Summary:
This is intended as a step toward possibly separating secondary cache integration from the
Cache implementation as much as possible, to (hopefully) minimize code duplication in
adding secondary cache support to HyperClockCache.
* Major clarifications to API docs of secondary cache compatible parts of Cache. For example, previously the docs seemed to suggest that Wait() was not needed if IsReady()==true. And it wasn't clear what operations were actually supported on pending handles.
* Add some assertions related to these requirements, such as that we don't Release() before Wait() (which would leak a secondary cache handle).
* Fix a leaky abstraction with dummy handles, which are supposed to be internal to the Cache. Previously, these just used value=nullptr to indicate dummy handle, which meant that they could be confused with legitimate value=nullptr cases like cache reservations. Also fixed blob_source_test which was relying on this leaky abstraction.
* Drop "incomplete" terminology, which was another name for "pending".
* Split handle flags into "mutable" ones requiring mutex and "immutable" ones which do not. Because of single-threaded access to pending handles, the "Is Pending" flag can be in the "immutable" set. This allows removal of a TSAN work-around and removing a mutex acquire-release in IsReady().
* Remove some unnecessary handling of charges on handles of failed lookups. Keeping total_charge=0 means no special handling needed. (Removed one unnecessary mutex acquire/release.)
* Simplify handling of dummy handle in Lookup(). There is no need to explicitly Ref & Release w/Erase if we generally overwrite the dummy anyway. (Removed one mutex acquire/release, a call to Release().)
Intended follow-up:
* Clarify APIs in secondary_cache.h
* Doesn't SecondaryCacheResultHandle transfer ownership of the Value() on success (implementations should not release the value in destructor)?
* Does Wait() need to be called if IsReady() == true? (This would be different from Cache.)
* Do Value() and Size() have undefined behavior if IsReady() == false?
* Why have a custom API for what is essentially a std::future<std::pair<void*, size_t>>?
* Improve unit testing of standalone handle case
* Apparent null `e` bug in `free_standalone_handle` case
* Clean up secondary cache testing in lru_cache_test
* Why does TestSecondaryCacheResultHandle hold on to a Cache::Handle?
* Why does TestSecondaryCacheResultHandle::Wait() do nothing? Shouldn't it establish the post-condition IsReady() == true?
* (Assuming that is sorted out...) Shouldn't TestSecondaryCache::WaitAll simply wait on each handle in order (no casting required)? How about making that the default implementation?
* Why does TestSecondaryCacheResultHandle::Size() check Value() first? If the API is intended to be returning 0 before IsReady(), then that is weird but should at least be documented. Otherwise, if it's intended to be undefined behavior, we should assert IsReady().
* Consider replacing "standalone" and "dummy" entries with a single kind of "weak" entry that deletes its value when it reaches zero refs. Suppose you are using compressed secondary cache and have two iterators at similar places. It will probably common for one iterator to have standalone results pinned (out of cache) when the second iterator needs those same blocks and has to re-load them from secondary cache and duplicate the memory. Combining the dummy and the standalone should fix this.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10730
Test Plan:
existing tests (minor update), and crash test with sanitizers and secondary cache
Performance test for any regressions in LRUCache (primary only):
Create DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test before & after (run at same time) with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X100] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=233000000 -duration 30 -threads=16
```
Before: readrandom [AVG 100 runs] : 22234 (± 63) ops/sec; 1.6 (± 0.0) MB/sec
After: readrandom [AVG 100 runs] : 22197 (± 64) ops/sec; 1.6 (± 0.0) MB/sec
That's within 0.2%, which is not significant by the confidence intervals.
Reviewed By: anand1976
Differential Revision: D39826010
Pulled By: anand1976
fbshipit-source-id: 3202b4a91f673231c97648ae070e502ae16b0f44
Summary:
`SstFileWriter` currently does not support the `PutEntity` API, so in `TestIngestExternalFile` all key-values are written using regular `Put`s. This violates the assumption that whether or not a key corresponds to a plain old key-value or a wide-column entity can be determined by solely looking at the "value base" used when generating the value. The patch fixes this issue by disabling ingestion when `PutEntity` is enabled in the stress tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10769
Test Plan: Ran a simple blackbox stress test.
