Summary:
In RocksDB, keys are associated with (internal) sequence numbers which denote when the keys are written
to the database. Sequence numbers in different RocksDB instances are unrelated, thus not comparable.
It is nice if we can associate sequence numbers with their corresponding actual timestamps. One thing we can
do is to support user-defined timestamp, which allows the applications to specify the format of custom timestamps
and encode a timestamp with each key. More details can be found at https://github.com/facebook/rocksdb/wiki/User-defined-Timestamp-%28Experimental%29.
This PR provides a different but complementary approach. We can associate rocksdb snapshots (defined in
https://github.com/facebook/rocksdb/blob/7.2.fb/include/rocksdb/snapshot.h#L20) with **user-specified** timestamps.
Since a snapshot is essentially an object representing a sequence number, this PR establishes a bi-directional mapping between sequence numbers and timestamps.
In the past, snapshots are usually taken by readers. The current super-version is grabbed, and a `rocksdb::Snapshot`
object is created with the last published sequence number of the super-version. You can see that the reader actually
has no good idea of what timestamp to assign to this snapshot, because by the time the `GetSnapshot()` is called,
an arbitrarily long period of time may have already elapsed since the last write, which is when the last published
sequence number is written.
This observation motivates the creation of "timestamped" snapshots on the write path. Currently, this functionality is
exposed only to the layer of `TransactionDB`. Application can tell RocksDB to create a snapshot when a transaction
commits, effectively associating the last sequence number with a timestamp. It is also assumed that application will
ensure any two snapshots with timestamps should satisfy the following:
```
snapshot1.seq < snapshot2.seq iff. snapshot1.ts < snapshot2.ts
```
If the application can guarantee that when a reader takes a timestamped snapshot, there is no active writes going on
in the database, then we also allow the user to use a new API `TransactionDB::CreateTimestampedSnapshot()` to create
a snapshot with associated timestamp.
Code example
```cpp
// Create a timestamped snapshot when committing transaction.
txn->SetCommitTimestamp(100);
txn->SetSnapshotOnNextOperation();
txn->Commit();
// A wrapper API for convenience
Status Transaction::CommitAndTryCreateSnapshot(
std::shared_ptr<TransactionNotifier> notifier,
TxnTimestamp ts,
std::shared_ptr<const Snapshot>* ret);
// Create a timestamped snapshot if caller guarantees no concurrent writes
std::pair<Status, std::shared_ptr<const Snapshot>> snapshot = txn_db->CreateTimestampedSnapshot(100);
```
The snapshots created in this way will be managed by RocksDB with ref-counting and potentially shared with
other readers. We provide the following APIs for readers to retrieve a snapshot given a timestamp.
```cpp
// Return the timestamped snapshot correponding to given timestamp. If ts is
// kMaxTxnTimestamp, then we return the latest timestamped snapshot if present.
// Othersise, we return the snapshot whose timestamp is equal to `ts`. If no
// such snapshot exists, then we return null.
std::shared_ptr<const Snapshot> TransactionDB::GetTimestampedSnapshot(TxnTimestamp ts) const;
// Return the latest timestamped snapshot if present.
std::shared_ptr<const Snapshot> TransactionDB::GetLatestTimestampedSnapshot() const;
```
We also provide two additional APIs for stats collection and reporting purposes.
```cpp
Status TransactionDB::GetAllTimestampedSnapshots(
std::vector<std::shared_ptr<const Snapshot>>& snapshots) const;
// Return timestamped snapshots whose timestamps fall in [ts_lb, ts_ub) and store them in `snapshots`.
Status TransactionDB::GetTimestampedSnapshots(
TxnTimestamp ts_lb,
TxnTimestamp ts_ub,
std::vector<std::shared_ptr<const Snapshot>>& snapshots) const;
```
To prevent the number of timestamped snapshots from growing infinitely, we provide the following API to release
timestamped snapshots whose timestamps are older than or equal to a given threshold.
```cpp
void TransactionDB::ReleaseTimestampedSnapshotsOlderThan(TxnTimestamp ts);
```
Before shutdown, RocksDB will release all timestamped snapshots.
