Summary:
The definition of the Cache class should not be needed by the vast majority of RocksDB users, so I think it is just distracting to include it in cache.h, which is primarily needed for configuring and creating caches. This change moves the class to a new header advanced_cache.h. It is just cut-and-paste except for modifying the class API comment.
In general, operations on shared_ptr<Cache> should continue to work when only a forward declaration of Cache is available, as long as all the Cache instances provided are already shared_ptr. See https://stackoverflow.com/a/17650101/454544
Also, the most common way to customize a Cache is by wrapping an existing implementation, so it makes sense to provide CacheWrapper in the public API. This was a cut-and-paste job except removing the implementation of Name() so that derived classes must provide it.
Intended follow-up: consolidate Release() into one function to reduce customization bugs / confusion
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11192
Test Plan: `make check`
Reviewed By: anand1976
Differential Revision: D43055487
Pulled By: pdillinger
fbshipit-source-id: 7b05492df35e0f30b581b4c24c579bc275b6d110
Summary:
In anticipation of using this to represent sets of CacheEntryRole for including or excluding kinds of blocks in block cache tiers, add significant new features to SmallEnumSet, including at least:
* List initialization
* Applicative constexpr operations
* copy/move/equality ops
* begin/end/const_iterator for iteration
* Better comments
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11178
Test Plan: unit tests added/expanded
Reviewed By: ltamasi
Differential Revision: D42973723
Pulled By: pdillinger
fbshipit-source-id: 40783486feda931c3f7c6fcc9a300acd6a4b0a0a
Summary:
The patch adds compaction filter support for wide-column entities by introducing
a new `CompactionFilter` API called `FilterV3`. This API is called for regular
key-values, merge operands, and wide-column entities as well. It is passed the
existing value/operand or wide-column structure and it can update the value or
columns or keep/delete/etc. the key-value as usual. For compatibility, the default
implementation of `FilterV3` keeps all wide-column entities and falls back to calling
`FilterV2` for plain old key-values and merge operands.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11196
Test Plan: `make check`
Reviewed By: akankshamahajan15
Differential Revision: D43094147
Pulled By: ltamasi
fbshipit-source-id: 75acabe9a35254f7f404ba6173ee9c2774382ebd
Summary:
**Context/Summary:**
As instructed by convenience.h comments, a few deprecated APIs are removed.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11120
Test Plan:
- make check & CI
- eyeball check on test semantics.
Reviewed By: pdillinger
Differential Revision: D42937507
Pulled By: hx235
fbshipit-source-id: a9e4709387da01b1d0e9148c2e210f02e9746ee1
Summary:
This option has long been intended to be set to false by default and deprecated. It might never be practical to completely remove the feature, so that we can continue to test for backward compatibility by keeping the ability to generate DBs in the old way.
Also improved API comments.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11179
Test Plan: existing tests (with one tiny update)
Reviewed By: hx235
Differential Revision: D42973927
Pulled By: pdillinger
fbshipit-source-id: e9bc161cb933266e094aea2dff8cc03753c39dab
Summary:
The previous API comments for LockWAL didn't provide much about why you might want to use it, and didn't really meet what one would infer its contract was. Also, LockWAL was not in db_stress / crash test. In this change:
* Implement a counting semantics for LockWAL()+UnlockWAL(), so that they can safely be used concurrently across threads or recursively within a thread. This should make the API much less bug-prone and easier to use.
* Make sure no UnlockWAL() is needed after non-OK LockWAL() (to match RocksDB conventions)
* Make UnlockWAL() reliably return non-OK when there's no matching LockWAL() (for debug-ability)
* Clarify API comments on LockWAL(), UnlockWAL(), FlushWAL(), and SyncWAL(). Their exact meanings are not obvious, and I don't think it's appropriate to talk about implementation mutexes in the API comments, but about what operations might block each other.
* Add LockWAL()/UnlockWAL() to db_stress and crash test, mostly to check for assertion failures, but also checks that latest seqno doesn't change while WAL is locked. This is simpler to add when LockWAL() is allowed in multiple threads.
* Remove unnecessary use of sync points in test DBWALTest::LockWal. There was a bug during development of above changes that caused this test to fail sporadically, with and without this sync point change.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11143
Test Plan: unit tests added / updated, added to stress/crash test
Reviewed By: ajkr
Differential Revision: D42848627
Pulled By: pdillinger
fbshipit-source-id: 6d976c51791941a31fd8fbf28b0f82e888d9f4b4
Summary:
We haven't been actively mantaining RocksDB LITE recently and the size must have been gone up significantly. We are removing the support.
Most of changes were done through following comments:
unifdef -m -UROCKSDB_LITE `git grep -l ROCKSDB_LITE | egrep '[.](cc|h)'`
by Peter Dillinger. Others changes were manually applied to build scripts, CircleCI manifests, ROCKSDB_LITE is used in an expression and file db_stress_test_base.cc.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11147
Test Plan: See CI
Reviewed By: pdillinger
Differential Revision: D42796341
fbshipit-source-id: 4920e15fc2060c2cd2221330a6d0e5e65d4b7fe2
Summary:
Since compressed block cache is removed, those stats are not needed. They are removed in different PR in case there is a problem with it. The stats are removed in the same way in https://github.com/facebook/rocksdb/pull/11131/ . HISTORY.md was already updated by mistake, and it would be correct after merging this PR.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11135
Test Plan: Watch CI
Reviewed By: ltamasi
Differential Revision: D42757616
fbshipit-source-id: bd7cb782585c8535ce5784295225c376f3011f35
Summary:
These tickers/histograms have been obsolete (and not populated) for a long time.