Reviewed By: akankshamahajan15
Differential Revision: D40042132
Pulled By: ltamasi
fbshipit-source-id: 93e75ff55545b7b69fa4ddef1d96093c961158a0
Summary:
added calls to `Iterator::Refresh()` in `NonBatchedOpsStressTest::TestIterateAgainstExpected()`. The testing key range is locked in `TestIterateAgainstExpected` so I do not expect this change to provide thorough stress test to `Iterator::Refresh()`. However, it can still be helpful for catching bugs like https://github.com/facebook/rocksdb/issues/10739. Will add calls to refresh in `TestIterate` once we support iterator refresh with snapshots.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10766
Test Plan: `python3 tools/db_crashtest.py whitebox --simple --verify_iterator_with_expected_state_one_in=2`
Reviewed By: ajkr
Differential Revision: D40008320
Pulled By: ajkr
fbshipit-source-id: cec93b07f915ef6476d41c1fee9b23c115188085
Summary:
Add new property "do_not_recurse" in IOOptions for underlying file system to skip iteration of directories during DB::Open if there are no sub directories and list only files.
By default this property is set to false. This property is set true currently in the code where RocksDB is sure only files are needed during DB::Open.
Provided support in PosixFileSystem to use "do_not_recurse".
TestPlan:
- Existing tests
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10668
Reviewed By: anand1976
Differential Revision: D39471683
Pulled By: akankshamahajan15
fbshipit-source-id: 90e32f0b86d5346d53bc2714d3a0e7002590527f
Summary:
Add user-defined timestamp support for range deletion. The new API is `DeleteRange(opt, cf, begin_key, end_key, ts)`. Most of the change is to update the comparator to compare without timestamp. Other than that, major changes are
- internal range tombstone data structures (`FragmentedRangeTombstoneList`, `RangeTombstone`, etc.) to store timestamps.
- Garbage collection of range tombstones and range tombstone covered keys during compaction.
- Get()/MultiGet() to return the timestamp of a range tombstone when needed.
- Get/Iterator with range tombstones bounded by readoptions.timestamp.
- timestamp crash test now issues DeleteRange by default.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10661
Test Plan:
- Added unit test: `make check`
- Stress test: `python3 tools/db_crashtest.py --enable_ts whitebox --readpercent=57 --prefixpercent=4 --writepercent=25 -delpercent=5 --iterpercent=5 --delrangepercent=4`
- Ran `db_bench` to measure regression when timestamp is not enabled. The tests are for write (with some range deletion) and iterate with DB fitting in memory: `./db_bench--benchmarks=fillrandom,seekrandom --writes_per_range_tombstone=200 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=500000 --seek_nexts=10 --disable_auto_compactions -disable_wal=true --max_num_range_tombstones=1000`. Did not see consistent regression in no timestamp case.
| micros/op | fillrandom | seekrandom |
| --- | --- | --- |
|main| 2.58 |10.96|
|PR 10661| 2.68 |10.63|
Reviewed By: riversand963
Differential Revision: D39441192
Pulled By: cbi42
fbshipit-source-id: f05aca3c41605caf110daf0ff405919f300ddec2
Summary:
**Context/Summary:**
Introduce `manual_wal_flush_one_in` as titled.
- When `manual_wal_flush_one_in > 0`, we also need tracing to correctly verify recovery because WAL data can be lost in this case when `FlushWAL()` is not explicitly called by users of RocksDB (in our case, db stress) and the recovery from such potential WAL data loss is a prefix recovery that requires tracing to verify. As another consequence, we need to disable features can't run under unsync data loss with `manual_wal_flush_one_in`
Incompatibilities fixed along the way:
```
db_stress: db/db_impl/db_impl_open.cc:2063: static rocksdb::Status rocksdb::DBImpl::Open(const rocksdb::DBOptions&, const string&, const std::vector<rocksdb::ColumnFamilyDescriptor>&, std::vector<rocksdb::ColumnFamilyHandle*>*, rocksdb::DB**, bool, bool): Assertion `impl->TEST_WALBufferIsEmpty()' failed.
```
- It turns out that `Writer::AddCompressionTypeRecord` before this assertion `EmitPhysicalRecord(kSetCompressionType, encode.data(), encode.size());` but do not trigger flush if `manual_wal_flush` is set . This leads to `impl->TEST_WALBufferIsEmpty()' is false.
