Summary:
* Consolidates most metadata into a single word per slot so that more
can be accomplished with a single atomic update. In the common case,
Lookup was previously about 4 atomic updates, now just 1 atomic update.
Common case Release was previously 1 atomic read + 1 atomic update,
now just 1 atomic update.
* Eliminate spins / waits / yields, which likely threaten some "lock free"
benefits. Compare-exchange loops are only used in explicit Erase, and
strict_capacity_limit=true Insert. Eviction uses opportunistic compare-
exchange.
* Relaxes some aggressiveness and guarantees. For example,
* Duplicate Inserts will sometimes go undetected and the shadow duplicate
will age out with eviction.
* In many cases, the older Inserted value for a given cache key will be kept
(i.e. Insert does not support overwrite).
* Entries explicitly erased (rather than evicted) might not be freed
immediately in some rare cases.
* With strict_capacity_limit=false, capacity limit is not tracked/enforced as
precisely as LRUCache, but is self-correcting and should only deviate by a
very small number of extra or fewer entries.
* Use smaller "computed default" number of cache shards in many cases,
because benefits to larger usage tracking / eviction pools outweigh the small
cost of more lock-free atomic contention. The improvement in CPU and I/O
is dramatic in some limit-memory cases.
* Even without the sharding change, the eviction algorithm is likely more
effective than LRU overall because it's more stateful, even though the
"hot path" state tracking for it is essentially free with ref counting. It
is like a generalized CLOCK with aging (see code comments). I don't have
performance numbers showing a specific improvement, but in theory, for a
Poisson access pattern to each block, keeping some state allows better
estimation of time to next access (Poisson interval) than strict LRU. The
bounded randomness in CLOCK can also reduce "cliff" effect for repeated
range scans approaching and exceeding cache size.
## Hot path algorithm comparison
Rough descriptions, focusing on number and kind of atomic operations:
* Old `Lookup()` (2-5 atomic updates per probe):
```
Loop:
Increment internal ref count at slot
If possible hit:
Check flags atomic (and non-atomic fields)
If cache hit:
Three distinct updates to 'flags' atomic
Increment refs for internal-to-external
Return
Decrement internal ref count
while atomic read 'displacements' > 0
```
* New `Lookup()` (1-2 atomic updates per probe):
```
Loop:
Increment acquire counter in meta word (optimistic)
If visible entry (already read meta word):
If match (read non-atomic fields):
Return
Else:
Decrement acquire counter in meta word
Else if invisible entry (rare, already read meta word):
Decrement acquire counter in meta word
while atomic read 'displacements' > 0
```
* Old `Release()` (1 atomic update, conditional on atomic read, rarely more):
```
Read atomic ref count
If last reference and invisible (rare):
Use CAS etc. to remove
Return
Else:
Decrement ref count
```
* New `Release()` (1 unconditional atomic update, rarely more):
```
Increment release counter in meta word
If last reference and invisible (rare):
Use CAS etc. to remove
Return
```
## Performance test setup
Build DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics
```
Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations:
base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6)
folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry)
gt_clock: experimental ClockCache before this change
new_clock: experimental ClockCache with this change
## Performance test results
First test "hot path" read performance, with block cache large enough for whole DB:
4181MB 1thread base -> kops/s: 47.761
4181MB 1thread folly -> kops/s: 45.877
4181MB 1thread gt_clock -> kops/s: 51.092
4181MB 1thread new_clock -> kops/s: 53.944
4181MB 16thread base -> kops/s: 284.567
4181MB 16thread folly -> kops/s: 249.015
4181MB 16thread gt_clock -> kops/s: 743.762
4181MB 16thread new_clock -> kops/s: 861.821
4181MB 24thread base -> kops/s: 303.415
4181MB 24thread folly -> kops/s: 266.548
4181MB 24thread gt_clock -> kops/s: 975.706
4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944)
4181MB 32thread base -> kops/s: 311.251
4181MB 32thread folly -> kops/s: 274.952
4181MB 32thread gt_clock -> kops/s: 1045.98
4181MB 32thread new_clock -> kops/s: 1370.38
4181MB 48thread base -> kops/s: 310.504
4181MB 48thread folly -> kops/s: 268.322
4181MB 48thread gt_clock -> kops/s: 1195.65
4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944)
4181MB 64thread base -> kops/s: 307.839
4181MB 64thread folly -> kops/s: 272.172
4181MB 64thread gt_clock -> kops/s: 1204.47
4181MB 64thread new_clock -> kops/s: 1615.37
4181MB 128thread base -> kops/s: 310.934
4181MB 128thread folly -> kops/s: 267.468
4181MB 128thread gt_clock -> kops/s: 1188.75
4181MB 128thread new_clock -> kops/s: 1595.46
Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x.
