Tag:
Branch:
Tree:
05a1d52e77
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
562 Commits (05a1d52e77f5b98791849aae83bad413f2e42601)
Author | SHA1 | Message | Date |
---|---|---|---|
Yu Zhang | 7521478b43 |
Record the `persist_user_defined_timestamps` flag in manifest (#11515)
Summary: Start to record the value of the flag `AdvancedColumnFamilyOptions.persist_user_defined_timestamps` in the Manifest and table properties for a SST file when it is created. And use the recorded flag when creating a table reader for the SST file. This flag's default value is true, it is only explicitly recorded if it's false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11515 Test Plan: ``` make all check ./version_edit_test ``` Reviewed By: ltamasi Differential Revision: D46920386 Pulled By: jowlyzhang fbshipit-source-id: 075c20363d3d2cc1368422ecc805617ed135cc26 |
2 years ago |
mayue.fight | fa878a0107 |
Support to create a CF by importing multiple non-overlapping CFs (#11378)
Summary: The original Feature Request is from [https://github.com/facebook/rocksdb/issues/11317](https://github.com/facebook/rocksdb/issues/11317). Flink uses rocksdb as the state backend, all DB options are the same, and the keys of each DB instance are adjacent and there is no key overlap between two db instances. In the Flink rescaling scenario, it is necessary to quickly split the DB according to a certain key range or quickly merge multiple DBs into one. This PR is mainly used to quickly merge multiple DBs into one. We hope to extend the function of `CreateColumnFamilyWithImports` to support creating ColumnFamily by importing multiple ColumnFamily with no overlapping keys. The import logic is almost the same as `CreateColumnFamilyWithImport`, but it will check whether there is key overlap between CF when importing. The import will fail if there are key overlaps. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11378 Reviewed By: ajkr Differential Revision: D46413709 Pulled By: cbi42 fbshipit-source-id: 846d0049fad11c59cf460fa846c345b26c658dfb |
2 years ago |
Changyu Bi | 15e8a843d9 |
Do not include last level in compaction when `allow_ingest_behind=true` (#11489)
Summary: when a DB is configured with `allow_ingest_behind = true`, the last level should be reserved for ingested files and these files should not be included in any compaction. Currently, a major compaction can compact these files to smaller levels. This can cause future files to be rejected for ingest behind (see `ExternalSstFileIngestionJob::CheckLevelForIngestedBehindFile()`). This PR fixes the issue such that files in the last level is not included in any compaction. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11489 Test Plan: * Updated unit test `ExternalSSTFileTest.IngestBehind` to test that last level is not included in manual and auto-compaction. Reviewed By: ajkr Differential Revision: D46455711 Pulled By: cbi42 fbshipit-source-id: 5e2142c2a709ef932ad797897795021c06c4ac8c |
2 years ago |
Andrew Kryczka | cac3240cbf |
add property "rocksdb.obsolete-sst-files-size" (#11533)
Summary: See "unreleased_history/new_features/obsolete_sst_files_size.md" for description Pull Request resolved: https://github.com/facebook/rocksdb/pull/11533 Test Plan: updated unit test Reviewed By: jowlyzhang Differential Revision: D46703152 Pulled By: ajkr fbshipit-source-id: ea5e31cd6293eccc154130c13e66b5271f57c102 |
2 years ago |
Ignat Loskutov | 05fcacdb42 |
Add missing stopwatch and perf timer to DBImplReadOnly (#11521)
Summary:
The `rocksdb.db.get.micros` histogram is never updated if the DB is open in ReadOnly mode, as well as the `get_cpu_nanos` perf counter. An earlier PR (https://github.com/facebook/rocksdb/issues/4260) for some reason has only added the TODO line, not the accounting itself, so this one is intended to fix it, adding two lines to match [DBImplSecondary](
|
2 years ago |
Yu Zhang | 4dafa5b220 |
switch to use RocksDB UnorderedMap (#11507)
Summary: Switch from std::unordered_map to RocksDB UnorderedMap for all the places that logging user-defined timestamp size in WAL used. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11507 Test Plan: ``` make all check ``` Reviewed By: ltamasi Differential Revision: D46448975 Pulled By: jowlyzhang fbshipit-source-id: bdb4d56a723b697a33daaf0f856a61d49a367a99 |
2 years ago |
Changyu Bi | e95cc1217d |
`CompactRange()` always compacts to bottommost level for leveled compaction (#11468)
Summary:
currently for leveled compaction, the max output level of a call to `CompactRange()` is pre-computed before compacting each level. This max output level is the max level whose key range overlaps with the manual compaction key range. However, during manual compaction, files in the max output level may be compacted down further by some background compaction. When this background compaction is a trivial move, there is a race condition and the manual compaction may not be able to compact all keys in the specified key range. This PR updates `CompactRange()` to always compact to the bottommost level to make this race condition more unlikely (it can still happen, see more in comment here:
|
2 years ago |
Jay Huh | 87bc929db3 |
Flush option in WaitForCompact() (#11483)
Summary: Context: As mentioned in https://github.com/facebook/rocksdb/issues/11436, introducing `flush` option in `WaitForCompactOptions` to flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB. 1. `bool flush = false` added to `WaitForCompactOptions` 2. `DBImpl::FlushAllColumnFamilies()` is introduced and `DBImpl::FlushForGetLiveFiles()` is refactored to call it. 3. `DBImpl::FlushAllColumnFamilies()` gets called before waiting in `WaitForCompact()` if `flush` option is `true` 4. Some previous WaitForCompact tests were parameterized to include both cases for `abort_on_pause_` being true/false as well as `flush_` being true/false Pull Request resolved: https://github.com/facebook/rocksdb/pull/11483 Test Plan: - `DBCompactionTest::WaitForCompactWithOptionToFlush` added - Changed existing DBCompactionTest::WaitForCompact tests to `DBCompactionWaitForCompactTest` to include params Reviewed By: pdillinger Differential Revision: D46289770 Pulled By: jaykorean fbshipit-source-id: 70d3f461d96a6e06390be60170dd7c4d0d38f8b0 |
2 years ago |
Yu Zhang | 56ca9e3106 |
Logging timestamp size record in WAL and use it during recovery (#11471)
Summary: Start logging the timestamp size record in WAL and use the record during recovery. Currently, user comparator cannot be different from what was used to create a column family, so the timestamp size record is just used to confirm it's consistent with the timestamp size the running user comparator indicates. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11471 Test Plan: ``` make all check ./db_secondary_test ./db_wal_test --gtest_filter="*WithTimestamp*" ./repair_test --gtest_filter="*WithTimestamp*" ``` Reviewed By: ltamasi Differential Revision: D46236769 Pulled By: jowlyzhang fbshipit-source-id: f6c60b5c8defdb05021c63df302ccc0be1275ad0 |
2 years ago |
Jay Huh | 81aeb15988 |
Add WaitForCompact with WaitForCompactOptions to public API (#11436)
Summary: Context: This is the first PR for WaitForCompact() Implementation with WaitForCompactOptions. In this PR, we are introducing `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` in the public API. This currently utilizes the existing internal `WaitForCompact()` implementation (with default abort_on_pause = false). `abort_on_pause` has been moved to `WaitForCompactOptions&`. In the later PRs, we will introduce the following two options in `WaitForCompactOptions` 1. `bool flush = false` by default - If true, flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB. 2. `bool close_db = false` by default - If true, will also close the DB upon compactions finishing. 1. struct `WaitForCompactOptions` added to options.h and `abort_on_pause` in the internal API moved to the option struct. 2. `Status WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` introduced in `db.h` 3. Changed the internal WaitForCompact() to `WaitForCompact(const WaitForCompactOptions& wait_for_compact_options)` and checks for the `abort_on_pause` inside the option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11436 Test Plan: Following tests added - `DBCompactionTest::WaitForCompactWaitsOnCompactionToFinish` - `DBCompactionTest::WaitForCompactAbortOnPauseAborted` - `DBCompactionTest::WaitForCompactContinueAfterPauseNotAborted` - `DBCompactionTest::WaitForCompactShutdownWhileWaiting` - `TransactionTest::WaitForCompactAbortOnPause` NOTE: `TransactionTest::WaitForCompactAbortOnPause` was added to use `StackableDB` to ensure the wrapper function is in place. Reviewed By: pdillinger Differential Revision: D45799659 Pulled By: jaykorean fbshipit-source-id: b5b58f95957f2ab47d1221dee32a61d6cdc4685b |