- As suggested, assertion is removed and violation case is handled by `FlushWAL(sync=true)` along with refactoring `TEST_WALBufferIsEmpty()` to be `WALBufferIsEmpty()` since it is used in prod code now.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10698
Test Plan:
- Locally running `python3 tools/db_crashtest.py blackbox --manual_wal_flush_one_in=1 --manual_wal_flush=1 --sync_wal_one_in=100 --atomic_flush=1 --flush_one_in=100 --column_families=3`
- Joined https://github.com/facebook/rocksdb/pull/10624 in auto CI testings with all RocksDB stress/crash test jobs
Reviewed By: ajkr
Differential Revision: D39593752
Pulled By: ajkr
fbshipit-source-id: 3a2135bb792c52d2ffa60257d4fbc557fb04d2ce
Summary:
If the `-expected_values_dir` argument to db_stress is empty, then verification against expected state is effectively disabled. But `RunStressTest` still calls `TrackExpectedState`, which returns `NotSupported` causing a the crash test to fail with a false alarm. Fix it by only calling `TrackExpectedState` if necessary.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10764
Reviewed By: ajkr
Differential Revision: D39980129
Pulled By: anand1976
fbshipit-source-id: d02651746fe3a297877a4b2b2fbcb7274860f49c
Summary:
The patch adds the `PutEntity` API to the non-batched, batched, and
CF consistency stress tests. Namely, when the new `db_stress` command
line parameter `use_put_entity_one_in` is greater than zero, one in
N writes on average is performed using `PutEntity` rather than `Put`.
The wide-column entity written has the generated value in its default
column; in addition, it contains up to three additional columns where
the original generated value is divided up between the column name and the
column value (with the column name containing the first k characters of
the generated value, and the column value containing the rest). Whether
`PutEntity` is used (and if so, how many columns the entity has) is completely
determined by the "value base" used to generate the value (that is, there is
no randomness involved). Assuming the same `use_put_entity_one_in` setting
is used across `db_stress` invocations, this enables us to reconstruct and
validate the entity during subsequent `db_stress` runs.
Note that `PutEntity` is currently incompatible with `Merge`, transactions, and
user-defined timestamps; these combinations are currently disabled/disallowed.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10760
Test Plan: Ran some batched, non-batched, and CF consistency stress tests using the script.
Reviewed By: riversand963
Differential Revision: D39939032
Pulled By: ltamasi
fbshipit-source-id: eafdf124e95993fb7d73158e3b006d11819f7fa9
Summary:
currently, there are places in compaction_picker where we add up `compensated_file_size` of files being compacted and limit the sum to be under `max_compaction_bytes`. `compensated_file_size` contains booster for point tombstones and should be used only for determining file's compaction priority. This PR replaces `compensated_file_size` with actual file size in such places.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10728
Test Plan: CI
Reviewed By: ajkr
Differential Revision: D39789427
Pulled By: cbi42
fbshipit-source-id: 1f89fb6c0159c53bf01d8dc783f465959f442c81
Summary:
Try to align the compaction output file boundaries to the next level ones
(grandparent level), to reduce the level compaction write-amplification.
In level compaction, there are "wasted" data at the beginning and end of the
output level files. Align the file boundary can avoid such "wasted" compaction.
With this PR, it tries to align the non-bottommost level file boundaries to its
next level ones. It may cut file when the file size is large enough (at least
50% of target_file_size) and not too large (2x target_file_size).
db_bench shows about 12.56% compaction reduction:
```
TEST_TMPDIR=/data/dbbench2 ./db_bench --benchmarks=fillrandom,readrandom -max_background_jobs=12 -num=400000000 -target_file_size_base=33554432
# baseline:
Flush(GB): cumulative 25.882, interval 7.216
Cumulative compaction: 285.90 GB write, 162.36 MB/s write, 269.68 GB read, 153.15 MB/s read, 2926.7 seconds
# with this change:
Flush(GB): cumulative 25.882, interval 7.753
Cumulative compaction: 249.97 GB write, 141.96 MB/s write, 233.74 GB read, 132.74 MB/s read, 2534.9 seconds
```
The compaction simulator shows a similar result (14% with 100G random data).