Now test a large block cache with low miss ratio, but some eviction is required:
1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23
1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43
1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4
1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56
1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59
1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8
1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89
1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45
1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98
1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91
1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26
1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63
610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137
610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996
610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934
610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5
610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402
610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742
610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062
610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453
610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457
610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426
610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273
610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812
The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.)
Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc.
233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371
233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293
233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844
233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461
233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227
233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738
233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688
233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402
233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84
233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785
233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94
233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016
89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086
89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984
89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441
89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754
89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812
89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418
89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422
89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293
89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43
89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824
89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32
89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223
^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.)
Even smaller cache size:
34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914
34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281
34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523
34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125
34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48
34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531
34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465
34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793
34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484
34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457
34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41
34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52
As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn:
13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328
13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633
13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684
13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383
13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492
13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863
13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121
13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758
13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539
13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098
13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77
13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27
gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention:
13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852
13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516
13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688
13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707
13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57
13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219
13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871
13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626
Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN
Reviewed By: anand1976
Differential Revision: D39368406
Pulled By: pdillinger
fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
Summary:
RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them.
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10461
Reviewed By: siying
Differential Revision: D38672823
Pulled By: ltamasi
fbshipit-source-id: 90cf7362036563d79891f47be2cc24b827482743
Summary:
A test in db_block_cache_test.cc was skipping ClockCache due to the 16-byte key length requirement. We fixed this. Along the way, we fixed a bug in ApplyToSomeEntries, which assumed the function being applied could modify handle metadata, and thus took an exclusive reference. This is incompatible with calls that need to inspect every element (including externally referenced ones) to gather stats.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10482
Test Plan: ``make -j24 check``
Reviewed By: anand1976
Differential Revision: D38553073
Pulled By: guidotag
fbshipit-source-id: 0ed63fed4d3b89e5056b35b7091fce579f5647ae
Summary:
RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them.
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10309
Reviewed By: ltamasi
Differential Revision: D38211655
Pulled By: gangliao
fbshipit-source-id: 65ef33337db4d85277cc6f9782d67c421ad71dd5
Summary:
This fixes two issues:
- [T127355728](https://www.internalfb.com/intern/tasks/?t=127355728): In the stress tests, when the ClockCache is operating close to full capacity and a burst of inserts are concurrently executed, every slot in the hash table may become occupied. This contradicts an assertion in the code, which is no longer valid in the lock-free setting. We are removing that assertion and handling the case of an insertion into a full table.
- [T127427659](https://www.internalfb.com/intern/tasks/?t=127427659): There was a memory leak when an insertion is performed over capacity, but no handle is provided. In that case, a handle was dynamically allocated, but the pointer wasn't stored anywhere.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10430
Test Plan:
- ``make -j24 check``
- ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush``
- ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush``
Reviewed By: pdillinger
Differential Revision: D38226114
Pulled By: guidotag
fbshipit-source-id: 18f6ab7e6214e11e9721d5ff289db1bf795d0008
Summary:
In this PR we bring ClockCache closer to production quality. We implement the following changes:
1. Fixed a few bugs in ClockCache.
2. ClockCache now fully supports ``strict_capacity_limit == false``: When an insertion over capacity is commanded, we allocate a handle separately from the hash table.