2 years ago |
Yu Zhang | 11ebddb1d4 |
Add utils to use for handling user defined timestamp size record in WAL (#11451)
Summary: Add a util method `HandleWriteBatchTimestampSizeDifference` to handle a `WriteBatch` read from WAL log when user-defined timestamp size record is written and read. Two check modes are added: `kVerifyConsistency` that just verifies the recorded timestamp size are consistent with the running ones. This mode is to be used by `db_impl_secondary` for opening a DB as secondary instance. It will also be used by `db_impl_open` before the user comparator switch support is added to make a column switch between enabling/disable UDT feature. The other mode `kReconcileInconsistency` will be used by `db_impl_open` later when user comparator can be changed. Another change is to extract a method `CollectColumnFamilyIdsFromWriteBatch` in db_secondary_impl.h into its standalone util file so it can be shared. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11451 Test Plan: ``` make check ./udt_util_test ``` Reviewed By: ltamasi Differential Revision: D45894386 Pulled By: jowlyzhang fbshipit-source-id: b96790777f154cddab6d45d9ba2e5d20ebc6fe9d |
2 years ago |
mayue.fight | 8d8eb0e77e |
Support Clip DB to KeyRange (#11379)
Summary: This PR is part of the request https://github.com/facebook/rocksdb/issues/11317. (Another part is https://github.com/facebook/rocksdb/pull/11378) ClipDB() will clip the entries in the CF according to the range [begin_key, end_key). All the entries outside this range will be completely deleted (including tombstones). This feature is mainly used to ensure that there is no overlapping Key when calling CreateColumnFamilyWithImports() to import multiple CFs. When Calling ClipDB [begin, end), there are the following steps 1. Quickly and directly delete files without overlap DeleteFilesInRanges(nullptr, begin) + DeleteFilesInRanges(end, nullptr) 2. Delete the Key outside the range Delete[smallest_key, begin) + Delete[end, largest_key] 3. Delete the tombstone through Manul Compact CompactRange(option, nullptr, nullptr) Pull Request resolved: https://github.com/facebook/rocksdb/pull/11379 Reviewed By: ajkr Differential Revision: D45840358 Pulled By: cbi42 fbshipit-source-id: 54152e8a45fd8ede137f99787eb252f0b51440a4 |
2 years ago |
Jay Huh | 586d78b31e |
Remove wait_unscheduled from waitForCompact internal API (#11443)
Summary: Context: In pull request https://github.com/facebook/rocksdb/issues/11436, we are introducing a new public API `waitForCompact(const WaitForCompactOptions& wait_for_compact_options)`. This API invokes the internal implementation `waitForCompact(bool wait_unscheduled=false)`. The unscheduled parameter indicates the compactions that are not yet scheduled but are required to process items in the queue. In certain cases, we are unable to wait for compactions, such as during a shutdown or when background jobs are paused. It is important to return the appropriate status in these scenarios. For all other cases, we should wait for all compaction and flush jobs, including the unscheduled ones. The primary purpose of this new API is to wait until the system has resolved its compaction debt. Currently, the usage of `wait_unscheduled` is limited to test code. This pull request eliminates the usage of wait_unscheduled. The internal `waitForCompact()` API now waits for unscheduled compactions unless the db is undergoing a shutdown. In the event of a shutdown, the API returns `Status::ShutdownInProgress()`. Additionally, a new parameter, `abort_on_pause`, has been introduced with a default value of `false`. This parameter addresses the possibility of waiting indefinitely for unscheduled jobs if `PauseBackgroundWork()` was called before `waitForCompact()` is invoked. By setting `abort_on_pause` to `true`, the API will immediately return `Status::Aborted`. Furthermore, all tests that previously called `waitForCompact(true)` have been fixed. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11443 Test Plan: Existing tests that involve a shutdown in progress: - DBCompactionTest::CompactRangeShutdownWhileDelayed - DBTestWithParam::PreShutdownMultipleCompaction - DBTestWithParam::PreShutdownCompactionMiddle Reviewed By: pdillinger Differential Revision: D45923426 Pulled By: jaykorean fbshipit-source-id: 7dc93fe6a6841a7d9d2d72866fa647090dba8eae |
2 years ago |
Peter Dillinger | 206fdea3d9 |
Change internal headers with duplicate names (#11408)
Summary: In IDE navigation I find it annoying that there are two statistics.h files (etc.) and often land on the wrong one. Here I migrate several headers to use the blah.h <- blah_impl.h <- blah.cc idiom. Although clang-format wants "blah.h" to be the top include for "blah.cc", I think overall this is an improvement. No public API changes. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11408 Test Plan: existing tests Reviewed By: ltamasi Differential Revision: D45456696 Pulled By: pdillinger fbshipit-source-id: 809d931253f3272c908cf5facf7e1d32fc507373 |
2 years ago |
anand76 | 2084cdf237 |
Delete temp OPTIONS file on failure to write it (#11423)
Summary: When the DB is opened, RocksDB creates a temp OPTIONS file, writes the current options to it, and renames it. In case of a failure, the temp file is left behind, and is not deleted by PurgeObsoleteFiles(). Fix this by explicitly deleting the temp file if writing to it or renaming it fails. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11423 Test Plan: Add a unit test Reviewed By: akankshamahajan15 Differential Revision: D45540454 Pulled By: anand1976 fbshipit-source-id: 47facdc30d8cc5667036312d04b21d3fc253c92e |
2 years ago |
Peter Dillinger | f4a02f2c52 |
Add hash_seed to Caches (#11391)
Summary: See motivation and description in new ShardedCacheOptions::hash_seed option. Updated db_bench so that its seed param is used for the cache hash seed. Made its code more safe to ensure seed is set before use. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11391 Test Plan: unit tests added / updated **Performance** - no discernible difference seen running cache_bench repeatedly before & after. With lru_cache and hyper_clock_cache. Reviewed By: hx235 Differential Revision: D45557797 Pulled By: pdillinger fbshipit-source-id: 40bf4da6d66f9d41a8a0eb8e5cf4246a4aa07934 |
2 years ago |
akankshamahajan | 6ba4717f35 |
Fix build error: variable 'base_level' may be uninitialized (#11435)
Summary: Fix build error: variable 'base_level' may be uninitialized ``` db_impl_compaction_flush.cc:1195:21: error: variable 'base_level' may be uninitialized when used here [-Werror,-Wconditional-uninitialized] level = base_level; ``` ^~~~~~~~~~ Pull Request resolved: https://github.com/facebook/rocksdb/pull/11435 Test Plan: CircleCI jobs Reviewed By: cbi42 Differential Revision: D45708176 Pulled By: akankshamahajan15 fbshipit-source-id: 851b1205b22b63d728495e5735fa91b0ad8e012b |
2 years ago |
Hui Xiao | 8f763bdeab |
Record and use the tail size to prefetch table tail (#11406)