As a side effect, with this PR, the SST file size can exceed the
target_file_size, but is capped at 2x target_file_size. And there will be
smaller files. Here are file size statistics when loading 100GB with the target
file size 32MB:
```
baseline this_PR
count 1.656000e+03 1.705000e+03
mean 3.116062e+07 3.028076e+07
std 7.145242e+06 8.046139e+06
```
The feature is enabled by default, to revert to the old behavior disable it
with `AdvancedColumnFamilyOptions.level_compaction_dynamic_file_size = false`
Also includes https://github.com/facebook/rocksdb/issues/1963 to cut file before skippable grandparent file. Which is for
use case like user adding 2 or more non-overlapping data range at the same
time, it can reduce the overlapping of 2 datasets in the lower levels.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10655
Reviewed By: cbi42
Differential Revision: D39552321
Pulled By: jay-zhuang
fbshipit-source-id: 640d15f159ab0cd973f2426cfc3af266fc8bdde2
Summary:
Bringing in multiple libraries failed as they were not considered as separate arguments. In this commit we make sure to add *all* the libraries to THIRD_PARTYLIBS. Additionally we add more informative status messages for when the plugins get added.
Signed-off-by: Joel Granados <joel.granados@gmail.com>
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10727
Reviewed By: riversand963
Differential Revision: D39778566
Pulled By: ajkr
fbshipit-source-id: 34306b26ab4c726d17353ddd765f368967a1b59f
Summary:
If all the keys in range [key_base, shared->GetMaxKey()) are non-overwritable `TestIngestExternalFile()` would attempt to ingest a file with zero keys, leading to the following error: "Cannot create sst file with no entries". This PR changes `TestIngestExternalFile()` to return early in that case instead of going through with the ingestion attempt.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10754
Reviewed By: hx235
Differential Revision: D39909195
Pulled By: ajkr
fbshipit-source-id: e06e6b9cc24826fbd450e5130885e6f07164badd
Summary:
Older versions of gflags do not have `DEFINE_uint32` and `DECLARE_uint32`. In util/gflag_compat.h, we already add a hack for `DEFINE_uint32`. This PR adds a hack for `DECLARE_uint32`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10729
Test Plan:
ROCKSDB_NO_FBCODE=1 make V=1 -j16 db_stress
make check
Resolves https://github.com/facebook/rocksdb/issues/10704
Reviewed By: pdillinger
Differential Revision: D39789183
Pulled By: riversand963
fbshipit-source-id: a58747e0163dcf55dd762733aa5c40d8f0ae70a6
Summary:
An add-on to https://github.com/facebook/rocksdb/pull/6818 to complete adding single-level universal compaction to stress/crash testing.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10732
Test Plan:
- Locally run for 10 min `python3 ./tools/db_crashtest.py whitebox --simple --compaction_style=1 --num_levels=1 -max_key=1000000 -value_size_mult=33 -write_buffer_size=524288 -target_file_size_base=524288 -max_bytes_for_level_base=2097152 --duration=120 --interval=10 --ops_per_thread=1000 --random_kill_odd=887`
- Check LOG to confirm single-level universal compaction is called
- Manual testing and log checking to ensure destroy_db_initially=1 is correctly set across runs with different compaction styles (i.e, in the second half of whitebox testing).
- [ongoing]CI jobs stress test
Reviewed By: ajkr
Differential Revision: D39797612
Pulled By: ajkr
fbshipit-source-id: 16f5c40c3464c57360c06c8305f92118e426149c
Summary:
Currently, this original behavior should not lead to incorrect result, but will violate the contract of CompareWithTimestamp() that when a_has_ts or b_has_ts is false, the slice does not include timestamp.
Resolves https://github.com/facebook/rocksdb/issues/10709
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10742
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D39834096
Pulled By: riversand963
fbshipit-source-id: c597600f5a7820734f07d0926cdc224cea5eabe1
Summary:
when a new internal iterator is constructed during iterator refresh, pointer to the previous memtable range tombstone iterator was not cleared. This could cause segfault for future `Refresh()` calls when they try to free the memtable range tombstones. This PR fixes this issue.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10739
Test Plan: added a unit test in db_range_del_test.cc to reproduce this issue.