The patch removes them from the API completely. Note that this means that the
numeric values of the remaining tickers change in the C++ code as they get shifted up.
This should be OK: the values of some existing tickers have changed many times
over the years as items have been added in the middle. (In contrast, the convention
in the Java bindings is to keep the ids, which are not guaranteed to be the same
as the ids on the C++ side, the same across releases.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11123
Test Plan: `make check`
Reviewed By: akankshamahajan15
Differential Revision: D42727793
Pulled By: ltamasi
fbshipit-source-id: e058a155a20b05b45f53e67ee380aece1b43b6c5
Summary:
Compressed block cache is replaced by compressed secondary cache. Remove the feature.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11117
Test Plan: See CI passes
Reviewed By: pdillinger
Differential Revision: D42700164
fbshipit-source-id: 6cbb24e460da29311150865f60ecb98637f9f67d
Summary:
Capture more of the original intent at a high level, without getting bogged down in low-level details.
The old text made some weak promises about handling of LOCK files. There should be no specific concern for LOCK files, because we already rely on LockFile() to create the file if it's not present already. And the lock file is generally size 0, so don't have to worry about truncation. Added a unit test.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11085
Test Plan: existing tests, and a new one.
Reviewed By: siying
Differential Revision: D42713233
Pulled By: pdillinger
fbshipit-source-id: 2fce7c974d35fac065037c9c4c7326a59c9fe340
Summary:
Prior to this PR, `FullMergeV2()` can only return `false` to indicate failure, which causes any operation invoking it to fail. During a compaction, such a failure causes the compaction to fail and causes the DB to irreversibly enter read-only mode. Some users asked for a way to allow the merge operator to fail without such widespread damage.
To limit the blast radius of merge operator failures, this PR introduces the `MergeOperationOutput::op_failure_scope` API. When unpopulated (`kDefault`) or set to `kTryMerge`, the merge operator failure handling is the same as before. When set to `kMustMerge`, merge operator failure still causes failure to operations that must merge (`Get()`, iterator, `MultiGet()`, etc.). However, under `kMustMerge`, flushes/compactions can survive merge operator failures by outputting the unmerged input operands.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11092
Reviewed By: siying
Differential Revision: D42525673
Pulled By: ajkr
fbshipit-source-id: 951dc3bf190f86347dccf3381be967565cda52ee
Summary:
This is several refactorings bundled into one to avoid having to incrementally re-modify uses of Cache several times. Overall, there are breaking changes to Cache class, and it becomes more of low-level interface for implementing caches, especially block cache. New internal APIs make using Cache cleaner than before, and more insulated from block cache evolution. Hopefully, this is the last really big block cache refactoring, because of rather effectively decoupling the implementations from the uses. This change also removes the EXPERIMENTAL designation on the SecondaryCache support in Cache. It seems reasonably mature at this point but still subject to change/evolution (as I warn in the API docs for Cache).
The high-level motivation for this refactoring is to minimize code duplication / compounding complexity in adding SecondaryCache support to HyperClockCache (in a later PR). Other benefits listed below.
* static_cast lines of code +29 -35 (net removed 6)
* reinterpret_cast lines of code +6 -32 (net removed 26)
## cache.h and secondary_cache.h
* Always use CacheItemHelper with entries instead of just a Deleter. There are several motivations / justifications:
* Simpler for implementations to deal with just one Insert and one Lookup.
* Simpler and more efficient implementation because we don't have to track which entries are using helpers and which are using deleters
* Gets rid of hack to classify cache entries by their deleter. Instead, the CacheItemHelper includes a CacheEntryRole. This simplifies a lot of code (cache_entry_roles.h almost eliminated). Fixes https://github.com/facebook/rocksdb/issues/9428.
* Makes it trivial to adjust SecondaryCache behavior based on kind of block (e.g. don't re-compress filter blocks).
* It is arguably less convenient for many direct users of Cache, but direct users of Cache are now rare with introduction of typed_cache.h (below).
* I considered and rejected an alternative approach in which we reduce customizability by assuming each secondary cache compatible value starts with a Slice referencing the uncompressed block contents (already true or mostly true), but we apparently intend to stack secondary caches. Saving an entry from a compressed secondary to a lower tier requires custom handling offered by SaveToCallback, etc.
* Make CreateCallback part of the helper and introduce CreateContext to work with it (alternative to https://github.com/facebook/rocksdb/issues/10562). This cleans up the interface while still allowing context to be provided for loading/parsing values into primary cache. This model works for async lookup in BlockBasedTable reader (reader owns a CreateContext) under the assumption that it always waits on secondary cache operations to finish. (Otherwise, the CreateContext could be destroyed while async operation depending on it continues.) This likely contributes most to the observed performance improvement because it saves an std::function backed by a heap allocation.
* Use char* for serialized data, e.g. in SaveToCallback, where void* was confusingly used. (We use `char*` for serialized byte data all over RocksDB, with many advantages over `void*`. `memcpy` etc. are legacy APIs that should not be mimicked.)