Summary: **Context:** We prefetch the tail part of a SST file (i.e, the blocks after data blocks till the end of the file) during each SST file open in hope to prefetch all the stuff at once ahead of time for later read e.g, footer, meta index, filter/index etc. The existing approach to estimate the tail size to prefetch is through `TailPrefetchStats` heuristics introduced in https://github.com/facebook/rocksdb/pull/4156, which has caused small reads in unlucky case (e.g, small read into the tail buffer during table open in thread 1 under the same BlockBasedTableFactory object can make thread 2's tail prefetching use a small size that it shouldn't) and is hard to debug. Therefore we decide to record the exact tail size and use it directly to prefetch tail of the SST instead of relying heuristics. **Summary:** - Obtain and record in manifest the tail size in `BlockBasedTableBuilder::Finish()` - For backward compatibility, we fall back to TailPrefetchStats and last to simple heuristics that the tail size is a linear portion of the file size - see PR conversation for more. - Make`tail_start_offset` part of the table properties and deduct tail size to record in manifest for external files (e.g, file ingestion, import CF) and db repair (with no access to manifest). Pull Request resolved: https://github.com/facebook/rocksdb/pull/11406 Test Plan: 1. New UT 2. db bench Note: db bench on /tmp/ where direct read is supported is too slow to finish and the default pinning setting in db bench is not helpful to profile # sst read of Get. Therefore I hacked the following to obtain the following comparison. ``` diff --git a/table/block_based/block_based_table_reader.cc b/table/block_based/block_based_table_reader.cc index bd5669f0f..791484c1f 100644 --- a/table/block_based/block_based_table_reader.cc +++ b/table/block_based/block_based_table_reader.cc @@ -838,7 +838,7 @@ Status BlockBasedTable::PrefetchTail( &tail_prefetch_size); // Try file system prefetch - if (!file->use_direct_io() && !force_direct_prefetch) { + if (false && !file->use_direct_io() && !force_direct_prefetch) { if (!file->Prefetch(prefetch_off, prefetch_len, ro.rate_limiter_priority) .IsNotSupported()) { prefetch_buffer->reset(new FilePrefetchBuffer( diff --git a/tools/db_bench_tool.cc b/tools/db_bench_tool.cc index ea40f5fa0..39a0ac385 100644 --- a/tools/db_bench_tool.cc +++ b/tools/db_bench_tool.cc @@ -4191,6 +4191,8 @@ class Benchmark { std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options)); } else { BlockBasedTableOptions block_based_options; + block_based_options.metadata_cache_options.partition_pinning = + PinningTier::kAll; block_based_options.checksum = static_cast<ChecksumType>(FLAGS_checksum_type); if (FLAGS_use_hash_search) { ``` Create DB ``` ./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none ``` ReadRandom ``` ./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none ``` (a) Existing (Use TailPrefetchStats for tail size + use seperate prefetch buffer in PartitionedFilter/IndexReader::CacheDependencies()) ``` rocksdb.table.open.prefetch.tail.hit COUNT : 3395 rocksdb.sst.read.micros P50 : 5.655570 P95 : 9.931396 P99 : 14.845454 P100 : 585.000000 COUNT : 999905 SUM : 6590614 ``` (b) This PR (Record tail size + use the same tail buffer in PartitionedFilter/IndexReader::CacheDependencies()) ``` rocksdb.table.open.prefetch.tail.hit COUNT : 14257 rocksdb.sst.read.micros P50 : 5.173347 P95 : 9.015017 P99 : 12.912610 P100 : 228.000000 COUNT : 998547 SUM : 5976540 ``` As we can see, we increase the prefetch tail hit count and decrease SST read count with this PR 3. Test backward compatibility by stepping through reading with post-PR code on a db generated pre-PR. Reviewed By: pdillinger Differential Revision: D45413346 Pulled By: hx235 fbshipit-source-id: 7d5e36a60a72477218f79905168d688452a4c064 |
2 years ago |
Changyu Bi | a11f1e12ca |
Fix flaky test `DBTestUniversalManualCompactionOutputPathId.ManualCompactionOutputPathId` (#11412)
Summary: the test is flaky when compiled with `make -j56 COERCE_CONTEXT_SWITCH=1 ./db_universal_compaction_test`. The cause is that a manual compaction `CompactRange()` can finish and return before obsolete files are deleted. One reason for this is that a manual compaction waits until `manual.done` is set here |
2 years ago |
anand76 | 03a892a9fb |
Delete empty WAL files on reopen (#11409)
Summary: When a DB is opened, RocksDB creates an empty WAL file. When the DB is reopened and the WAL is empty, the min log number to keep is not advanced until a memtable flush happens. If a process crashes soon after reopening the DB, its likely that no memtable flush would have happened, which means the empty WAL file is not deleted. In a crash loop scenario, this leads to empty WAL files accumulating. Fix this by ensuring the min log number is advanced if the WAL is empty. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11409 Test Plan: Add a unit test Reviewed By: ajkr Differential Revision: D45281685 Pulled By: anand1976 fbshipit-source-id: 0225877c613e65ffb30972a0051db2830105423e |
2 years ago |
leipeng | 40d69b59ad |
DBImpl::MultiGet: delete unused var `superversions_to_delete` (#11395)
Summary: In db_impl.cc DBImpl::MultiGet: delete unused var `superversions_to_delete` Pull Request resolved: https://github.com/facebook/rocksdb/pull/11395 Reviewed By: ajkr Differential Revision: D45240896 Pulled By: cbi42 fbshipit-source-id: 0fff99b0d794b6f6d4aadee6036bddd6cb19eb31 |
2 years ago |
Hui Xiao | 151242ce46 |
Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288)
Summary: **Context:** The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them. **Summary** - Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros` - Fixed the default histogram in `RandomAccessFileReader` - New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader` - Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288 Test Plan: - **Stress test** - **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob) - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads. ``` ./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10) ``` ``` // BlockBasedTable rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805 rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116 rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689 // PlainTable Does not apply ``` - **Db bench 2: performance** **Read** SETUP: db with 900 files ``` ./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none ```run till convergence ``` ./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3 ``` Pre-change `readrandom [AVG 60 runs] : 21568 (± 248) ops/sec` Post-change (no regression, -0.3%) `readrandom [AVG 60 runs] : 21486 (± 236) ops/sec` **Compaction/Flush**run till convergence ``` ./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none rocksdb.sst.read.micros COUNT : 33820 rocksdb.sst.read.flush.micros COUNT : 1800 rocksdb.sst.read.compaction.micros COUNT : 32020 ``` Pre-change `fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec` Post-change (no regression, ~-0.4%) `fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec` Reviewed By: ajkr Differential Revision: D44007011 Pulled By: hx235 fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132 |
2 years ago |
Changyu Bi | 43e9a60bb2 |
Always allow L0->L1 trivial move during manual compaction (#11375)
Summary: during manual compaction (CompactRange()), L0->L1 trivial move is disabled when only L0 overlaps with compacting key range (introduced in https://github.com/facebook/rocksdb/issues/7368 to enforce kForce* contract). This can cause large memory usage due to compaction readahead when number of L0 files is large. This PR allows L0->L1 trivial move in this case, and will do a L1 -> L1 intra-level compaction when needed (`bottommost_level_compaction` is kForce*). In brief, consider a DB with only L0 file, and user calls CompactRange(kForce, nullptr, nullptr), - before this PR, RocksDB does a L0 -> L1 compaction (disallow trivial move), - after this PR, RocksDB does a L0 -> L1 compaction (allow trivial move), and a L1 -> L1 compaction. Users can use kForceOptimized to avoid this extra L1->L1 compaction overhead when L0s are overlapping and cannot be trivial moved. This PR also fixed a bug (see previous discussion in https://github.com/facebook/rocksdb/issues/11041) where `final_output_level` of a manual compaction can be miscalculated when `level_compaction_dynamic_level_bytes=true`. This bug could cause incorrect level being moved when CompactRangeOptions::change_level is specified. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11375 Test Plan: - Added new unit tests to test that L0 -> L1 compaction allows trivial move and L1 -> L1 compaction is done when needed. Reviewed By: ajkr Differential Revision: D44943518 Pulled By: cbi42 fbshipit-source-id: e9fb770d17b163c18a623e1d1bd6b81159192708 |
2 years ago |
Changyu Bi | b3c43a5b99 |
Drain unnecessary levels when `level_compaction_dynamic_level_bytes=true` (#11340)