Reviewed By: ajkr, riversand963
Differential Revision: D39825283
Pulled By: cbi42
fbshipit-source-id: 3b59a2b73865aed39e28cdd5c1b57eed7991b94c
Summary:
**Context:**
Prior to this PR, correctness testing with un-sync data loss [disabled](https://github.com/facebook/rocksdb/pull/10605) transaction (`use_txn=1`) thus all of the `txn_write_policy` . This PR improved that by adding support for one policy - WriteCommit (`txn_write_policy=0`).
**Summary:**
They key to this support is (a) handle Mark{Begin, End}Prepare/MarkCommit/MarkRollback in constructing ExpectedState under WriteCommit policy correctly and (b) monitor CI jobs and solve any test incompatibility issue till jobs are stable. (b) will be part of the test plan.
For (a)
- During prepare (i.e, between `MarkBeginPrepare()` and `MarkEndPrepare(xid)`), `ExpectedStateTraceRecordHandler` will buffer all writes by adding all writes to an internal `WriteBatch`.
- On `MarkEndPrepare()`, that `WriteBatch` will be associated with the transaction's `xid`.
- During the commit (i.e, on `MarkCommit(xid)`), `ExpectedStateTraceRecordHandler` will retrieve and iterate the internal `WriteBatch` and finally apply those writes to `ExpectedState`
- During the rollback (i.e, on `MarkRollback(xid)`), `ExpectedStateTraceRecordHandler` will erase the internal `WriteBatch` from the map.
For (b) - one major issue described below:
- TransactionsDB in db stress recovers prepared-but-not-committed txns from the previous crashed run by randomly committing or rolling back it at the start of the current run, see a historical [PR](6d06be22c0) predated correctness testing.
- And we will verify those processed keys in a recovered db against their expected state.
- However since now we turn on `sync_fault_injection=1` where the expected state is constructed from the trace instead of using the LATEST.state from previous run. The expected state now used to verify those processed keys won't contain UNKNOWN_SENTINEL as they should - see test 1 for a failed case.
- Therefore, we decided to manually update its expected state to be UNKNOWN_SENTINEL as part of the processing.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10624
Test Plan:
1. Test exposed the major issue described above. This test will fail without setting UNKNOWN_SENTINEL in expected state during the processing and pass after
```
db=/dev/shm/rocksdb_crashtest_blackbox
exp=/dev/shm/rocksdb_crashtest_expected
dbt=$db.tmp
expt=$exp.tmp
rm -rf $db $exp
mkdir -p $exp
echo "RUN 1"
./db_stress \
--clear_column_family_one_in=0 --column_families=1 --db=$db --delpercent=10 --delrangepercent=0 --destroy_db_initially=0 --expected_values_dir=$exp --iterpercent=0 --key_len_percent_dist=1,30,69 --max_key=1000000 --max_key_len=3 --prefixpercent=0 --readpercent=0 --reopen=0 --ops_per_thread=100000000 --test_batches_snapshots=0 --value_size_mult=32 --writepercent=90 \
--use_txn=1 --txn_write_policy=0 --sync_fault_injection=1 &
pid=$!
sleep 0.2
sleep 20
kill $pid
sleep 0.2
echo "RUN 2"
./db_stress \
--clear_column_family_one_in=0 --column_families=1 --db=$db --delpercent=10 --delrangepercent=0 --destroy_db_initially=0 --expected_values_dir=$exp --iterpercent=0 --key_len_percent_dist=1,30,69 --max_key=1000000 --max_key_len=3 --prefixpercent=0 --readpercent=0 --reopen=0 --ops_per_thread=100000000 --test_batches_snapshots=0 --value_size_mult=32 --writepercent=90 \
--use_txn=1 --txn_write_policy=0 --sync_fault_injection=1 &
pid=$!
sleep 0.2
sleep 20
kill $pid
sleep 0.2
echo "RUN 3"
./db_stress \
--clear_column_family_one_in=0 --column_families=1 --db=$db --delpercent=10 --delrangepercent=0 --destroy_db_initially=0 --expected_values_dir=$exp --iterpercent=0 --key_len_percent_dist=1,30,69 --max_key=1000000 --max_key_len=3 --prefixpercent=0 --readpercent=0 --reopen=0 --ops_per_thread=100000000 --test_batches_snapshots=0 --value_size_mult=32 --writepercent=90 \
--use_txn=1 --txn_write_policy=0 --sync_fault_injection=1
```
2. Manual testing to ensure ExpectedState is constructed correctly during recovery by verifying it against previously crashed TransactionDB's WAL.