* Add a type alias Cache::ObjectPtr = void*, so that we can better indicate the intent of the void* when it is to be the object associated with a Cache entry. Related: started (but did not complete) a refactoring to move away from "value" of a cache entry toward "object" or "obj". (It is confusing to call Cache a key-value store (like DB) when it is really storing arbitrary in-memory objects, not byte strings.)
* Remove unnecessary key param from DeleterFn. This is good for efficiency in HyperClockCache, which does not directly store the cache key in memory. (Alternative to https://github.com/facebook/rocksdb/issues/10774)
* Add allocator to Cache DeleterFn. This is a kind of future-proofing change in case we get more serious about using the Cache allocator for memory tracked by the Cache. Right now, only the uncompressed block contents are allocated using the allocator, and a pointer to that allocator is saved as part of the cached object so that the deleter can use it. (See CacheAllocationPtr.) If in the future we are able to "flatten out" our Cache objects some more, it would be good not to have to track the allocator as part of each object.
* Removes legacy `ApplyToAllCacheEntries` and changes `ApplyToAllEntries` signature for Deleter->CacheItemHelper change.
## typed_cache.h
Adds various "typed" interfaces to the Cache as internal APIs, so that most uses of Cache can use simple type safe code without casting and without explicit deleters, etc. Almost all of the non-test, non-glue code uses of Cache have been migrated. (Follow-up work: CompressedSecondaryCache deserves deeper attention to migrate.) This change expands RocksDB's internal usage of metaprogramming and SFINAE (https://en.cppreference.com/w/cpp/language/sfinae).
The existing usages of Cache are divided up at a high level into these new interfaces. See updated existing uses of Cache for examples of how these are used.
* PlaceholderCacheInterface - Used for making cache reservations, with entries that have a charge but no value.
* BasicTypedCacheInterface<TValue> - Used for primary cache storage of objects of type TValue, which can be cleaned up with std::default_delete<TValue>. The role is provided by TValue::kCacheEntryRole or given in an optional template parameter.
* FullTypedCacheInterface<TValue, TCreateContext> - Used for secondary cache compatible storage of objects of type TValue. In addition to BasicTypedCacheInterface constraints, we require TValue::ContentSlice() to return persistable data. This simplifies usage for the normal case of simple secondary cache compatibility (can give you a Slice to the data already in memory). In addition to TCreateContext performing the role of Cache::CreateContext, it is also expected to provide a factory function for creating TValue.
* For each of these, there's a "Shared" version (e.g. FullTypedSharedCacheInterface) that holds a shared_ptr to the Cache, rather than assuming external ownership by holding only a raw `Cache*`.
These interfaces introduce specific handle types for each interface instantiation, so that it's easy to see what kind of object is controlled by a handle. (Ultimately, this might not be worth the extra complexity, but it seems OK so far.)
Note: I attempted to make the cache 'charge' automatically inferred from the cache object type, such as by expecting an ApproximateMemoryUsage() function, but this is not so clean because there are cases where we need to compute the charge ahead of time and don't want to re-compute it.
## block_cache.h
This header is essentially the replacement for the old block_like_traits.h. It includes various things to support block cache access with typed_cache.h for block-based table.
## block_based_table_reader.cc
Before this change, accessing the block cache here was an awkward mix of static polymorphism (template TBlocklike) and switch-case on a dynamic BlockType value. This change mostly unifies on static polymorphism, relying on minor hacks in block_cache.h to distinguish variants of Block. We still check BlockType in some places (especially for stats, which could be improved in follow-up work) but at least the BlockType is a static constant from the template parameter. (No more awkward partial redundancy between static and dynamic info.) This likely contributes to the overall performance improvement, but hasn't been tested in isolation.
The other key source of simplification here is a more unified system of creating block cache objects: for directly populating from primary cache and for promotion from secondary cache. Both use BlockCreateContext, for context and for factory functions.
## block_based_table_builder.cc, cache_dump_load_impl.cc
Before this change, warming caches was super ugly code. Both of these source files had switch statements to basically transition from the dynamic BlockType world to the static TBlocklike world. None of that mess is needed anymore as there's a new, untyped WarmInCache function that handles all the details just as promotion from SecondaryCache would. (Fixes `TODO akanksha: Dedup below code` in block_based_table_builder.cc.)