Summary: When a user migrates to level compaction + `level_compaction_dynamic_level_bytes=true`, or when a DB shrinks, there can be unnecessary levels in the DB. Before this PR, this is no way to remove these levels except a manual compaction. These extra unnecessary levels make it harder to guarantee max_bytes_for_level_multiplier and can cause extra space amp. This PR boosts compaction score for these levels to allow RocksDB to automatically drain these levels. Together with https://github.com/facebook/rocksdb/issues/11321, this makes migration to `level_compaction_dynamic_level_bytes=true` automatic without needing user to do a one time full manual compaction. Credit: this PR is modified from https://github.com/facebook/rocksdb/issues/3921. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11340 Test Plan: - New unit tests - `python3 tools/db_crashtest.py whitebox --simple` which randomly sets level_compaction_dynamic_level_bytes in each run. Reviewed By: ajkr Differential Revision: D44563884 Pulled By: cbi42 fbshipit-source-id: e20d3620bd73dff22be18c5a91a07f340740bcc8 |
2 years ago |
Changyu Bi | 601320164b |
Trivially move files down when opening db with level_compaction_dynamic_l… (#11321)
Summary: …evel_bytes During DB open, if a column family uses level compaction with level_compaction_dynamic_level_bytes=true, trivially move its files down in the LSM such that the bottommost files are in Lmax, the second from bottommost level files are in Lmax-1 and so on. This is aimed to make it easier to migrate level_compaction_dynamic_level_bytes from false to true. Before this change, a full manual compaction is suggested for such migration. After this change, user can just restart DB to turn on this option. db_crashtest.py is updated to randomly choose value for level_compaction_dynamic_level_bytes. Note that there may still be too many unnecessary levels if a user is migrating from universal compaction or level compaction with a smaller level multiplier. A full manual compaction may still be needed in that case before some PR that automatically drain unnecessary levels like https://github.com/facebook/rocksdb/issues/3921 lands. Eventually we may want to change the default value of option level_compaction_dynamic_level_bytes to true. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11321 Test Plan: 1. Added unit tests. 2. Crash test: ran a variation of db_crashtest.py (like 32516507e77521ae887e45091b69139e32e8efb7) that turns level_compaction_dynamic_level_bytes on and off and switches between LC and UC for the same DB. TODO: Update `OptionChangeMigration`, either after this PR or https://github.com/facebook/rocksdb/issues/3921. Reviewed By: ajkr Differential Revision: D44341930 Pulled By: cbi42 fbshipit-source-id: 013de19a915c6a0502be569f07c4cc8f1c3c6be2 |
2 years ago |
Hui Xiao | cb58477185 |
New stat rocksdb.{cf|db}-write-stall-stats exposed in a structural way (#11300)
Summary: **Context/Summary:** Users are interested in figuring out what has caused write stall. - Refactor write stall related stats from property `kCFStats` into its own db property `rocksdb.cf-write-stall-stats` as a map or string. For now, this only contains count of different combination of (CF-scope `WriteStallCause`) + (`WriteStallCondition`) - Add new `WriteStallCause::kWriteBufferManagerLimit` to reflect write stall caused by write buffer manager - Add new `rocksdb.db-write-stall-stats`. For now, this only contains `WriteStallCause::kWriteBufferManagerLimit` + `WriteStallCondition::kStopped` - Expose functions in new class `WriteStallStatsMapKeys` for examining the above two properties returned as map - Misc: rename/comment some write stall InternalStats for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/11300 Test Plan: - New UT - Stress test `python3 tools/db_crashtest.py blackbox --simple --get_property_one_in=1` - Perf test: Both converge very slowly at similar rates but post-change has higher average ops/sec than pre-change even though they are run at the same time. ``` ./db_bench -seed=1679014417652004 -db=/dev/shm/testdb/ -statistics=false -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=100000 -db_write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 ``` pre-change: ``` fillseq [AVG 15 runs] : 1176 (± 732) ops/sec; 0.6 (± 0.4) MB/sec fillseq : 1052.671 micros/op 949 ops/sec 105.267 seconds 100000 operations; 0.5 MB/s fillseq [AVG 16 runs] : 1162 (± 685) ops/sec; 0.6 (± 0.4) MB/sec fillseq : 1387.330 micros/op 720 ops/sec 138.733 seconds 100000 operations; 0.4 MB/s fillseq [AVG 17 runs] : 1136 (± 646) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1232.011 micros/op 811 ops/sec 123.201 seconds 100000 operations; 0.4 MB/s fillseq [AVG 18 runs] : 1118 (± 610) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1282.567 micros/op 779 ops/sec 128.257 seconds 100000 operations; 0.4 MB/s fillseq [AVG 19 runs] : 1100 (± 578) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1914.336 micros/op 522 ops/sec 191.434 seconds 100000 operations; 0.3 MB/s fillseq [AVG 20 runs] : 1071 (± 551) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1227.510 micros/op 814 ops/sec 122.751 seconds 100000 operations; 0.4 MB/s fillseq [AVG 21 runs] : 1059 (± 525) ops/sec; 0.5 (± 0.3) MB/sec ``` post-change: ``` fillseq [AVG 15 runs] : 1226 (± 732) ops/sec; 0.6 (± 0.4) MB/sec fillseq : 1323.825 micros/op 755 ops/sec 132.383 seconds 100000 operations; 0.4 MB/s fillseq [AVG 16 runs] : 1196 (± 687) ops/sec; 0.6 (± 0.4) MB/sec fillseq : 1223.905 micros/op 817 ops/sec 122.391 seconds 100000 operations; 0.4 MB/s fillseq [AVG 17 runs] : 1174 (± 647) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1168.996 micros/op 855 ops/sec 116.900 seconds 100000 operations; 0.4 MB/s fillseq [AVG 18 runs] : 1156 (± 611) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1348.729 micros/op 741 ops/sec 134.873 seconds 100000 operations; 0.4 MB/s fillseq [AVG 19 runs] : 1134 (± 579) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1196.887 micros/op 835 ops/sec 119.689 seconds 100000 operations; 0.4 MB/s fillseq [AVG 20 runs] : 1119 (± 550) ops/sec; 0.6 (± 0.3) MB/sec fillseq : 1193.697 micros/op 837 ops/sec 119.370 seconds 100000 operations; 0.4 MB/s fillseq [AVG 21 runs] : 1106 (± 524) ops/sec; 0.6 (± 0.3) MB/sec ``` Reviewed By: ajkr Differential Revision: D44159541 Pulled By: hx235 fbshipit-source-id: 8d29efb70001fdc52d34535eeb3364fc3e71e40b |
2 years ago |
Hui Xiao | 11cb6af6e5 |
Fix bug of prematurely excluded CF in atomic flush contains unflushed data that should've been included in the atomic flush (#11148)
Summary: **Context:** Atomic flush should guarantee recoverability of all data of seqno up to the max seqno of the flush. It achieves this by ensuring all such data are flushed by the time this atomic flush finishes through `SelectColumnFamiliesForAtomicFlush()`. However, our crash test exposed the following case where an excluded CF from an atomic flush contains unflushed data of seqno less than the max seqno of that atomic flush and loses its data with `WriteOptions::DisableWAL=true` in face of a crash right after the atomic flush finishes . ``` ./db_stress --preserve_unverified_changes=1 --reopen=0 --acquire_snapshot_one_in=0 --adaptive_readahead=1 --allow_data_in_errors=True --async_io=1 --atomic_flush=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=0 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=15 --bottommost_compression_type=none --bytes_per_sync=262144 --cache_index_and_filter_blocks=0 --cache_size=8388608 --cache_type=lru_cache --charge_compression_dictionary_building_buffer=0 --charge_file_metadata=1 --charge_filter_construction=0 --charge_table_reader=0 --checkpoint_one_in=0 --checksum_type=kXXH3 --clear_column_family_one_in=0 --compact_files_one_in=0 --compact_range_one_in=0 --compaction_pri=1 --compaction_ttl=100 --compression_max_dict_buffer_bytes=134217727 --compression_max_dict_bytes=16384 --compression_parallel_threads=1 --compression_type=lz4hc --compression_use_zstd_dict_trainer=0 --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --data_block_index_type=0 --db=$db --db_write_buffer_size=1048576 --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --detect_filter_construct_corruption=0 --disable_wal=1 --enable_compaction_filter=0 --enable_pipelined_write=0 --expected_values_dir=$exp --fail_if_options_file_error=0 --fifo_allow_compaction=0 --file_checksum_impl=none --flush_one_in=0 --format_version=5 --get_current_wal_file_one_in=0 --get_live_files_one_in=100 --get_property_one_in=0 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=2 --index_type=0 --ingest_external_file_one_in=0 --initial_auto_readahead_size=524288 --iterpercent=10 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=True --long_running_snapshots=1 --manual_wal_flush_one_in=100 --mark_for_compaction_one_file_in=0 --max_auto_readahead_size=0 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=10000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=64 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=0 --memtable_prefix_bloom_size_ratio=0.01 --memtable_protection_bytes_per_key=4 --memtable_whole_key_filtering=0 --memtablerep=skip_list --min_write_buffer_number_to_merge=2 --mmap_read=1 --mock_direct_io=False --nooverwritepercent=1 --num_file_reads_for_auto_readahead=0 --open_files=-1 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=0 --open_write_fault_one_in=0 --ops_per_thread=100000000 --optimize_filters_for_memory=1 --paranoid_file_checks=1 --partition_filters=0 --partition_pinning=3 --pause_background_one_in=0 --periodic_compaction_seconds=100 --prefix_size=8 --prefixpercent=5 --prepopulate_block_cache=0 --preserve_internal_time_seconds=3600 --progress_reports=0 --read_fault_one_in=32 --readahead_size=16384 --readpercent=50 --recycle_log_file_num=0 --ribbon_starting_level=6 --secondary_cache_fault_one_in=0 --set_options_one_in=10000 --snapshot_hold_ops=100000 --sst_file_manager_bytes_per_sec=104857600 --sst_file_manager_bytes_per_truncate=1048576 --stats_dump_period_sec=10 --subcompactions=1 --sync=0 --sync_fault_injection=0 --target_file_size_base=524288 --target_file_size_multiplier=2 --test_batches_snapshots=0 --top_level_index_pinning=0 --unpartitioned_pinning=1 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --use_full_merge_v1=0 --use_merge=0 --use_multiget=1 --use_put_entity_one_in=0 --user_timestamp_size=0 --value_size_mult=32 --verify_checksum=1 --verify_checksum_one_in=0 --verify_db_one_in=1000 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=524288 --wal_compression=none --write_buffer_size=524288 --write_dbid_to_manifest=1 --write_fault_one_in=0 --writepercent=30 & pid=$! sleep 0.2 sleep 10 kill $pid sleep 0.2 ./db_stress --ops_per_thread=1 --preserve_unverified_changes=1 --reopen=0 --acquire_snapshot_one_in=0 --adaptive_readahead=1 --allow_data_in_errors=True --async_io=1 --atomic_flush=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=0 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=15 --bottommost_compression_type=none --bytes_per_sync=262144 --cache_index_and_filter_blocks=0 --cache_size=8388608 --cache_type=lru_cache --charge_compression_dictionary_building_buffer=0 --charge_file_metadata=1 --charge_filter_construction=0 --charge_table_reader=0 --checkpoint_one_in=0 --checksum_type=kXXH3 --clear_column_family_one_in=0 --compact_files_one_in=0 --compact_range_one_in=0 --compaction_pri=1 --compaction_ttl=100 --compression_max_dict_buffer_bytes=134217727 --compression_max_dict_bytes=16384 --compression_parallel_threads=1 --compression_type=lz4hc --compression_use_zstd_dict_trainer=0 --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --data_block_index_type=0 --db=$db --db_write_buffer_size=1048576 --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --detect_filter_construct_corruption=0 --disable_wal=1 --enable_compaction_filter=0 --enable_pipelined_write=0 --expected_values_dir=$exp --fail_if_options_file_error=0 --fifo_allow_compaction=0 --file_checksum_impl=none --flush_one_in=0 --format_version=5 --get_current_wal_file_one_in=0 --get_live_files_one_in=100 --get_property_one_in=0 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=2 --index_type=0 --ingest_external_file_one_in=0 --initial_auto_readahead_size=524288 --iterpercent=10 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=True --long_running_snapshots=1 --manual_wal_flush_one_in=100 --mark_for_compaction_one_file_in=0 --max_auto_readahead_size=0 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=10000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=64 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=0 --memtable_prefix_bloom_size_ratio=0.01 --memtable_protection_bytes_per_key=4 --memtable_whole_key_filtering=0 --memtablerep=skip_list --min_write_buffer_number_to_merge=2 --mmap_read=1 --mock_direct_io=False --nooverwritepercent=1 --num_file_reads_for_auto_readahead=0 --open_files=-1 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=0 --open_write_fault_one_in=0 --ops_per_thread=100000000 --optimize_filters_for_memory=1 --paranoid_file_checks=1 --partition_filters=0 --partition_pinning=3 --pause_background_one_in=0 --periodic_compaction_seconds=100 --prefix_size=8 --prefixpercent=5 --prepopulate_block_cache=0 --preserve_internal_time_seconds=3600 --progress_reports=0 --read_fault_one_in=32 --readahead_size=16384 --readpercent=50 --recycle_log_file_num=0 --ribbon_starting_level=6 --secondary_cache_fault_one_in=0 --set_options_one_in=10000 --snapshot_hold_ops=100000 --sst_file_manager_bytes_per_sec=104857600 --sst_file_manager_bytes_per_truncate=1048576 --stats_dump_period_sec=10 --subcompactions=1 --sync=0 --sync_fault_injection=0 --target_file_size_base=524288 --target_file_size_multiplier=2 --test_batches_snapshots=0 --top_level_index_pinning=0 --unpartitioned_pinning=1 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --use_full_merge_v1=0 --use_merge=0 --use_multiget=1 --use_put_entity_one_in=0 --user_timestamp_size=0 --value_size_mult=32 --verify_checksum=1 --verify_checksum_one_in=0 --verify_db_one_in=1000 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=524288 --wal_compression=none --write_buffer_size=524288 --write_dbid_to_manifest=1 --write_fault_one_in=0 --writepercent=30 & pid=$! sleep 0.2 sleep 40 kill $pid sleep 0.2 Verification failed for column family 6 key 0000000000000239000000000000012B0000000000000138 (56622): value_from_db: , value_from_expected: 4A6331754E4F4C4D42434041464744455A5B58595E5F5C5D5253505156575455, msg: Value not found: NotFound: Crash-recovery verification failed :( No writes or ops? Verification failed :( ``` The bug is due to the following: - When atomic flush is used, an empty CF is legally [excluded](https://github.com/facebook/rocksdb/blob/7.10.fb/db/db_filesnapshot.cc#L39) in `SelectColumnFamiliesForAtomicFlush` as the first step of `DBImpl::FlushForGetLiveFiles` before [passing](https://github.com/facebook/rocksdb/blob/7.10.fb/db/db_filesnapshot.cc#L42) the included CFDs to `AtomicFlushMemTables`. - But [later](https://github.com/facebook/rocksdb/blob/7.10.fb/db/db_impl/db_impl_compaction_flush.cc#L2133) in `AtomicFlushMemTables`, `WaitUntilFlushWouldNotStallWrites` will [release the db mutex](https://github.com/facebook/rocksdb/blob/7.10.fb/db/db_impl/db_impl_compaction_flush.cc#L2403), during which data@seqno N can be inserted into the excluded CF and data@seqno M can be inserted into one of the included CFs, where M > N. - However, data@seqno N in an already-excluded CF is thus excluded from this atomic flush while we seqno N is less than seqno M. **Summary:** - Replace `SelectColumnFamiliesForAtomicFlush()`-before-`AtomicFlushMemTables()` with `SelectColumnFamiliesForAtomicFlush()`-after-wait-within-`AtomicFlushMemTables()` so we ensure no write affecting the recoverability of this atomic job (i.e, change to max seqno of this atomic flush or insertion of data with less seqno than the max seqno of the atomic flush to excluded CF) can happen after calling `SelectColumnFamiliesForAtomicFlush()`. - For above, refactored and clarified comments on `SelectColumnFamiliesForAtomicFlush()` and `AtomicFlushMemTables()` for clearer semantics of passed-in CFDs to atomic-flush Pull Request resolved: https://github.com/facebook/rocksdb/pull/11148 Test Plan: - New unit test failed before the fix and passes after - Make check - Rehearsal stress test Reviewed By: ajkr Differential Revision: D42799871 Pulled By: hx235 fbshipit-source-id: 13636b63e9c25c5895857afc36ea580d57f6d644 |
2 years ago |
Igor Canadi | ddde1e6af8 |
Avoid ColumnFamilyDescriptor copy (#10978)
Summary: Hi. :) Noticed we are copying ColumnFamilyDescriptor here because my process crashed during copy constructor (cause unrelated) Pull Request resolved: https://github.com/facebook/rocksdb/pull/10978 Reviewed By: cbi42 Differential Revision: D41473924 Pulled By: ajkr fbshipit-source-id: 58a3473f2d7b24918f79d4b2726c20081c5e95b4 |
2 years ago |
ywave | 9fa9becf53 |
fix -Wrange-loop-analysis in Apple clang version 12.0.0 (clang-1200.0.32.29) (#11240)