- Run the following command to crash a TransactionDB with WriteCommit policy. Then `./ldb dump_wal` on its WAL file
```
db=/dev/shm/rocksdb_crashtest_blackbox
exp=/dev/shm/rocksdb_crashtest_expected
rm -rf $db $exp
mkdir -p $exp
./db_stress \
--clear_column_family_one_in=0 --column_families=1 --db=$db --delpercent=10 --delrangepercent=0 --destroy_db_initially=0 --expected_values_dir=$exp --iterpercent=0 --key_len_percent_dist=1,30,69 --max_key=1000000 --max_key_len=3 --prefixpercent=0 --readpercent=0 --reopen=0 --ops_per_thread=100000000 --test_batches_snapshots=0 --value_size_mult=32 --writepercent=90 \
--use_txn=1 --txn_write_policy=0 --sync_fault_injection=1 &
pid=$!
sleep 30
kill $pid
sleep 1
```
- Run the following command to verify recovery of the crashed db under debugger. Compare the step-wise result with WAL records (e.g, WriteBatch content, xid, prepare/commit/rollback marker)
```
./db_stress \
--clear_column_family_one_in=0 --column_families=1 --db=$db --delpercent=10 --delrangepercent=0 --destroy_db_initially=0 --expected_values_dir=$exp --iterpercent=0 --key_len_percent_dist=1,30,69 --max_key=1000000 --max_key_len=3 --prefixpercent=0 --readpercent=0 --reopen=0 --ops_per_thread=100000000 --test_batches_snapshots=0 --value_size_mult=32 --writepercent=90 \
--use_txn=1 --txn_write_policy=0 --sync_fault_injection=1
```
3. Automatic testing by triggering all RocksDB stress/crash test jobs for 3 rounds with no failure.
Reviewed By: ajkr, riversand963
Differential Revision: D39199373
Pulled By: hx235
fbshipit-source-id: 7a1dec0e3e2ee6ea86ddf5dd19ceb5543a3d6f0c
Summary:
The PR cleans up the logic in `NonBatchedOpsStressTest::VerifyDb` so that
the verification method is picked using a single random number generation.
It also eliminates some repeated key comparisons and makes some small
code hygiene improvements.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10740
Test Plan: Ran a simple blackbox crash test.
Reviewed By: riversand963
Differential Revision: D39828646
Pulled By: ltamasi
fbshipit-source-id: 60ee5a3bb1851278f62c7d83b0c93b902ed9702e
Summary:
Currently, without this fix, DBImpl::GetLatestSequenceForKey() may not return the latest sequence number for merge operands of the key. This can cause conflict checking during optimistic transaction commit phase to fail. Fix it by always returning the latest sequence number of the key, also considering range tombstones.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10724
Test Plan: make check
Reviewed By: cbi42
Differential Revision: D39756847
Pulled By: riversand963
fbshipit-source-id: 0764c3dd4cb24960b37e18adccc6e7feed0e6876
Summary:
We have a lot of confusing code because of mixed, sometimes
completely opposite uses of of the term "raw block" or "raw contents",
sometimes within the same source file. For example, in `BlockBasedTableBuilder`,
`raw_block_contents` and `raw_size` generally referred to uncompressed block
contents and size, while `WriteRawBlock` referred to writing a block that
is already compressed if it is going to be. Meanwhile, in
`BlockBasedTable`, `raw_block_contents` either referred to a (maybe
compressed) block with trailer, or a maybe compressed block maybe
without trailer. (Note: left as follow-up work to use C++ typing to
better sort out the various kinds of BlockContents.)
This change primarily tries to apply some consistent terminology around
the kinds of block representations, avoiding the unclear "raw". (Any
meaning of "raw" assumes some bias toward the storage layer or toward
the logical data layer.) Preferred terminology:
* **Serialized block** - bytes that go into storage. For block-based table
(usually the case) this includes the block trailer. WART: block `size` may or
may not include the trailer; need to be clear about whether it does or not.