3. ClockCache now runs on almost every test in cache_test. The only exceptions are a test where either the LRU policy is required, and a test that dynamically increases the table capacity.
4. ClockCache now supports dynamically decreasing capacity via SetCapacity. (This is easy: we shrink the capacity upper bound and run the clock algorithm.)
5. Old FastLRUCache tests in lru_cache_test.cc are now also used on ClockCache.
As a byproduct of 1. and 2. we are able to turn on ClockCache in the stress tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10418
Test Plan:
- ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 check``
- ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 check``
- ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush``
- ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush``
Reviewed By: pdillinger
Differential Revision: D38170673
Pulled By: guidotag
fbshipit-source-id: 508987b9dc9d9d68f1a03eefac769820b680340a
Summary:
ClockCache completely free of locks. As part of this PR we have also pushed clock algorithm functionality out of ClockCacheShard into ClockHandleTable, so that ClockCacheShard acts more as an interface and less as an actual data structure.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10390
Test Plan:
- ``make -j24 check``
- ``make -j24 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache --cache_size=1073741824 --block_size=16384" blackbox_crash_test_with_atomic_flush``
Reviewed By: pdillinger
Differential Revision: D38106945
Pulled By: guidotag
fbshipit-source-id: 6cbf6bd2397dc9f582809ccff5118a8a33ea6cb1
Summary:
This is a prototype of a partially lock-free version of ClockCache. Roughly speaking, reads are lock-free and writes are lock-based:
- Lookup is lock-free.
- Release is lock-free, unless (i) no references to the element are left and (ii) it was marked for deletion or ``erase_if_last_ref`` is set.
- Insert and Erase still use a per-shard lock.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10347
Test Plan:
- ``make -j24 check``
- ``make -j24 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache --cache_size=1073741824 --block_size=16384" blackbox_crash_test_with_atomic_flush``
Reviewed By: pdillinger
Differential Revision: D37898776
Pulled By: guidotag
fbshipit-source-id: 6418fd980f786d69b871bf2fe959398e44cd3d80
Summary:
This complements https://github.com/facebook/rocksdb/issues/10351. This PR reverts NewClockCache's signature to an older version, expected by the users of the old (buggy) ClockCache.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10358
Test Plan: ``make -j24 check`` and re-run the pre-release tests.
Reviewed By: siying
Differential Revision: D37832601
Pulled By: guidotag
fbshipit-source-id: 32a91d3da4119be187935003b7b897272ceb1950
Summary:
ClockCache is still in experimental stage, and currently fails some pre-release fbcode tests. See https://www.internalfb.com/diff/D37772011. API calls to construct ClockCache are done via the function NewClockCache. For now, NewClockCache calls will return an LRUCache (with appropriate arguments), which is stable.
The idea that NewClockCache returns nullptr was also floated, but this would be interpreted as unsupported cache, and a default LRUCache would be constructed instead, potentially causing a performance regression that is harder to identify.
A new version of the NewClockCache function was created for our internal tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10351
Test Plan: ``make -j24 check`` and re-run the pre-release tests.
Reviewed By: pdillinger
Differential Revision: D37802685
Pulled By: guidotag
fbshipit-source-id: 0a8d10612ff21e576f7360cb13e20bc36e244972
Summary:
When an element is first inserted into the ClockCache, it is now assigned either medium or high clock priority, depending on whether its cache priority is low or high, respectively. This is a variant of LRUCache's midpoint insertions. The main difference is that LRUCache can specify the allocated capacity for high-priority elements via the ``high_pri_pool_ratio`` parameter. Contrarily, in ClockCache, low- and high-priority elements compete for all cache slots, and one group can take over the other (of course, it takes more low-priority insertions to push out high-priority elements). However, just as LRUCache, ClockCache provides the following guarantee: a high-priority element will not be evicted before a low-priority element that was inserted earlier in time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10305
Test Plan: ``make -j24 check``
Reviewed By: pdillinger
Differential Revision: D37607787
Pulled By: guidotag
fbshipit-source-id: 24d9f2523d2f4e6415e7f0029cc061fa275c2040
Summary:
I noticed it would clean up some things to have Cache::Insert()
return our MemoryLimit Status instead of Incomplete for the case in
which the capacity limit is reached. I suspect this fixes some existing but
unknown bugs where this Incomplete could be confused with other uses
of Incomplete, especially no_io cases. This is the most suspicious case I
noticed, but was not able to reproduce a bug, in part because the existing
code is not covered by unit tests (FIXME added): 57adbf0e91/table/get_context.cc (L397)
I audited all the existing uses of IsIncomplete and updated those that
seemed relevant.