## Everything else
Mostly just updating Cache users to use new typed APIs when reasonably possible, or changed Cache APIs when not.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10975
Test Plan:
tests updated
Performance test setup similar to https://github.com/facebook/rocksdb/issues/10626 (by cache size, LRUCache when not "hyper" for HyperClockCache):
34MB 1thread base.hyper -> kops/s: 0.745 io_bytes/op: 2.52504e+06 miss_ratio: 0.140906 max_rss_mb: 76.4844
34MB 1thread new.hyper -> kops/s: 0.751 io_bytes/op: 2.5123e+06 miss_ratio: 0.140161 max_rss_mb: 79.3594
34MB 1thread base -> kops/s: 0.254 io_bytes/op: 1.36073e+07 miss_ratio: 0.918818 max_rss_mb: 45.9297
34MB 1thread new -> kops/s: 0.252 io_bytes/op: 1.36157e+07 miss_ratio: 0.918999 max_rss_mb: 44.1523
34MB 32thread base.hyper -> kops/s: 7.272 io_bytes/op: 2.88323e+06 miss_ratio: 0.162532 max_rss_mb: 516.602
34MB 32thread new.hyper -> kops/s: 7.214 io_bytes/op: 2.99046e+06 miss_ratio: 0.168818 max_rss_mb: 518.293
34MB 32thread base -> kops/s: 3.528 io_bytes/op: 1.35722e+07 miss_ratio: 0.914691 max_rss_mb: 264.926
34MB 32thread new -> kops/s: 3.604 io_bytes/op: 1.35744e+07 miss_ratio: 0.915054 max_rss_mb: 264.488
233MB 1thread base.hyper -> kops/s: 53.909 io_bytes/op: 2552.35 miss_ratio: 0.0440566 max_rss_mb: 241.984
233MB 1thread new.hyper -> kops/s: 62.792 io_bytes/op: 2549.79 miss_ratio: 0.044043 max_rss_mb: 241.922
233MB 1thread base -> kops/s: 1.197 io_bytes/op: 2.75173e+06 miss_ratio: 0.103093 max_rss_mb: 241.559
233MB 1thread new -> kops/s: 1.199 io_bytes/op: 2.73723e+06 miss_ratio: 0.10305 max_rss_mb: 240.93
233MB 32thread base.hyper -> kops/s: 1298.69 io_bytes/op: 2539.12 miss_ratio: 0.0440307 max_rss_mb: 371.418
233MB 32thread new.hyper -> kops/s: 1421.35 io_bytes/op: 2538.75 miss_ratio: 0.0440307 max_rss_mb: 347.273
233MB 32thread base -> kops/s: 9.693 io_bytes/op: 2.77304e+06 miss_ratio: 0.103745 max_rss_mb: 569.691
233MB 32thread new -> kops/s: 9.75 io_bytes/op: 2.77559e+06 miss_ratio: 0.103798 max_rss_mb: 552.82
1597MB 1thread base.hyper -> kops/s: 58.607 io_bytes/op: 1449.14 miss_ratio: 0.0249324 max_rss_mb: 1583.55
1597MB 1thread new.hyper -> kops/s: 69.6 io_bytes/op: 1434.89 miss_ratio: 0.0247167 max_rss_mb: 1584.02
1597MB 1thread base -> kops/s: 60.478 io_bytes/op: 1421.28 miss_ratio: 0.024452 max_rss_mb: 1589.45
1597MB 1thread new -> kops/s: 63.973 io_bytes/op: 1416.07 miss_ratio: 0.0243766 max_rss_mb: 1589.24
1597MB 32thread base.hyper -> kops/s: 1436.2 io_bytes/op: 1357.93 miss_ratio: 0.0235353 max_rss_mb: 1692.92
1597MB 32thread new.hyper -> kops/s: 1605.03 io_bytes/op: 1358.04 miss_ratio: 0.023538 max_rss_mb: 1702.78
1597MB 32thread base -> kops/s: 280.059 io_bytes/op: 1350.34 miss_ratio: 0.023289 max_rss_mb: 1675.36
1597MB 32thread new -> kops/s: 283.125 io_bytes/op: 1351.05 miss_ratio: 0.0232797 max_rss_mb: 1703.83
Almost uniformly improving over base revision, especially for hot paths with HyperClockCache, up to 12% higher throughput seen (1597MB, 32thread, hyper). The improvement for that is likely coming from much simplified code for providing context for secondary cache promotion (CreateCallback/CreateContext), and possibly from less branching in block_based_table_reader. And likely a small improvement from not reconstituting key for DeleterFn.
Reviewed By: anand1976
Differential Revision: D42417818
Pulled By: pdillinger
fbshipit-source-id: f86bfdd584dce27c028b151ba56818ad14f7a432
Summary:
**Context:**
File ingestion never checks whether the key range it acts on overlaps with an ongoing RefitLevel() (used in `CompactRange()` with `change_level=true`). That's because RefitLevel() doesn't register and make its key range known to file ingestion. Though it checks overlapping with other compactions by https://github.com/facebook/rocksdb/blob/7.8.fb/db/external_sst_file_ingestion_job.cc#L998.
RefitLevel() (used in `CompactRange()` with `change_level=true`) doesn't check whether the key range it acts on overlaps with an ongoing file ingestion. That's because file ingestion does not register and make its key range known to other compactions.
- Note that non-refitlevel-compaction (e.g, manual compaction w/o RefitLevel() or general compaction) also does not check key range overlap with ongoing file ingestion for the same reason.
- But it's fine. Credited to cbi42's discovery, `WaitForIngestFile` was called by background and foreground compactions. They were introduced in 0f88160f67, 5c64fb67d2 and 87dfc1d23e.
- Regardless, this PR registers file ingestion like a compaction is a general approach that will also add range conflict check between file ingestion and non-refitlevel-compaction, though it has not been the issue motivated this PR.