* **Maybe compressed block** - like a serialized block, but without the
trailer (or no promise of including a trailer). Must be accompanied by a
CompressionType.
* **Uncompressed block** - "payload" bytes that are either stored with no
compression, used as input to compression function, or result of
decompression function.
* **Parsed block** - an in-memory form of a block in block cache, as it is
used by the table reader. Different C++ types are used depending on the
block type (see block_like_traits.h).
Other refactorings:
* Misc corrections/improvements of internal API comments
* Remove a few misleading / unhelpful / redundant comments.
* Use move semantics in some places to simplify contracts
* Use better parameter names to indicate which parameters are used for
outputs
* Remove some extraneous `extern`
* Various clean-ups to `CacheDumperImpl` (mostly unnecessary code)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10408
Test Plan: existing tests
Reviewed By: akankshamahajan15
Differential Revision: D38172617
Pulled By: pdillinger
fbshipit-source-id: ccb99299f324ac5ca46996d34c5089621a4f260c
Summary:
Change the library order in PLATFORM_LDFLAGS to enable fbcode platform 10 build with folly. This PR also has a few fixes for platform 10 compiler errors.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10708
Test Plan:
ROCKSDB_FBCODE_BUILD_WITH_PLATFORM010=1 USE_COROUTINES=1 make -j64 check
ROCKSDB_FBCODE_BUILD_WITH_PLATFORM010=1 USE_FOLLY=1 make -j64 check
Reviewed By: ajkr
Differential Revision: D39666590
Pulled By: anand1976
fbshipit-source-id: 256a1127ef561399cd6299a6a392ca29bd68ca44
Summary:
Update io_uring_prep_cancel as it is now backward compatible.
Also, io_uring_prep_cancel expects sqe->addr to match with read
request submitted. It's being set wrong which is now fixed in this PR.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10644
Test Plan:
- Ran internally with lastest liburing package and on RocksDB
github repo with older version.
- Ran seekrandom regression to confirm there is no regression.
Reviewed By: anand1976
Differential Revision: D39284229
Pulled By: akankshamahajan15
fbshipit-source-id: fd52cdf23d676da114896163626b75c8ae09c980
Summary:
As title
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10717
Test Plan:
Unit Tests
CI
Reviewed By: riversand963
Differential Revision: D39700707
Pulled By: gitbw95
fbshipit-source-id: 54de27e695535a50159f5f6467da36aaf21bebae
Summary:
when there is a single memtable without range tombstones and no SST files in the database, DBIter should wrap memtable iterator directly. Currently we create a merging iterator on top of the memtable iterator, and have DBIter wrap around it. This causes iterator regression and this PR fixes this issue.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10705
Test Plan:
- `make check`
- Performance:
- Set up: `./db_bench -benchmarks=filluniquerandom -write_buffer_size=$((1 << 30)) -num=10000`
- Benchmark: `./db_bench -benchmarks=seekrandom -use_existing_db=true -avoid_flush_during_recovery=true -write_buffer_size=$((1 << 30)) -num=10000 -threads=16 -duration=60 -seek_nexts=$seek_nexts`
```
seek_nexts main op/sec https://github.com/facebook/rocksdb/issues/10705 RocksDB v7.6
0 5746568 5749033 5786180
30 2411690 3006466 2837699
1000 102556 128902 124667
```
Reviewed By: ajkr
Differential Revision: D39644221
Pulled By: cbi42
fbshipit-source-id: 8063ff611ba31b0e5670041da3927c8c54b2097d
Summary:
The background compaction may still running while the test end, which would cause ASAN stack-use-after-scope error.