HISTORY updated with a clear warning to users of strict_capacity_limit=true
to update uses of `IsIncomplete()`
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10262
Test Plan: updated unit tests
Reviewed By: hx235
Differential Revision: D37473155
Pulled By: pdillinger
fbshipit-source-id: 4bd9d9353ccddfe286b03ebd0652df8ce20f99cb
Summary:
We fix two bugs in CalcHashBits. The first one is an off-by-one error: the desired number of table slots is the real number ``capacity / (kLoadFactor * handle_charge)``, which should not be rounded down. The second one is that we should disallow inputs that set the element charge to 0, namely ``estimated_value_size == 0 && metadata_charge_policy == kDontChargeCacheMetadata``.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10295
Test Plan: CalcHashBits is tested by CalcHashBitsTest (in lru_cache_test.cc). The test now iterates over many more inputs; it covers, in particular, the rounding error edge case. Overall, the test is now more robust. Run ``make -j24 check``.
Reviewed By: pdillinger
Differential Revision: D37573797
Pulled By: guidotag
fbshipit-source-id: ea4f4439f7196ab1c1afb88f566fe92850537262
Summary:
This is the initial step in the development of a lock-free clock cache. This PR includes the base hash table design (which we mostly ported over from FastLRUCache) and the clock eviction algorithm. Importantly, it's still _not_ lock-free---all operations use a shard lock. Besides the locking, there are other features left as future work:
- Remove keys from the handles. Instead, use 128-bit bijective hashes of them for handle comparisons, probing (we need two 32-bit hashes of the key for double hashing) and sharding (we need one 6-bit hash).
- Remove the clock_usage_ field, which is updated on every lookup. Even if it were atomically updated, it could cause memory invalidations across cores.
- Middle insertions into the clock list.
- A test that exercises the clock eviction policy.
- Update the Java API of ClockCache and Java calls to C++.
Along the way, we improved the code and comments quality of FastLRUCache. These changes are relatively minor.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10273
Test Plan: ``make -j24 check``
Reviewed By: pdillinger
Differential Revision: D37522461
Pulled By: guidotag
fbshipit-source-id: 3d70b737dbb70dcf662f00cef8c609750f083943
Summary:
folly DistributedMutex is faster than standard mutexes though
imposes some static obligations on usage. See
https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h
for details. Here we use this alternative for our Cache implementations
(especially LRUCache) for better locking performance, when RocksDB is
compiled with folly.
Also added information about which distributed mutex implementation is
being used to cache_bench output and to DB LOG.
Intended follow-up:
* Use DMutex in more places, perhaps improving API to support non-scoped
locking
* Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently)
Credit: Thanks Siying for reminding me about this line of work that was previously
left unfinished.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179
Test Plan:
for correctness, existing tests. CircleCI config updated.
Also Meta-internal buck build updated.