Above are bugs resulting in two bad consequences:
- If file ingestion and RefitLevel() creates files in the same level, then range-overlapped files will be created at that level and caught as corruption by `force_consistency_checks=true`
- If file ingestion and RefitLevel() creates file in different levels, then with one further compaction on the ingested file, it can result in two same keys both with seqno 0 in two different levels. Then with iterator's [optimization](c62f322169/db/db_iter.cc (L342-L343)) that assumes no two same keys both with seqno 0, it will either break this assertion in debug build or, even worst, return value of this same key for the key after it, which is the wrong value to return, in release build.
Therefore we decide to introduce range conflict check for file ingestion and RefitLevel() inspired from the existing range conflict check among compactions.
**Summary:**
- Treat file ingestion job and RefitLevel() as `Compaction` of new compaction reasons: `CompactionReason::kExternalSstIngestion` and `CompactionReason::kRefitLevel` and register/unregister them. File ingestion is treated as compaction from L0 to different levels and RefitLevel() as compaction from source level to target level.
- Check for `RangeOverlapWithCompaction` with other ongoing compactions, `RegisterCompaction()` on this "compaction" before changing the LSM state in `VersionStorageInfo`, and `UnregisterCompaction()` after changing.
- Replace scattered fixes (0f88160f67, 5c64fb67d2 and 87dfc1d23e.) that prevents overlapping between file ingestion and non-refit-level compaction with this fix cuz those practices are easy to overlook.
- Misc: logic cleanup, see PR comments
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10988
Test Plan:
- New unit test `DBCompactionTestWithOngoingFileIngestionParam*` that failed pre-fix and passed afterwards.
- Made compatible with existing tests, see PR comments
- make check
- [Ongoing] Stress test rehearsal with normal value and aggressive CI value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: cbi42
Differential Revision: D41535685
Pulled By: hx235
fbshipit-source-id: 549833a577ba1496d20a870583d4caa737da1258
Summary:
We have a request for RocksDB to essentially support
disconnected incremental backup. In other words, if there is limited
or no connectivity to the primary backup dir, we should still be able to
take an incremental backup relative to that primary backup dir,
assuming some metadata about that primary dir is available (and
obviously anticipating primary backup dir will be fully available if
restore is needed).
To support that, this feature allows the API user to "exclude" DB
files from backup. This only applies to files that can be shared
between backups (sst and blob files), and excluded files are
tracked in the backup metadata sufficiently to ensure they are
restored at restore time. At restore time, the user provides
a set of alternate backup directories (as open BackupEngines, which
can be read-only), and excluded files must be found in one of the
backup directories ("included" in some backup).
This feature depends on backup schema version 2 features, though
schema version 2.0 support is not sufficient to read / restore a
backup with exclusions. This change updates the schema version to
2.1 because of this feature, so that it's easy to recognize whether
a RocksDB release supports this feature, while backups not using the
feature are fully compatible with 2.0.
Also in this PR:
* Stacked on https://github.com/facebook/rocksdb/pull/11029
* Allow progress_callback to be empty, not just no-op function, and
recover from exceptions thrown by BackupEngine callbacks.
* The internal-only `AsBackupEngine()` function is working around the
diamond hierarchy of `BackupEngineImplThreadSafe` to get to the
internals, without using confusing features like virtual inheritance.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11030
Test Plan: unit tests added / updated
Reviewed By: ajkr
Differential Revision: D42004388
Pulled By: pdillinger
fbshipit-source-id: 31b6e533d308a5462e528d9012d650482d974077
Summary:
RocksDB has two public APIs: `DB::LockWAL()`/`DB::UnlockWAL()`. The current implementation acquires and
releases the internal `DBImpl::log_write_mutex_`.
According to the comment on `DBImpl::log_write_mutex_`: https://github.com/facebook/rocksdb/blob/7.8.fb/db/db_impl/db_impl.h#L2287:L2288
> Note: to avoid dealock, if needed to acquire both log_write_mutex_ and mutex_, the order should be first mutex_ and then log_write_mutex_.
This puts limitations on how applications can use the `LockWAL()` API. After `LockWAL()` returns ok, then application
should not perform any operation that acquires `mutex_`. Currently, the use case of `LockWAL()` is MyRocks implementing
the MySQL storage engine handlerton `lock_hton_log` interface. The operation that MyRocks performs after `LockWAL()`
is `GetSortedWalFiless()` which not only acquires mutex_, but also `log_write_mutex_`.
There are two issues:
1. Applications using these two APIs may hang if one thread calls `GetSortedWalFiles()` after
calling `LockWAL()` because log_write_mutex is not recursive.
2. Two threads may dead lock due to lock order inversion.
To fix these issues, we can modify the implementation of LockWAL so that it does not keep
`log_write_mutex_` held until UnlockWAL. To achieve the goal of locking the WAL, we can
instead manually inject a write stall so that all future writes will be stopped.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11020
Test Plan: make check
Reviewed By: ajkr
Differential Revision: D41785203
Pulled By: riversand963
fbshipit-source-id: 5ccb7a9c6eb9a2c3fa80fd2c399cc2568b8f89ce
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run 36a5686ec0 (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
Summary:
Previously, you could get a format_version error if SST file size was too small in manifest, or a weird "too short" error if too big in manifest. Now we ensure:
* Magic number error is reported first if we attempt to open an SST file and the footer is completely bad.
* Footer errors are reported with affected file.