Summary: Fix complain ``` db/db_impl/db_impl_compaction_flush.cc:417:19: error: loop variable 'bg_flush_arg' of type 'const rocksdb::DBImpl::BGFlushArg' creates a copy from type 'const rocksdb::DBImpl::BGFlushArg' [-Werror,-Wrange-loop-analysis] for (const auto bg_flush_arg : bg_flush_args) { ^ db/db_impl/db_impl_compaction_flush.cc:417:8: note: use reference type 'const rocksdb::DBImpl::BGFlushArg &' to prevent copying for (const auto bg_flush_arg : bg_flush_args) { ^~~~~~~~~~~~~~~~~~~~~~~~~ & db/db_impl/db_impl_compaction_flush.cc:2911:21: error: loop variable 'bg_flush_arg' of type 'const rocksdb::DBImpl::BGFlushArg' creates a copy from type 'const rocksdb::DBImpl::BGFlushArg' [-Werror,-Wrange-loop-analysis] for (const auto bg_flush_arg : bg_flush_args) { ^ db/db_impl/db_impl_compaction_flush.cc:2911:10: note: use reference type 'const rocksdb::DBImpl::BGFlushArg &' to prevent copying for (const auto bg_flush_arg : bg_flush_args) { ^~~~~~~~~~~~~~~~~~~~~~~~~ & ``` from ```sh xxx@MacBook-Pro / % g++ -v Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-dir=/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include/c++/4.2.1 Apple clang version 12.0.0 (clang-1200.0.32.29) Target: x86_64-apple-darwin21.6.0 Thread model: posix ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/11240 Reviewed By: cbi42 Differential Revision: D43458729 Pulled By: ajkr fbshipit-source-id: 26e110f83451509463a1bc308f737ccb693c9f45 |
2 years ago |
Levi Tamasi | 9794acb597 |
Add a new MultiGetEntity API (#11222)
Summary: The new `MultiGetEntity` API can be used to get a consistent view of a batch of keys, with the results presented as wide-column entities. Similarly to `GetEntity` and the iterator's `columns` API, if the entry corresponding to the key is a wide-column entity to start with, it is returned as-is, and if it is a plain key-value, it is wrapped into an entity with a single default column. Implementation-wise, the new API shares the logic of the batched `MultiGet` API (via the `MultiGetCommon` methods). Both single-CF and multi-CF `MultiGetEntity` APIs are provided, and blobs are also supported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11222 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D43256950 Pulled By: ltamasi fbshipit-source-id: 47fb2cb7e2d0470e3580f43fdb2fe9e51f0e7005 |
2 years ago |
Hui Xiao | 9b66331388 |
Simplify TEST_F(DBWALTest, FixSyncWalOnObseletedWalWithNewManifestCausingMissingWAL) (#11186)
Summary: **Context/Summary**: Simplify `TEST_F(DBWALTest, FixSyncWalOnObseletedWalWithNewManifestCausingMissingWAL)` based on https://github.com/facebook/rocksdb/pull/11016#pullrequestreview-1205020134 and delete unused sync points. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11186 Test Plan: - UT failed before fix in https://github.com/facebook/rocksdb/pull/10892 and passes after - Check UT not flaky when running with https://app.circleci.com/pipelines/github/facebook/rocksdb/21985/workflows/5f6cc355-78c1-46d8-89ee-0fd679725a8a/jobs/540878 Reviewed By: ajkr Differential Revision: D43034723 Pulled By: hx235 fbshipit-source-id: f503774987b8f3718505f99e95080a7fad28ac66 |
2 years ago |
Peter Dillinger | 390cc0b156 |
Ensure LockWAL() stall cleared for UnlockWAL() return (#11172)
Summary: Fixes https://github.com/facebook/rocksdb/issues/11160 By counting the number of stalls placed on a write queue, we can check in UnlockWAL() whether the stall present at the start of UnlockWAL() has been cleared by the end, or wait until it's cleared. More details in code comments and new unit test. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11172 Test Plan: unit test added. Yes, it uses sleep to amplify failure on buggy behavior if present, but using a sync point to only allow new behavior would fail with the old code only because it doesn't contain the new sync point. Basically, using a sync point in UnlockWAL() could easily mask a regression by artificially limiting key behaviors. The test would only check that UnlockWAL() invokes code that *should* do the right thing, without checking that it *does* the right thing. Reviewed By: ajkr Differential Revision: D42894341 Pulled By: pdillinger fbshipit-source-id: 15c9da0ca383e6aec845b29f5447d76cecbf46c3 |
2 years ago |
Andrew Kryczka | 071c33846d |
Allow canceling manual compaction while waiting for conflicting compaction (#11165)
Summary: This PR adds logic to the `RunManualCompaction()` loop to check for cancellation before waiting on any conflicting compactions to finish. In case of cancellation, `RunManualCompaction()` no longer waits on conflicting compactions Pull Request resolved: https://github.com/facebook/rocksdb/pull/11165 Test Plan: repro test case Reviewed By: cbi42 Differential Revision: D42864058 Pulled By: ajkr fbshipit-source-id: ea4dd1a8f294abe212905495a8fbe8f07fca3f5a |
2 years ago |
Peter Dillinger | 94e3beec77 |
Cleanup, improve, stress test LockWAL() (#11143)
Summary: The previous API comments for LockWAL didn't provide much about why you might want to use it, and didn't really meet what one would infer its contract was. Also, LockWAL was not in db_stress / crash test. In this change: * Implement a counting semantics for LockWAL()+UnlockWAL(), so that they can safely be used concurrently across threads or recursively within a thread. This should make the API much less bug-prone and easier to use. * Make sure no UnlockWAL() is needed after non-OK LockWAL() (to match RocksDB conventions) * Make UnlockWAL() reliably return non-OK when there's no matching LockWAL() (for debug-ability) * Clarify API comments on LockWAL(), UnlockWAL(), FlushWAL(), and SyncWAL(). Their exact meanings are not obvious, and I don't think it's appropriate to talk about implementation mutexes in the API comments, but about what operations might block each other. * Add LockWAL()/UnlockWAL() to db_stress and crash test, mostly to check for assertion failures, but also checks that latest seqno doesn't change while WAL is locked. This is simpler to add when LockWAL() is allowed in multiple threads. * Remove unnecessary use of sync points in test DBWALTest::LockWal. There was a bug during development of above changes that caused this test to fail sporadically, with and without this sync point change. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11143 Test Plan: unit tests added / updated, added to stress/crash test Reviewed By: ajkr Differential Revision: D42848627 Pulled By: pdillinger fbshipit-source-id: 6d976c51791941a31fd8fbf28b0f82e888d9f4b4 |
2 years ago |
sdong | 4720ba4391 |
Remove RocksDB LITE (#11147)
Summary: We haven't been actively mantaining RocksDB LITE recently and the size must have been gone up significantly. We are removing the support. Most of changes were done through following comments: unifdef -m -UROCKSDB_LITE `git grep -l ROCKSDB_LITE | egrep '[.](cc|h)'` by Peter Dillinger. Others changes were manually applied to build scripts, CircleCI manifests, ROCKSDB_LITE is used in an expression and file db_stress_test_base.cc. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11147 Test Plan: See CI Reviewed By: pdillinger Differential Revision: D42796341 fbshipit-source-id: 4920e15fc2060c2cd2221330a6d0e5e65d4b7fe2 |
2 years ago |
Peter Dillinger | 546e213c4f |
Fix DelayWrite() calls for two_write_queues (#11130)
Summary: PR https://github.com/facebook/rocksdb/issues/11020 fixed a case where it was easy to deadlock the DB with LockWAL() but introduced a bug showing up as a rare assertion failure in the stress test. Specifically, `assert(w->state == STATE_INIT)` in `WriteThread::LinkOne()` called from `BeginWriteStall()`, `DelayWrite()`, `WriteImplWALOnly()`. I haven't been about to generate a unit test that reproduces this failure but I believe the root cause is that DelayWrite() was never meant to be re-entrant, only called from the DB's write_thread_ leader. https://github.com/facebook/rocksdb/issues/11020 introduced a call to DelayWrite() from the nonmem_write_thread_ group leader. This fix is to make DelayWrite() apply to the specific write queue that it is being called from (inject a dummy write stall entry to the head of the appropriate write queue). WriteController is re-entrant, based on polling and state changes signalled with bg_cv_, so can manage stalling two queues. The only anticipated complication (called out by Andrew in previous PR) is that we don't want timed write delays being injected in parallel for the two queues, because that dimishes the intended throttling effect. Thus, we only allow timed delays for the primary write queue. HISTORY not updated because this is intended for the same release where the bug was introduced. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11130 Test Plan: Although I was not able to reproduce the assertion failure, I was able to reproduce a distinct flaw with what I believe is the same root cause: a kind of deadlock if both write queues need to wake up from stopped writes. Only one will be waiting on bg_cv_ (the other waiting in `LinkOne()` for the write queue to open up), so a single SignalAll() will only unblock one of the queues, with the other re-instating the stop until another signal on bg_cv_. A simple unit test is added for this case. Will also run crash_test_with_multiops_wc_txn for a while looking for issues. Reviewed By: ajkr Differential Revision: D42749330 Pulled By: pdillinger fbshipit-source-id: 4317dd899a93d57c26fd5af7143038f82d4d4d1b |