Comparison with user-defined timestamp and how they can be combined:
User-defined timestamp persists every key with a timestamp, while timestamped snapshots maintain a volatile
mapping between snapshots (sequence numbers) and timestamps.
Different internal keys with the same user key but different timestamps will be treated as different by compaction,
thus a newer version will not hide older versions (with smaller timestamps) unless they are eligible for garbage collection.
In contrast, taking a timestamped snapshot at a certain sequence number and timestamp prevents all the keys visible in
this snapshot from been dropped by compaction. Here, visible means (seq < snapshot and most recent).
The timestamped snapshot supports the semantics of reading at an exact point in time.
Timestamped snapshots can also be used with user-defined timestamp.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9879
Test Plan:
```
make check
TEST_TMPDIR=/dev/shm make crash_test_with_txn
```
Reviewed By: siying
Differential Revision: D35783919
Pulled By: riversand963
fbshipit-source-id: 586ad905e169189e19d3bfc0cb0177a7239d1bd4
Summary:
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629
Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are
locked upon first operation that writes the key or has the intention of writing. For example,
`PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`,
`PessimisticTransaction::SingleDelete()` will write to or delete a key, while
`PessimisticTransaction::GetForUpdate()` is used by application to indicate
to RocksDB that the transaction has the intention of performing write operation later
in the same transaction.
Pessimistic transactions support two-phase commit (2PC). A transaction can be
`Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once
`Prepare()` succeeds, the transaction has acquired the necessary resources to commit.
The resources include locks, persistence of WAL, etc.
Write-committed transaction is the default pessimistic transaction implementation. In
RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare
section. `Commit()` will write a commit marker to the WAL and then write data to the
memtables. While writing to the memtables, different keys in the transaction's write batch
will be assigned different sequence numbers in ascending order.
Until commit/rollback, the transaction holds locks on the keys so that no other transaction
can write to the same keys. Furthermore, the keys' sequence numbers represent the order
in which they are committed and should be made visible. This is convenient for us to
implement support for user-defined timestamps.
Since column families with and without timestamps can co-exist in the same database,
a transaction may or may not involve timestamps. Based on this observation, we add two
optional members to each `PessimisticTransaction`, `read_timestamp_` and
`commit_timestamp_`. If no key in the transaction's write batch has timestamp, then
setting these two variables do not have any effect. For the rest of this commit, we discuss
only the cases when these two variables are meaningful.
read_timestamp_ is used mainly for validation, and should be set before first call to
`GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls
`TryLock()` that can verify if another transaction has written the same key since
`read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed
written the same key, then validation fails, and RocksDB allows this transaction to
refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()`
with a different timestamp to read, but the result of the read should not be used to
determine data that will be written later.
commit_timestamp_ must be set after finishing writing and before transaction commit.
This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after
prepare phase succeeds.
We currently require that the commit timestamp be chosen after all keys are locked. This
means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used
by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`,
`PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`,
etc. will return non-ok status because they specify timestamps before locking the keys.
Users are also prompted to use the `Transaction` APIs when they receive the non-ok status.
Reviewed By: ltamasi
Differential Revision: D31822445
fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
Summary:
This PR has two commits:
1. Modify the code to allow different Lock Managers (of any kind) to be used. It is implied that a LockManager uses its own custom LockTracker.
2. Add definitions for Range Locking (class Endpoint and GetRangeLock() function.
cheng-chang, is this what you've had in mind (should the PR have both item 1 and item 2?)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7443
Reviewed By: zhichao-cao
Differential Revision: D24123172
Pulled By: cheng-chang
fbshipit-source-id: c6548ad6d4cc3c25f68d13b29147bc6fdf357185
Summary:
In order to be able to introduce more locking protocols, we need to abstract out the locking subsystem in TransactionDB into a set of interfaces.
PR https://github.com/facebook/rocksdb/pull/7013 introduces interface `LockTracker`. This PR is a follow up to take the first step to abstract out a `LockManager` interface.