Explicitly close the DB before test end.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10697
Test Plan:
able to reproduce with:
```
gtest-parallel ./compaction_service_test --gtest_filter=CompactionServiceTest.BasicCompactions -r 10000 -w 100
```
Reviewed By: gitbw95
Differential Revision: D39590974
Pulled By: jay-zhuang
fbshipit-source-id: da264b2e6a276afbda7d5ff7adb9d7b8d4213d90
Summary:
This PR bumps up version number from 7.7 to 7.8 in main branch, indicating that next release will be 7.8. We are going to release 7.7 soon. Since 7.7.fb branch has been created, we can land this to main.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10694
Reviewed By: gitbw95
Differential Revision: D39581577
Pulled By: riversand963
fbshipit-source-id: 84f3fecf25fd9ac96e46b4cd6d50ddb6edc89427
Summary:
Fix invalid reference in MultiGet due to resizing of the ```batches``` autovector.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10702
Test Plan: Run asan crash test
Reviewed By: riversand963
Differential Revision: D39608753
Pulled By: anand1976
fbshipit-source-id: 7a9e7fc6f436f08eb22003d0e6b0e1e4dcdc1a2a
Summary:
`enable_custom_split_merge` is added for enabling the custom split and merge feature, which split the compressed value into chunks so that they may better fit jemalloc bins.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10690
Test Plan:
Unit Tests
Stress Tests
Reviewed By: anand1976
Differential Revision: D39567604
Pulled By: gitbw95
fbshipit-source-id: f6d1d46200f365220055f793514601dcb0edc4b7
Summary:
The assertion in ```FilePickerMultiGet::ReplaceRange()``` was incorrect. The function should only be called to replace the range after finishing the search in the current level, which is indicated by ```hit_file_ == nullptr``` i.e no more overlapping files in this level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10695
Reviewed By: gitbw95
Differential Revision: D39583217
Pulled By: anand1976
fbshipit-source-id: d4cedfb2b62fb9f3a083e9848a403ae6342f0519
Summary:
This change establishes a distinctive name for the experimental new lock-free clock cache (originally developed by guidotag and revamped in PR https://github.com/facebook/rocksdb/issues/10626). A few reasons:
* We want to make it clear that this is a fundamentally different implementation vs. the old clock cache, to avoid people saying "I already tried clock cache."
* We want to highlight the key feature: it's fast (especially under parallel load)
* Because it requires an estimated charge per entry, it is not drop-in API compatible with old clock cache. This estimate might always be required for highest performance, and giving it a distinct name should reduce confusion about the distinct API requirements.
* We might develop a variant requiring the same estimate parameter but with LRU eviction. In that case, using the name HyperLRUCache should make things more clear. (FastLRUCache is just a prototype that might soon be removed.)
Some API detail:
* To reduce copy-pasting parameter lists, etc. as in LRUCache construction, I have a `MakeSharedCache()` function on `HyperClockCacheOptions` instead of `NewHyperClockCache()`.
* Changes -cache_type=clock_cache to -cache_type=hyper_clock_cache for applicable tools. I think this is more consistent / sustainable for reasons already stated.
For performance tests see https://github.com/facebook/rocksdb/pull/10626
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10684
Test Plan: no interesting functional changes; tests updated
Reviewed By: anand1976
Differential Revision: D39547800
Pulled By: pdillinger
fbshipit-source-id: 5c0fe1b5cf3cb680ab369b928c8569682b9795bf
Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
Summary:
The stats were not accurate for the coroutine version of MultiGet. This PR fixes it.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10673
Reviewed By: akankshamahajan15
Differential Revision: D39492615
Pulled By: anand1976
fbshipit-source-id: b46c04e15ea27e66f4c31f00c66497aa283bf9d3
Summary:
Hopefully, we can re-enable the combination of user-defined timestamp and subcompactions
after https://github.com/facebook/rocksdb/issues/10658.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10689
Test Plan:
Make sure the following succeeds on devserver.
make crash_test_with_ts
Reviewed By: ltamasi
Differential Revision: D39556558
Pulled By: riversand963
fbshipit-source-id: 4695f420b1bc9ebf3b24640b693746f4db82c149
Summary:
Fix a bug in the async IO/coroutine version of MultiGet that may cause a segfault or assertion failure due to accessing an invalid file index in a LevelFilesBrief. The bug is that when a MultiGetRange is split into two, we may re-process keys in the original range that were already marked to be skipped (in ```current_level_range_```) due to not overlapping the level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10688
Reviewed By: gitbw95
Differential Revision: D39556131
Pulled By: anand1976
fbshipit-source-id: 65e79438508a283cb19e64eca5c91d0714b81458