2 years ago |
Hui Xiao | 86fa2592be |
Fix data race on `ColumnFamilyData::flush_reason` by letting FlushRequest/Job owns flush_reason instead of CFD (#11111)
Summary: **Context:** Concurrent flushes on the same CF can set on `ColumnFamilyData::flush_reason` before each other flush finishes. An symptom is one CF has different flush_reason with others though all of them are in an atomic flush `db_stress: db/db_impl/db_impl_compaction_flush.cc:423: rocksdb::Status rocksdb::DBImpl::AtomicFlushMemTablesToOutputFiles(const rocksdb::autovector<rocksdb::DBImpl::BGFlushArg>&, bool*, rocksdb::JobContext*, rocksdb::LogBuffer*, rocksdb::Env::Priority): Assertion cfd->GetFlushReason() == cfds[0]->GetFlushReason() failed. ` **Summary:** Suggested by ltamasi, we now refactor and let FlushRequest/Job to own flush_reason as there is no good way to define `ColumnFamilyData::flush_reason` in face of concurrent flushes on the same CF (which wasn't the case a long time ago when `ColumnFamilyData::flush_reason ` first introduced`) **Tets:** - new unit test - make check - aggressive crash test rehearsal Pull Request resolved: https://github.com/facebook/rocksdb/pull/11111 Reviewed By: ajkr Differential Revision: D42644600 Pulled By: hx235 fbshipit-source-id: 8589c8184869d3415e5b780c887f877818a5ebaf |
2 years ago |
ywave | 7f71880de9 |
Fix typo in flushing stats CF (#11055)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/11055 Test Plan: make check Reviewed By: cbi42 Differential Revision: D42232828 Pulled By: ajkr fbshipit-source-id: 3b46514aebff4da7e47b9954b90800ba4a3ba30b |
2 years ago |
Hui Xiao | 9502856edd |
Add missing range conflict check between file ingestion and RefitLevel() (#10988)
Summary: **Context:** File ingestion never checks whether the key range it acts on overlaps with an ongoing RefitLevel() (used in `CompactRange()` with `change_level=true`). That's because RefitLevel() doesn't register and make its key range known to file ingestion. Though it checks overlapping with other compactions by https://github.com/facebook/rocksdb/blob/7.8.fb/db/external_sst_file_ingestion_job.cc#L998. RefitLevel() (used in `CompactRange()` with `change_level=true`) doesn't check whether the key range it acts on overlaps with an ongoing file ingestion. That's because file ingestion does not register and make its key range known to other compactions. - Note that non-refitlevel-compaction (e.g, manual compaction w/o RefitLevel() or general compaction) also does not check key range overlap with ongoing file ingestion for the same reason. - But it's fine. Credited to cbi42's discovery, `WaitForIngestFile` was called by background and foreground compactions. They were introduced in |
2 years ago |
Changyu Bi | cc6f323705 |
Include estimated bytes deleted by range tombstones in compensated file size (#10734)
Summary: compensate file sizes in compaction picking so files with range tombstones are preferred, such that they get compacted down earlier as they tend to delete a lot of data. This PR adds a `compensated_range_deletion_size` field in FileMeta that is computed during Flush/Compaction and persisted in MANIFEST. This value is added to `compensated_file_size` which will be used for compaction picking. Currently, for a file in level L, `compensated_range_deletion_size` is set to the estimated bytes deleted by range tombstone of this file in all levels > L. This helps to reduce space amp when data in older levels are covered by range tombstones in level L. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10734 Test Plan: - Added unit tests. - benchmark to check if the above definition `compensated_range_deletion_size` is reducing space amp as intended, without affecting write amp too much. The experiment set up favorable for this optimization: large range tombstone issued infrequently. Command used: ``` ./db_bench -benchmarks=fillrandom,waitforcompaction,stats,levelstats -use_existing_db=false -avoid_flush_during_recovery=true -write_buffer_size=33554432 -level_compaction_dynamic_level_bytes=true -max_background_jobs=8 -max_bytes_for_level_base=134217728 -target_file_size_base=33554432 -writes_per_range_tombstone=500000 -range_tombstone_width=5000000 -num=50000000 -benchmark_write_rate_limit=8388608 -threads=16 -duration=1800 --max_num_range_tombstones=1000000000 ``` In this experiment, each thread wrote 16 range tombstones over the duration of 30 minutes, each range tombstone has width 5M that is the 10% of the key space width. Results shows this PR generates a smaller DB size. Compaction stats from this PR: ``` Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ L0 2/0 31.54 MB 0.5 0.0 0.0 0.0 8.4 8.4 0.0 1.0 0.0 63.4 135.56 110.94 544 0.249 0 0 0.0 0.0 L4 3/0 96.55 MB 0.8 18.5 6.7 11.8 18.4 6.6 0.0 2.7 65.3 64.9 290.08 284.03 108 2.686 284M 1957K 0.0 0.0 L5 15/0 404.41 MB 1.0 19.1 7.7 11.4 18.8 7.4 0.3 2.5 66.6 65.7 292.93 285.34 220 1.332 293M 3808K 0.0 0.0 L6 143/0 4.12 GB 0.0 45.0 7.5 37.5 41.6 4.1 0.0 5.5 71.2 65.9 647.00 632.66 251 2.578 739M 47M 0.0 0.0 Sum 163/0 4.64 GB 0.0 82.6 21.9 60.7 87.2 26.5 0.3 10.4 61.9 65.4 1365.58 1312.97 1123 1.216 1318M 52M 0.0 0.0 ``` Compaction stats from main: ``` Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ L0 0/0 0.00 KB 0.0 0.0 0.0 0.0 8.4 8.4 0.0 1.0 0.0 60.5 142.12 115.89 569 0.250 0 0 0.0 0.0 L4 3/0 85.68 MB 1.0 17.7 6.8 10.9 17.6 6.7 0.0 2.6 62.7 62.3 289.05 281.79 112 2.581 272M 2309K 0.0 0.0 L5 11/0 293.73 MB 1.0 18.8 7.5 11.2 18.5 7.2 0.5 2.5 64.9 63.9 296.07 288.50 220 1.346 288M 4365K 0.0 0.0 L6 130/0 3.94 GB 0.0 51.5 7.6 43.9 47.9 3.9 0.0 6.3 67.2 62.4 784.95 765.92 258 3.042 848M 51M 0.0 0.0 Sum 144/0 4.31 GB 0.0 88.0 21.9 66.0 92.3 26.3 0.5 11.0 59.6 62.5 1512.19 1452.09 1159 1.305 1409M 58M 0.0 0.0``` Reviewed By: ajkr Differential Revision: D39834713 Pulled By: cbi42 fbshipit-source-id: fe9341040b8704a8fbb10cad5cf5c43e962c7e6b |
2 years ago |
Peter Dillinger | e6b6e74154 |
Make CompactRange() more aware of SstPartitionerFactory (#11032)
Summary: Some users are at least considering using SstPartitioner to support efficient physical migration of specific key ranges between RocksDB instances. One might expect manual `CompactRange()` over a narrow key range across some partition to enforce partitioning of any SST files crossing that partition boundary, but that currently only works if there are keys within that range. This change makes the overlap logic in CompactRange more aware of the partitioner to automatically select relevant files crossing a partition boundary, even when they otherwise would not be selected due to the compaction range falling in a gap between entries. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11032 Test Plan: unit test included Reviewed By: hx235 Differential Revision: D41981380 Pulled By: pdillinger fbshipit-source-id: 2fe445bdddc73c00276c20f295cc1fa33d15b05a |
2 years ago |
Yanqin Jin | c93ba7db5d |
Revise LockWAL/UnlockWAL implementation (#11020)