For performance, ran simultaneous before & after cache_bench. Out of three
comparison runs, the middle improvement to ops/sec was +21%:
Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode
compiler)
```
Complete in 20.201 s; Rough parallel ops/sec = 1584062
Thread ops/sec = 107176
Operation latency (ns):
Count: 32000000 Average: 9257.9421 StdDev: 122412.04
Min: 134 Median: 3623.0493 Max: 56918500
Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63
```
New: (add USE_FOLLY=1)
```
Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%)
Thread ops/sec = 135487
Operation latency (ns):
Count: 32000000 Average: 7304.9294 StdDev: 108530.28
Min: 132 Median: 3777.6012 Max: 91030902
Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83
```
Reviewed By: anand1976
Differential Revision: D37182983
Pulled By: pdillinger
fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
Summary:
The param name force_erase may be misleading, since the handle is erased only if it has last reference even if the param is set true.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9728
Reviewed By: pdillinger
Differential Revision: D35038673
Pulled By: gitbw95
fbshipit-source-id: 0d16d1e8fed17b97eba7fb53207119332f659a5f
Summary:
Added missing include, and cleaned up to make same mistake less
likely in future (minimize conditional compilation)
Fixes https://github.com/facebook/rocksdb/issues/9183
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9209
Test Plan: added to existing test
Reviewed By: mrambacher
Differential Revision: D32631390
Pulled By: pdillinger
fbshipit-source-id: 63a0501855cf5fac9e22ca1e5c4f53725dbf3f93
Summary:
Old typedef syntax is confusing
Most but not all changes with
perl -pi -e 's/typedef (.*) ([a-zA-Z0-9_]+);/using $2 = $1;/g' list_of_files
make format
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8751
Test Plan: existing
Reviewed By: zhichao-cao
Differential Revision: D30745277
Pulled By: pdillinger
fbshipit-source-id: 6f65f0631c3563382d43347896020413cc2366d9
Summary:
Add a stat for secondary cache hits. The ```Cache::Lookup``` API had an unused ```stats``` parameter. This PR uses that to pass the pointer to a ```Statistics``` object that ```LRUCache``` uses to record the stat.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8666
Test Plan: Update a unit test in lru_cache_test
Reviewed By: zhichao-cao
Differential Revision: D30353816
Pulled By: anand1976
fbshipit-source-id: 2046f78b460428877a26ffdd2bb914ae47dfbe77
Summary:
This change gathers and publishes statistics about the
kinds of items in block cache. This is especially important for
profiling relative usage of cache by index vs. filter vs. data blocks.
It works by iterating over the cache during periodic stats dump
(InternalStats, stats_dump_period_sec) or on demand when
DB::Get(Map)Property(kBlockCacheEntryStats), except that for
efficiency and sharing among column families, saved data from
the last scan is used when the data is not considered too old.
The new information can be seen in info LOG, for example:
Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0
Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%)
And also through DB::GetProperty and GetMapProperty (here using
ldb just for demonstration):
$ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats
rocksdb.block-cache-entry-stats.bytes.data-block: 0
rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0
rocksdb.block-cache-entry-stats.bytes.index-block: 178992
rocksdb.block-cache-entry-stats.bytes.misc: 0
rocksdb.block-cache-entry-stats.bytes.other-block: 0
rocksdb.block-cache-entry-stats.bytes.write-buffer: 0
rocksdb.block-cache-entry-stats.capacity: 8388608
rocksdb.block-cache-entry-stats.count.data-block: 0
rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-meta-block: 0
rocksdb.block-cache-entry-stats.count.index-block: 215
rocksdb.block-cache-entry-stats.count.misc: 1
rocksdb.block-cache-entry-stats.count.other-block: 0
rocksdb.block-cache-entry-stats.count.write-buffer: 0
rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290
rocksdb.block-cache-entry-stats.percent.data-block: 0.000000
rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000
rocksdb.block-cache-entry-stats.percent.index-block: 2.133751
rocksdb.block-cache-entry-stats.percent.misc: 0.000000
rocksdb.block-cache-entry-stats.percent.other-block: 0.000000
rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000
rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052
rocksdb.block-cache-entry-stats.secs_since_last_collection: 0
Solution detail - We need some way to flag what kind of blocks each
entry belongs to, preferably without changing the Cache API.
One of the complications is that Cache is a general interface that could
have other users that don't adhere to whichever convention we decide
on for keys and values. Or we would pay for an extra field in the Handle
that would only be used for this purpose.
This change uses a back-door approach, the deleter, to indicate the
"role" of a Cache entry (in addition to the value type, implicitly).
