Extended Built-in comparators with ReverseBytewiseComparator.
Reverse key handling is under certain conditions essential. E.g. while
using timestamp versioned data.
As native-comparators were not available using JAVA-API. Both built-in comparators
were exposed via JNI to be set upon database creation time.
Summary:
cuckoo table iterator creation is quite expensive since it needs to load
all data and sort them. After compaction, RocksDB creates a new iterator
of the new file to make sure it is in good state. That makes the DB
creation quite slow. Delay the iterator db sort to the seek time to
speed it up.
Test Plan: db_bench
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23775
Summary:
builder currently buffers all key value pairs as a vector of
pair<string, string>. That is too much due to std::string
overhead. It wasn't able to fit 1B key/values (12bytes total) in 100GB
of ram. Switch to use a plain string to store the key/value sequence and
use only 12GB of ram as a result.
Test Plan: db_bench
Reviewers: igor, sdong, yhchiang
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23763
Summary:
When creating a new iterator, instead of storing mapping from key to
bucket id for sorting, store only bucket id and read key from mmap file
based on the id. This reduces from 20 bytes per entry to only 4 bytes.
Test Plan: db_bench
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23757
Summary:
Using module to calculate hash makes lookup ~8% slower. But it has its
benefit: file size is more predictable, more space enffient
Test Plan: db_bench
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23691
Summary:
Add the MultiGet API to allow prefetching.
With file size of 1.5G, I configured it to have 0.9 hash ratio that can
fill With 115M keys and result in 2 hash functions, the lookup QPS is
~4.9M/s vs. 3M/s for Get().
It is tricky to set the parameters right. Since files size is determined
by power-of-two factor, that means # of keys is fixed in each file. With
big file size (thus smaller # of files), we will have more chance to
waste lot of space in the last file - lower space utilization as a
result. Using smaller file size can improve the situation, but that
harms lookup speed.
Test Plan: db_bench
Reviewers: yhchiang, sdong, igor
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23673
Summary:
Add a CompactedDBImpl that will enabled when calling OpenForReadOnly()
and the DB only has one level (>0) of files. As a performan comparison,
CuckooTable performs 2.1M/s with CompactedDBImpl vs. 1.78M/s with
ReadOnlyDBImpl.
Test Plan: db_bench
Reviewers: yhchiang, igor, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23553
Summary: While debugging clients compaction issues, I noticed bunch of delete bugs: P16329995. MakeTableName returns sst file with "/" prefix. We also need "/" prefix when we get the files though GetChildren(), so that we can properly dedup the files.
Test Plan: none
Reviewers: sdong, yhchiang, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23457
Summary:
Now the file summary is too small for printing. Enlarge it.
To enable it, allow to pass a size to log buffer.
Test Plan:
Add a unit test.
make all check
Reviewers: ljin, yhchiang
Reviewed By: yhchiang
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D21723
Summary:
It was commented out in D22545 by accident. Keep the option in
ImmutableOptions for now. I can make it dynamic in
https://reviews.facebook.net/D23349
Test Plan: make release
Reviewers: sdong, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23865
Summary:
Previously, one single column family is given to WriteBatchWithIndex to index keys for all column families. An extra map from column family ID to comparator is maintained which can override the default comparator given in the constructor. A WriteBatchWithIndex::SetComparatorForCF() is added for user to add comparators per column family.
Also move more codes into anonymous namespace.
Test Plan: Add a unit test
Reviewers: ljin, igor
Reviewed By: igor
Subscribers: dhruba, leveldb, yhchiang
Differential Revision: https://reviews.facebook.net/D23355
Summary: It contrains the file size to be 4G max with int
Test Plan:
tried to grep instance and made sure other related variables are also
uint64
Reviewers: sdong, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23697
Summary:
Compaction creates backup_input iterator even though it only needed
when compaction filter v2 is enabled
Test Plan: make all check
Reviewers: sdong, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23769
Summary:
compression_size_percent is an int but was printed as
an unsigned int. So the default of -1 is displayed as a big number.
Test Plan: make check
Reviewers: sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23679
Summary: To avoid false positive test failures when the file system doesn't support fallocate. In EnvTest.AllocateTest, we first make a simple fallocate call and check the error codes to rule out the possibility that it is not supported. Skip the test if the error code indicates it is not supported.
Test Plan: Run the test and make sure it passes on file systems supporting and not supporting fallocate
Reviewers: yhchiang, ljin, igor
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23667
Summary: I want to use open source build rather than fbcode one. This enables me to run `ROCKSDB_NO_FBCODE=1 make` and run it with my system g++.
Test Plan:
ROCKSDB_NO_FBCODE=1 make
make
Reviewers: sdong, ljin, yhchiang
Reviewed By: yhchiang
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23613
Summary: Use PRIu64 to format uint64 in a portable manner
Test Plan: Run "make all check"
Reviewers: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23595
Summary: Fix JNI link error caused by the removal of options.db_stats_log_interval in https://reviews.facebook.net/D21915.
Test Plan:
make rocksdbjava
make jtest
Reviewers: ljin, ankgup87
Reviewed By: ankgup87
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23505
Summary: Those were introduced with 2fb1fea30f because the flushing behavior changed when max_background_flushes is > 0.
Test Plan: make check
Reviewers: ljin, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23577
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451