Summary: RocksDB has two public APIs: `DB::LockWAL()`/`DB::UnlockWAL()`. The current implementation acquires and releases the internal `DBImpl::log_write_mutex_`. According to the comment on `DBImpl::log_write_mutex_`: https://github.com/facebook/rocksdb/blob/7.8.fb/db/db_impl/db_impl.h#L2287:L2288 > Note: to avoid dealock, if needed to acquire both log_write_mutex_ and mutex_, the order should be first mutex_ and then log_write_mutex_. This puts limitations on how applications can use the `LockWAL()` API. After `LockWAL()` returns ok, then application should not perform any operation that acquires `mutex_`. Currently, the use case of `LockWAL()` is MyRocks implementing the MySQL storage engine handlerton `lock_hton_log` interface. The operation that MyRocks performs after `LockWAL()` is `GetSortedWalFiless()` which not only acquires mutex_, but also `log_write_mutex_`. There are two issues: 1. Applications using these two APIs may hang if one thread calls `GetSortedWalFiles()` after calling `LockWAL()` because log_write_mutex is not recursive. 2. Two threads may dead lock due to lock order inversion. To fix these issues, we can modify the implementation of LockWAL so that it does not keep `log_write_mutex_` held until UnlockWAL. To achieve the goal of locking the WAL, we can instead manually inject a write stall so that all future writes will be stopped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11020 Test Plan: make check Reviewed By: ajkr Differential Revision: D41785203 Pulled By: riversand963 fbshipit-source-id: 5ccb7a9c6eb9a2c3fa80fd2c399cc2568b8f89ce |
2 years ago |
Hui Xiao | 98d5db5c2e |
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run
|
2 years ago |
Jay Zhuang | 1078d860a9 |
Add an unittest for Periodic compaction conflict with ongoing compaction (#10908)
Summary: Add a tiered storage migration test which would conflict with an ongoing penultimate level compaction. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10908 Test Plan: Test only change Reviewed By: anand1976 Differential Revision: D40864509 Pulled By: ajkr fbshipit-source-id: e316e849a01a6c71a41be130101f909b6c0498cb |
2 years ago |
Hui Xiao | 2f76ab150d |
Fix missing WAL in new manifest by rolling over the WAL deletion record from prev manifest (#10892)
Summary: **Context** `Options::track_and_verify_wals_in_manifest = true` verifies each of the WALs tracked in manifest indeed presents in the WAL folder. If not, a corruption "Missing WAL with log number" will be thrown. `DB::SyncWAL()` called at a specific timing (i.e, at the `TEST_SYNC_POINT("FindObsoleteFiles::PostMutexUnlock")`) can record in a new manifest the WAL addition of a WAL file that already had a WAL deletion recorded in the previous manifest. And the WAL deletion record is not rollover-ed to the new manifest. So the new manifest creates the illusion of such WAL never gets deleted and should presents at db re/open. - Such WAL deletion record can be caused by flushing the memtable associated with that WAL and such WAL deletion can actually happen in` PurgeObsoleteFiles()`. As a consequence, upon `DB::Reopen()`, this WAL file can be deleted while manifest still has its WAL addition record , which causes a false alarm of corruption "Missing WAL with log number" to be thrown. **Summary** This PR fixes this false alarm by rolling over the WAL deletion record from prev manifest to the new manifest by adding the WAL deletion record to the new manifest. **Test** - Make check - Added new unit test `TEST_F(DBWALTest, FixSyncWalOnObseletedWalWithNewManifestCausingMissingWAL)` that failed before the fix and passed after - [Ongoing]CI stress test + aggressive value as in https://github.com/facebook/rocksdb/pull/10761 , which is how this false alarm was first surfaced, to confirm such false alarm disappears - [Ongoing]Regular CI stress test to confirm such fix didn't harm anything Pull Request resolved: https://github.com/facebook/rocksdb/pull/10892 Reviewed By: ajkr Differential Revision: D40778965 Pulled By: hx235 fbshipit-source-id: a512364bfdeb0b1a55c171890e60d856c528f37f |
2 years ago |
Hui Xiao | f1574a20ff |
Revert PR 10777 "Fix FIFO causing overlapping seqnos in L0 files due to overla…" (#10999)
Summary:
**Context/Summary:**
This reverts commit
|
2 years ago |
Changyu Bi | 534fb06dd3 |
Prevent iterating over range tombstones beyond `iterate_upper_bound` (#10966)
Summary: Currently, `iterate_upper_bound` is not checked for range tombstone keys in MergingIterator. This may impact performance when there is a large number of range tombstones right after `iterate_upper_bound`. This PR fixes this issue by checking `iterate_upper_bound` in MergingIterator for range tombstone keys. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10966 Test Plan: - added unit test - stress test: `python3 tools/db_crashtest.py whitebox --simple --verify_iterator_with_expected_state_one_in=5 --delrangepercent=5 --prefixpercent=18 --writepercent=48 --readpercen=15 --duration=36000 --range_deletion_width=100` - ran different stress tests over sandcastle - Falcon team ran some test traffic and saw reduced CPU usage on processing range tombstones. Reviewed By: ajkr Differential Revision: D41414172 Pulled By: cbi42 fbshipit-source-id: 9b2c29eb3abb99327c6a649bdc412e70d863f981 |
2 years ago |
Peter Dillinger | 3182beeffc |
Observe and warn about misconfigured HyperClockCache (#10965)
Summary: Background. One of the core risks of chosing HyperClockCache is ending up with degraded performance if estimated_entry_charge is very significantly wrong. Too low leads to under-utilized hash table, which wastes a bit of (tracked) memory and likely increases access times due to larger working set size (more TLB misses). Too high leads to fully populated hash table (at some limit with reasonable lookup performance) and not being able to cache as many objects as the memory limit would allow. In either case, performance degradation is graceful/continuous but can be quite significant. For example, cutting block size in half without updating estimated_entry_charge could lead to a large portion of configured block cache memory (up to roughly 1/3) going unused. Fix. This change adds a mechanism through which the DB periodically probes the block cache(s) for "problems" to report, and adds diagnostics to the HyperClockCache for bad estimated_entry_charge. The periodic probing is currently done with DumpStats / stats_dump_period_sec, and diagnostics reported to info_log (normally LOG file). Pull Request resolved: https://github.com/facebook/rocksdb/pull/10965 Test Plan: unit test included. Doesn't cover all the implemented subtleties of reporting, but ensures basics of when to report or not. Also manual testing with db_bench. Create db with ``` ./db_bench --benchmarks=fillrandom,flush --num=3000000 --disable_wal=1 ``` Use and check LOG file for HyperClockCache for various block sizes (used as estimated_entry_charge) ``` ./db_bench --use_existing_db --benchmarks=readrandom --num=3000000 --duration=20 --stats_dump_period_sec=8 --cache_type=hyper_clock_cache -block_size=XXXX ``` Seeing warnings / errors or not as expected. Reviewed By: anand1976 Differential Revision: D41406932 Pulled By: pdillinger fbshipit-source-id: 4ca56162b73017e4b9cec2cad74466f49c27a0a7 |
2 years ago |
Yanqin Jin | 7d26e4c5a3 |
Basic Support for Merge with user-defined timestamp (#10819)
Summary: This PR implements the originally disabled `Merge()` APIs when user-defined timestamp is enabled. Simplest usage: ```cpp // assume string append merge op is used with '.' as delimiter. // ts1 < ts2 db->Put(WriteOptions(), "key", ts1, "v0"); db->Merge(WriteOptions(), "key", ts2, "1"); ReadOptions ro; ro.timestamp = &ts2; db->Get(ro, "key", &value); ASSERT_EQ("v0.1", value); ``` Some code comments are added for clarity. Note: support for timestamp in `DB::GetMergeOperands()` will be done in a follow-up PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10819 Test Plan: make check Reviewed By: ltamasi Differential Revision: D40603195 Pulled By: riversand963 fbshipit-source-id: f96d6f183258f3392d80377025529f7660503013 |
2 years ago |
sdong | d989300ad1 |
Avoid repeat periodic stats printing when there is no change (#10891)
Summary: When there is a column family that doesn't get any traffic, its stats are still dumped when options.options.stats_dump_period_sec triggers. This sometimes spam the information logs. With this change, we skip the printing if there is not change, until 8 periods. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10891 Test Plan: Manually test the behavior with hacked db_bench setups. Reviewed By: jay-zhuang Differential Revision: D40777183 fbshipit-source-id: ef0b9a793e4f6282df099b464f01d1fb4c5a2cab |
2 years ago |