This has the added benefit of ensuring proper code origin whenever we
recognize a particular role for a cache entry; if the entry came from
some other part of the code, it will use an unrecognized deleter, which
we simply attribute to the "Misc" role.
An internal API makes for simple instantiation and automatic
registration of Cache deleters for a given value type and "role".
Another internal API, CacheEntryStatsCollector, solves the problem of
caching the results of a scan and sharing them, to ensure scans are
neither excessive nor redundant so as not to harm Cache performance.
Because code is added to BlocklikeTraits, it is pulled out of
block_based_table_reader.cc into its own file.
This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option
(could still be added), and with actual stat gathering.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297
Test Plan: manual testing with db_bench, and a couple of basic unit tests
Reviewed By: ltamasi
Differential Revision: D28488721
Pulled By: pdillinger
fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
Summary:
Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache.
Tests:
Results from cache_bench and db_bench don't show any regression due to these changes.
cache_bench results before and after this change -
Command
```./cache_bench -ops_per_thread=10000000 -threads=1```
Before
```Complete in 40.688 s; QPS = 245774```
```Complete in 40.486 s; QPS = 246996```
```Complete in 42.019 s; QPS = 237989```
After
```Complete in 40.672 s; QPS = 245869```
```Complete in 44.622 s; QPS = 224107```
```Complete in 42.445 s; QPS = 235599```
db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 -
Commands
```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true```
```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300```
Before
```
DB path: [/home/anand76/nvm_cache/db]
readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found)
```
```
DB path: [/home/anand76/nvm_cache/db]
readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found)
```
After
```
DB path: [/home/anand76/nvm_cache/db]
readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found)
```
```
DB path: [/home/anand76/nvm_cache/db]
readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found)
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271
Reviewed By: zhichao-cao
Differential Revision: D28357511
Pulled By: anand1976
fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
Summary:
In testing for https://github.com/facebook/rocksdb/issues/8225 I found cache_bench would crash with
-use_clock_cache, as well as db_bench -use_clock_cache, but not
single-threaded. Smaller cache size hits failure much faster. ASAN
reported the failuer as calling malloc_usable_size on the `key` pointer
of a ClockCache handle after it was reportedly freed. On detailed
inspection I found this bad sequence of operations for a cache entry:
state=InCache=1,refs=1
[thread 1] Start ClockCacheShard::Unref (from Release, no mutex)
[thread 1] Decrement ref count
state=InCache=1,refs=0
[thread 1] Suspend before CalcTotalCharge (no mutex)
[thread 2] Start UnsetInCache (from Insert, mutex held)
[thread 2] clear InCache bit
state=InCache=0,refs=0
[thread 2] Calls RecycleHandle (based on pre-updated state)
[thread 2] Returns to Insert which calls Cleanup which deletes `key`
[thread 1] Resume ClockCacheShard::Unref
[thread 1] Read `key` in CalcTotalCharge
To fix this, I've added a field to the handle to store the metadata
charge so that we can efficiently remember everything we need from
the handle in Unref. We must not read from the handle again if we
decrement the count to zero with InCache=1, which means we don't own
the entry and someone else could eject/overwrite it immediately.
Note before this change, on amd64 sizeof(Handle) == 56 even though there
are only 48 bytes of data. Grouping together the uint32_t fields would
cut it down to 48, but I've added another uint32_t, which takes it
back up to 56. Not a big deal.
Also fixed DisownData to cooperate with ASAN as in LRUCache.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8261
Test Plan:
Manual + adding use_clock_cache to db_crashtest.py
Base performance
./cache_bench -use_clock_cache
Complete in 17.060 s; QPS = 2458513
New performance
./cache_bench -use_clock_cache
Complete in 17.052 s; QPS = 2459695
Any difference is easily buried in small noise.
