocksdb::benchmark::BenchmarkSuspender()) {} \
|
||||
else |
@ -0,0 +1,69 @@ |
||||
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
//
|
||||
|
||||
#include "util/benchmarkharness.h" |
||||
#include <vector> |
||||
|
||||
namespace rocksdb { |
||||
namespace benchmark { |
||||
|
||||
BENCHMARK(insertFrontVector) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < 100; i++) { |
||||
v.insert(v.begin(), i); |
||||
} |
||||
} |
||||
|
||||
BENCHMARK_RELATIVE(insertBackVector) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < 100; i++) { |
||||
v.insert(v.end(), i); |
||||
} |
||||
} |
||||
|
||||
BENCHMARK_N(insertFrontVector_n, n) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.begin(), i); |
||||
} |
||||
} |
||||
|
||||
BENCHMARK_RELATIVE_N(insertBackVector_n, n) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.end(), i); |
||||
} |
||||
} |
||||
|
||||
BENCHMARK_N(insertFrontEnd_n, n) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.begin(), i); |
||||
} |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.end(), i); |
||||
} |
||||
} |
||||
|
||||
BENCHMARK_RELATIVE_N(insertFrontEndSuspend_n, n) { |
||||
std::vector<int> v; |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.begin(), i); |
||||
} |
||||
BENCHMARK_SUSPEND { |
||||
for (int i = 0; i < n; i++) { |
||||
v.insert(v.end(), i); |
||||
} |
||||
} |
||||
} |
||||
|
||||
} // namespace benchmark
|
||||
} // namespace rocksdb
|
||||
|
||||
int main(int argc, char** argv) { |
||||
rocksdb::benchmark::RunBenchmarks(); |
||||
return 0; |
||||
} |
Loading…
Reference in new issue