* If manifest file size doesn't match actual, then the error includes expected and actual sizes (if an error is reported; in some cases we allow the file to be too big)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11009
Test Plan:
unit tests added, some manual
Previously, the code for "file too short" in footer processing was only covered by some tests attempting to verify SST checksums on non-SST files (fixed).
Reviewed By: siying
Differential Revision: D41656272
Pulled By: pdillinger
fbshipit-source-id: 3da32702eb5aaedbea0e5e74742ad57edd7ad3df
Summary:
Currently, `iterate_upper_bound` is not checked for range tombstone keys in MergingIterator. This may impact performance when there is a large number of range tombstones right after `iterate_upper_bound`. This PR fixes this issue by checking `iterate_upper_bound` in MergingIterator for range tombstone keys.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10966
Test Plan:
- added unit test
- stress test: `python3 tools/db_crashtest.py whitebox --simple --verify_iterator_with_expected_state_one_in=5 --delrangepercent=5 --prefixpercent=18 --writepercent=48 --readpercen=15 --duration=36000 --range_deletion_width=100`
- ran different stress tests over sandcastle
- Falcon team ran some test traffic and saw reduced CPU usage on processing range tombstones.
Reviewed By: ajkr
Differential Revision: D41414172
Pulled By: cbi42
fbshipit-source-id: 9b2c29eb3abb99327c6a649bdc412e70d863f981
Summary:
The check for SST unique IDs added to best-efforts recovery (`Options::best_efforts_recovery` is true).
With best_efforts_recovery being true, RocksDB will recover to the latest point in
MANIFEST such that all valid SST files included up to this point pass unique ID checks as well.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10962
Test Plan: make check
Reviewed By: pdillinger
Differential Revision: D41378241
Pulled By: riversand963
fbshipit-source-id: a036064e2c17dec13d080a24ef2a9f85d607b16c
Summary:
Can simplify some ugly code in cache_dump_load_impl.cc by having an API in SecondaryCache that can directly consume persisted data.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10945
Test Plan: existing tests for CacheDumper, added basic unit test
Reviewed By: anand1976
Differential Revision: D41231497
Pulled By: pdillinger
fbshipit-source-id: b8ec993ef7d3e7efd68aae8602fd3f858da58068
Summary:
Background. One of the core risks of chosing HyperClockCache is ending up with degraded performance if estimated_entry_charge is very significantly wrong. Too low leads to under-utilized hash table, which wastes a bit of (tracked) memory and likely increases access times due to larger working set size (more TLB misses). Too high leads to fully populated hash table (at some limit with reasonable lookup performance) and not being able to cache as many objects as the memory limit would allow. In either case, performance degradation is graceful/continuous but can be quite significant. For example, cutting block size in half without updating estimated_entry_charge could lead to a large portion of configured block cache memory (up to roughly 1/3) going unused.
Fix. This change adds a mechanism through which the DB periodically probes the block cache(s) for "problems" to report, and adds diagnostics to the HyperClockCache for bad estimated_entry_charge. The periodic probing is currently done with DumpStats / stats_dump_period_sec, and diagnostics reported to info_log (normally LOG file).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10965
Test Plan:
unit test included. Doesn't cover all the implemented subtleties of reporting, but ensures basics of when to report or not.
Also manual testing with db_bench. Create db with
```
./db_bench --benchmarks=fillrandom,flush --num=3000000 --disable_wal=1
```
Use and check LOG file for HyperClockCache for various block sizes (used as estimated_entry_charge)
```
./db_bench --use_existing_db --benchmarks=readrandom --num=3000000 --duration=20 --stats_dump_period_sec=8 --cache_type=hyper_clock_cache -block_size=XXXX
```
Seeing warnings / errors or not as expected.
Reviewed By: anand1976
Differential Revision: D41406932
Pulled By: pdillinger
fbshipit-source-id: 4ca56162b73017e4b9cec2cad74466f49c27a0a7
Summary:
After a couple minor bug fixes and successful productions roll-outs in a few places, I think we can mark this as production-ready. It has a clear value proposition for many workloads, even if we don't have clear advice for every workload yet.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10963
Test Plan: existing tests, comment changes only
Reviewed By: siying
Differential Revision: D41384083
Pulled By: pdillinger
fbshipit-source-id: 56359f01a57bb28de8697666b342382fac72ce6d
Summary:
No material changes to code or comments, just re-arranging things to prepare for a big refactoring, making it easier to what changed. Some specifics:
* This groups things together in Cache in anticipation of secondary cache features being marked production-ready (vs. experimental).
* CacheEntryRole will be needed in definition of class Cache, so that has been moved above it.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10942
Test Plan: existing tests
Reviewed By: anand1976
Differential Revision: D41205509
Pulled By: pdillinger
fbshipit-source-id: 3f2559ab1651c758918dc97056951fa2b5eb0348
Summary:
Add stats for time spent in the ReadAsync call, and async read errors.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10947
Test Plan: Run db_bench and look at stats
Reviewed By: akankshamahajan15
Differential Revision: D41236637
Pulled By: anand1976
fbshipit-source-id: 70539b69a28491d57acead449436a761f7108acf
Summary:
Compressed block cache depends on reading the block compression marker beyond the payload block size. Only the payload bytes were being saved and loaded from SecondaryCache -> boom!