Crash test shows still more bug(s) in ClockCache, so I'm expecting to
disable ClockCache from production code in a follow-up PR (if we
can't find and fix the bug(s))
Reviewed By: mrambacher
Differential Revision: D28207358
Pulled By: pdillinger
fbshipit-source-id: aa7a9322afc6f18f30e462c75dbbe4a1206eb294
Summary:
Since read threads do not coordinate on loading data into block
cache, two threads between Lookup and Insert can end up loading and
inserting the same data. This is particularly concerning with
cache_index_and_filter_blocks since those are hot and more likely to
be race targets if ejected from (or not pre-populated in) the cache.
Particularly with moves toward disaggregated / network storage, the cost
of redundant retrieval might be high, and we should at least have some
hard statistics from which we can estimate impact.
Example with full filter thrashing "cliff":
$ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10
...
$ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort
rocksdb.block.cache.add COUNT : 14181
rocksdb.block.cache.add.failures COUNT : 0
rocksdb.block.cache.add.redundant COUNT : 476
rocksdb.block.cache.data.add COUNT : 12749
rocksdb.block.cache.data.add.redundant COUNT : 18
rocksdb.block.cache.filter.add COUNT : 1003
rocksdb.block.cache.filter.add.redundant COUNT : 217
rocksdb.block.cache.index.add COUNT : 429
rocksdb.block.cache.index.add.redundant COUNT : 241
$ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort
rocksdb.block.cache.add COUNT : 1182223
rocksdb.block.cache.add.failures COUNT : 0
rocksdb.block.cache.add.redundant COUNT : 302728
rocksdb.block.cache.data.add COUNT : 31425
rocksdb.block.cache.data.add.redundant COUNT : 12
rocksdb.block.cache.filter.add COUNT : 795455
rocksdb.block.cache.filter.add.redundant COUNT : 130238
rocksdb.block.cache.index.add COUNT : 355343
rocksdb.block.cache.index.add.redundant COUNT : 172478
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681
Test Plan: Some manual testing (above) and unit test covering key metrics is included
Reviewed By: ltamasi
Differential Revision: D21134113
Pulled By: pdillinger
fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
Summary:
As the first step of reintroducing eviction statistics for the block
cache, the patch switches from using simple function pointers as deleters
to function objects implementing an interface. This will enable using
deleters that have state, like a smart pointer to the statistics object
that is to be updated when an entry is removed from the cache. For now,
the patch adds a deleter template class `SimpleDeleter`, which simply
casts the `value` pointer to its original type and calls `delete` or
`delete[]` on it as appropriate. Note: to prevent object lifecycle
issues, deleters must outlive the cache entries referring to them;
`SimpleDeleter` ensures this by using the ("leaky") Meyers singleton
pattern.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6545
Test Plan: `make asan_check`
Reviewed By: siying
Differential Revision: D20475823
Pulled By: ltamasi
fbshipit-source-id: fe354c33dd96d9bafc094605462352305449a22a
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
For our default block cache, each additional entry has extra memory overhead. It include LRUHandle (72 bytes currently) and the cache key (two varint64, file id and offset). The usage is not negligible. For example for block_size=4k, the overhead accounts for an extra 2% memory usage for the cache. The patch charging the cache for the extra usage, reducing untracked memory usage outside block cache. The feature is enabled by default and can be disabled by passing kDontChargeCacheMetadata to the cache constructor.
This PR builds up on https://github.com/facebook/rocksdb/issues/4258
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5797
Test Plan:
- Existing tests are updated to either disable the feature when the test has too much dependency on the old way of accounting the usage or increasing the cache capacity to account for the additional charge of metadata.
- The Usage tests in cache_test.cc are augmented to test the cache usage under kFullChargeCacheMetadata.
Differential Revision: D17396833
Pulled By: maysamyabandeh
fbshipit-source-id: 7684ccb9f8a40ca595e4f5efcdb03623afea0c6f
Summary:
cache functions heavily use virtual functions.
Add some "final" annotations to give compilers more information
to optimize. The compiler doesn't seem to take advantage of it
though. But it doesn't hurt.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5156
Differential Revision: D14814837
Pulled By: siying
fbshipit-source-id: 4423f58eafc93f7dd3c5f04b02b5c993dba2ea94
Summary:
This PR comments out the rest of the unused arguments which allow us to turn on the -Wunused-parameter flag. This is the second part of a codemod relating to https://github.com/facebook/rocksdb/pull/3557.