This removes some unnecessary code attempting to combine these two competing features. Note that BlockContents was previously used for block-based filter in block cache, but that support has been removed.
Also marking block_cache_compressed as deprecated in this commit as we expect it to be replaced with SecondaryCache.
This problem was discovered during refactoring but didn't want to combine bug fix with that refactoring.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10944
Test Plan: test added that fails on base revision (at least with ASAN)
Reviewed By: akankshamahajan15
Differential Revision: D41205578
Pulled By: pdillinger
fbshipit-source-id: 1b29d36c7a6552355ac6511fcdc67038ef4af29f
Summary:
This PR implements the originally disabled `Merge()` APIs when user-defined timestamp is enabled.
Simplest usage:
```cpp
// assume string append merge op is used with '.' as delimiter.
// ts1 < ts2
db->Put(WriteOptions(), "key", ts1, "v0");
db->Merge(WriteOptions(), "key", ts2, "1");
ReadOptions ro;
ro.timestamp = &ts2;
db->Get(ro, "key", &value);
ASSERT_EQ("v0.1", value);
```
Some code comments are added for clarity.
Note: support for timestamp in `DB::GetMergeOperands()` will be done in a follow-up PR.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10819
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D40603195
Pulled By: riversand963
fbshipit-source-id: f96d6f183258f3392d80377025529f7660503013
Summary:
Run clang-format against files under include/
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10850
Test Plan: Watch existing CI to pass.
Reviewed By: ajkr
Differential Revision: D40646158
fbshipit-source-id: 8ce04b107c837630f4000a478d0c871577090263
Summary:
`#include "db/range_tombstone_fragmenter.h"` seems to break some internal test for 7.8 release. I'm removing it from sst_file_reader.h for now to unblock release. This should be fine as it is only used in a unit test for DeleteRange with timestamp. In addition, it does not seem to be useful to support delete range for sst file writer, since the range tombstone won't cover any key (its sequence number is 0). So maybe we can remove it in the future.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10847
Test Plan: CI.
Reviewed By: akankshamahajan15
Differential Revision: D40620865
Pulled By: cbi42
fbshipit-source-id: be44b2f31e062bff87ed1b8d94482c3f7eaa370c
Summary:
Refactor the classes, APIs and data structures for block cache tracing to allow a user provided trace writer to be used. Currently, only a TraceWriter is supported, with a default built-in implementation of FileTraceWriter. The TraceWriter, however, takes a flat trace record and is thus only suitable for file tracing. This PR introduces an abstract BlockCacheTraceWriter class that takes a structured BlockCacheTraceRecord. The BlockCacheTraceWriter implementation can then format and log the record in whatever way it sees fit. The default BlockCacheTraceWriterImpl does file tracing using a user provided TraceWriter.
`DB::StartBlockTrace` will internally redirect to changed `BlockCacheTrace::StartBlockCacheTrace`.
New API `DB::StartBlockTrace` is also added that directly takes `BlockCacheTraceWriter` pointer.
This same philosophy can be applied to KV and IO tracing as well.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10811
Test Plan:
existing unit tests
Old API DB::StartBlockTrace checked with db_bench tool
create database
```
./db_bench --benchmarks="fillseq" \
--key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 \
--cache_index_and_filter_blocks --cache_size=1048576 \
--disable_auto_compactions=1 --disable_wal=1 --compression_type=none \
--min_level_to_compress=-1 --compression_ratio=1 --num=10000000
```
To trace block cache accesses when running readrandom benchmark:
```
./db_bench --benchmarks="readrandom" --use_existing_db --duration=60 \
--key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 \
--cache_index_and_filter_blocks --cache_size=1048576 \
--disable_auto_compactions=1 --disable_wal=1 --compression_type=none \
--min_level_to_compress=-1 --compression_ratio=1 --num=10000000 \
--threads=16 \
-block_cache_trace_file="/tmp/binary_trace_test_example" \
-block_cache_trace_max_trace_file_size_in_bytes=1073741824 \
-block_cache_trace_sampling_frequency=1
```
Reviewed By: anand1976
Differential Revision: D40435289
Pulled By: akankshamahajan15
fbshipit-source-id: fa2755f4788185e19f4605e731641cfd21ab3282
Summary:
This new property allows users to trigger the background block cache stats collection mode through the `GetProperty()` and `GetMapProperty()` APIs. The background mode has much lower overhead at the expense of returning stale values in more cases.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10832
Test Plan: updated unit test
Reviewed By: pdillinger
Differential Revision: D40497883
Pulled By: ajkr
fbshipit-source-id: bdcc93402f426463abb2153756aad9e295447343
Summary:
Add option `preserve_internal_time_seconds` to preserve the internal
time information.
It's mostly for the migration of the existing data to tiered storage (
`preclude_last_level_data_seconds`). When the tiering feature is just
enabled, the existing data won't have the time information to decide if
it's hot or cold. Enabling this feature will start collect and preserve
the time information for the new data.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10747
Reviewed By: siying
Differential Revision: D39910141
Pulled By: siying
fbshipit-source-id: 25c21638e37b1a7c44006f636b7d714fe7242138
Summary:
As the first step of covering the wide-column functionality of iterators
in our stress tests, the patch adds verification logic to
`NonBatchedOpsStressTest::VerifyDb` that checks whether the
iterator's value and columns are in sync. Note: I plan to update the other
types of stress tests and add similar verification for prefix scans etc.
in separate PRs.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10783
Test Plan: Ran some simple blackbox crash tests.