Closes https://github.com/facebook/rocksdb/pull/3662
Differential Revision: D7426121
Pulled By: Dayvedde
fbshipit-source-id: 223994923b42bd4953eb016a0129e47560f7e352
Summary:
Clock cache should check if deleter is nullptr before calling it.
Closes https://github.com/facebook/rocksdb/pull/3677
Differential Revision: D7493602
Pulled By: yiwu-arbug
fbshipit-source-id: 4f94b188d2baf2cbc7c0d5da30fea1215a683de4
Summary:
Replace dynamic_cast<> so that users can choose to build with RTTI off, so that they can save several bytes per object, and get tiny more memory available.
Some nontrivial changes:
1. Add Comparator::GetRootComparator() to get around the internal comparator hack
2. Add the two experiemental functions to DB
3. Add TableFactory::GetOptionString() to avoid unnecessary casting to get the option string
4. Since 3 is done, move the parsing option functions for table factory to table factory files too, to be symmetric.
Closes https://github.com/facebook/rocksdb/pull/2645
Differential Revision: D5502723
Pulled By: siying
fbshipit-source-id: fd13cec5601cf68a554d87bfcf056f2ffa5fbf7c
Summary:
This reverts the previous commit 1d7048c598, which broke the build.
Did a `git revert 1d7048c`.
Closes https://github.com/facebook/rocksdb/pull/2627
Differential Revision: D5476473
Pulled By: sagar0
fbshipit-source-id: 4756ff5c0dfc88c17eceb00e02c36176de728d06
Summary: This uses `clang-tidy` to comment out unused parameters (in functions, methods and lambdas) in fbcode. Cases that the tool failed to handle are fixed manually.
Reviewed By: igorsugak
Differential Revision: D5454343
fbshipit-source-id: 5dee339b4334e25e963891b519a5aa81fbf627b2
Summary:
This is useful when we put the entries in the block cache for accounting
purposes and do not expect it to be used after it is released. If the cache does not
erase the item in such cases not only the performance of cache is
negatively affected but the item's destructor not being called at the
time of release might violate the assumptions about the lifetime of the
object.
The new change adds a force_erase option to the Release method and
returns a boolean to indicate whehter the item is successfully deleted.
Closes https://github.com/facebook/rocksdb/pull/2180
Differential Revision: D4916032
Pulled By: maysamyabandeh
fbshipit-source-id: 94409a346069923cac9de8e57adc313b4ed46f28
Summary:
Move some files under util/ to new directories env/, monitoring/ options/ and cache/
Closes https://github.com/facebook/rocksdb/pull/2090
Differential Revision: D4833681
Pulled By: siying
fbshipit-source-id: 2fd8bef
Summary:
If the users use the NewLRUCache() without passing in the number of shard bits, instead of using hard-coded 6, we'll determine it based on capacity.
Closes https://github.com/facebook/rocksdb/pull/1584
Differential Revision: D4242517
Pulled By: siying
fbshipit-source-id: 86b0f18
Summary:
Previously the only way to increment a handle's refcount was to invoke Lookup(), which (1) did hash table lookup to get cache handle, (2) incremented that handle's refcount. For a future DeleteRange optimization, I added a function, Ref(), for when the caller already has a cache handle and only needs to do (2).
Closes https://github.com/facebook/rocksdb/pull/1761
Differential Revision: D4397114
Pulled By: ajkr
fbshipit-source-id: 9addbe5
Summary:
Fix ClockCache memory leak found by valgrind:
# Add destructor to cleanup cached values.
# Delete key with cache handle immediately after handle is recycled, and erase table entry immediately if duplicated cache entry is inserted.
Test Plan:
make DISABLE_JEMALLOC=1 valgrind_check
Reviewers: IslamAbdelRahman, sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D62973