Reviewed By: riversand963
Differential Revision: D40152370
Pulled By: riversand963
fbshipit-source-id: 8f9d17d7af5da58ccf1bd2057cab53cc9645ac35
Summary:
With current implementation, within the same RocksDB instance, all column families with non-empty memtables will be scheduled for flush if RocksDB determines that any column family needs to be flushed, e.g. memtable full, write buffer manager, etc., if atomic flush is enabled. Not doing so can lead to data loss and inconsistency when WAL is disabled, which is a common setting when atomic flush is enabled. Therefore, setting a per-column-family knob, min_write_buffer_number_to_merge to a value greater than 1 is not compatible with atomic flush, and should be sanitized during column family creation and db open.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10773
Test Plan:
Reproduce: D39993203 has detailed steps.
Run the test with and without the fix.
Reviewed By: cbi42
Differential Revision: D40077955
Pulled By: cbi42
fbshipit-source-id: 451a9179eb531ac42eaccf40b451b9dec4085240
Summary:
For RoundRobin compaction, the data should be mostly sorted per level and within level. Use normal compaction picker for RR until all expired data is compacted.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10725
Reviewed By: ajkr
Differential Revision: D39771069
Pulled By: jay-zhuang
fbshipit-source-id: 7ccf88d7c093fad5673bda73a7b08cc4757780cd
Summary:
This is intended as a step toward possibly separating secondary cache integration from the
Cache implementation as much as possible, to (hopefully) minimize code duplication in
adding secondary cache support to HyperClockCache.
* Major clarifications to API docs of secondary cache compatible parts of Cache. For example, previously the docs seemed to suggest that Wait() was not needed if IsReady()==true. And it wasn't clear what operations were actually supported on pending handles.
* Add some assertions related to these requirements, such as that we don't Release() before Wait() (which would leak a secondary cache handle).
* Fix a leaky abstraction with dummy handles, which are supposed to be internal to the Cache. Previously, these just used value=nullptr to indicate dummy handle, which meant that they could be confused with legitimate value=nullptr cases like cache reservations. Also fixed blob_source_test which was relying on this leaky abstraction.
* Drop "incomplete" terminology, which was another name for "pending".
* Split handle flags into "mutable" ones requiring mutex and "immutable" ones which do not. Because of single-threaded access to pending handles, the "Is Pending" flag can be in the "immutable" set. This allows removal of a TSAN work-around and removing a mutex acquire-release in IsReady().
* Remove some unnecessary handling of charges on handles of failed lookups. Keeping total_charge=0 means no special handling needed. (Removed one unnecessary mutex acquire/release.)
* Simplify handling of dummy handle in Lookup(). There is no need to explicitly Ref & Release w/Erase if we generally overwrite the dummy anyway. (Removed one mutex acquire/release, a call to Release().)
Intended follow-up:
* Clarify APIs in secondary_cache.h
* Doesn't SecondaryCacheResultHandle transfer ownership of the Value() on success (implementations should not release the value in destructor)?
* Does Wait() need to be called if IsReady() == true? (This would be different from Cache.)
* Do Value() and Size() have undefined behavior if IsReady() == false?
* Why have a custom API for what is essentially a std::future<std::pair<void*, size_t>>?
* Improve unit testing of standalone handle case
* Apparent null `e` bug in `free_standalone_handle` case
* Clean up secondary cache testing in lru_cache_test
* Why does TestSecondaryCacheResultHandle hold on to a Cache::Handle?
* Why does TestSecondaryCacheResultHandle::Wait() do nothing? Shouldn't it establish the post-condition IsReady() == true?
* (Assuming that is sorted out...) Shouldn't TestSecondaryCache::WaitAll simply wait on each handle in order (no casting required)? How about making that the default implementation?
* Why does TestSecondaryCacheResultHandle::Size() check Value() first? If the API is intended to be returning 0 before IsReady(), then that is weird but should at least be documented. Otherwise, if it's intended to be undefined behavior, we should assert IsReady().
* Consider replacing "standalone" and "dummy" entries with a single kind of "weak" entry that deletes its value when it reaches zero refs. Suppose you are using compressed secondary cache and have two iterators at similar places. It will probably common for one iterator to have standalone results pinned (out of cache) when the second iterator needs those same blocks and has to re-load them from secondary cache and duplicate the memory. Combining the dummy and the standalone should fix this.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10730
Test Plan:
existing tests (minor update), and crash test with sanitizers and secondary cache
Performance test for any regressions in LRUCache (primary only):
Create DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test before & after (run at same time) with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X100] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=233000000 -duration 30 -threads=16
```
Before: readrandom [AVG 100 runs] : 22234 (± 63) ops/sec; 1.6 (± 0.0) MB/sec
After: readrandom [AVG 100 runs] : 22197 (± 64) ops/sec; 1.6 (± 0.0) MB/sec
That's within 0.2%, which is not significant by the confidence intervals.
Reviewed By: anand1976
Differential Revision: D39826010
Pulled By: anand1976
fbshipit-source-id: 3202b4a91f673231c97648ae070e502ae16b0f44