Further modifications to the interface may be needed when introducing the first implementation of range lock. But the idea here is to put the range lock implementation based on range tree under the `utilities/transactions/lock/range/range_tree`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7532
Test Plan: point_lock_manager_test
Reviewed By: ajkr
Differential Revision: D24238731
Pulled By: cheng-chang
fbshipit-source-id: 2a9458cd8b3fb008d9529dbc4d3b28c24631f463
Summary:
We're going to support more locking protocols such as range lock in transaction.
However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol.
The most significant usage scenarios of `tracked_keys` are:
1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback.
2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit.
3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`.
Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation.
In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components.
After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013
Test Plan: Run `transaction_test` and `optimistic_transaction_test`.
Reviewed By: ajkr
Differential Revision: D22163706
Pulled By: cheng-chang
fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
Summary:
The dynamic_cast in the filter benchmark causes release mode to fail due to
no-rtti. Replace with static_cast_with_check.
Signed-off-by: Derrick Pallas <derrick@pallas.us>
Addition by peterd: Remove unnecessary 2nd template arg on all static_cast_with_check
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6732
Reviewed By: ltamasi
Differential Revision: D21304260
Pulled By: pdillinger
fbshipit-source-id: 6e8eb437c4ca5a16dbbfa4053d67c4ad55f1608c
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
In WritePrepared there could be gap in sequence numbers. This breaks the trick we use in kPointInTimeRecovery which assume the first seq in the log right after the corrupted log is one larger than the last seq we read from the logs. To let this trick keep working, we add a dummy entry with the expected sequence to the first log right after recovery.
Also in WriteCommitted, if the log right after the corrupted log is empty, since it has no sequence number to let the sequential trick work, it is assumed as unexpected behavior. This is however expected to happen if we close the db after recovering from a corruption and before writing anything new to it. To remedy that, we apply the same technique by writing a dummy entry to the log that is created after the corrupted log.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6313
Differential Revision: D19458291
Pulled By: maysamyabandeh
fbshipit-source-id: 09bc49e574690085df45b034ca863ff315937e2d
Summary:
This enables the user to set TransactionDBOptions::skip_concurrency_control so the standard `DB::Write(const WriteOptions& opts, WriteBatch* updates)` would skip the concurrency control. This would give higher throughput to the users who know their use case doesn't need concurrency control.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5330
Differential Revision: D15525932
Pulled By: maysamyabandeh
fbshipit-source-id: 68421ac1ba34f549a4a8de9ce4c2dccf6fb4b06b
Summary:
This adds support for writing unprepared batches based on size defined in `TransactionOptions::max_write_batch_size`. This is done by overriding methods that modify data (Put/Delete/SingleDelete/Merge) and checking first if write batch size has exceeded threshold. If so, the write batch is written to DB as an unprepared batch.
Support for Commit/Rollback for unprepared batch is added as well. This has been done by simply extending the WritePrepared Commit/Rollback logic to take care of all unprep_seq numbers either when updating prepare heap, or adding to commit map. For updating the commit map, this logic exists inside `WriteUnpreparedCommitEntryPreReleaseCallback`.
A test change was also made to have transactions unregister themselves when committing without prepare. This is because with write unprepared, there may be unprepared entries (which act similarly to prepared entries) already when a commit is done without prepare.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4104
Differential Revision: D8785717
Pulled By: lth
fbshipit-source-id: c02006e281ec1ce00f628e2a7beec0ee73096a91
Summary:
The transactions are currently tested with and without using StackableDB. This is mostly to check that the code path is consistent with stackable db as well. Slow, stress tests however do not benefit from being run again with StackableDB. The patch excludes StackableDB from such tests.
On a single core it reduced the runtime of transaction_test from 199s to 135s.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4132
Differential Revision: D8841655
Pulled By: maysamyabandeh
fbshipit-source-id: 7b9aaba2673b542b195439dfb306cef26bd63b19
Summary:
This adds support for recovering WriteUnprepared transactions through the following changes:
- The information in `RecoveredTransaction` is extended so that it can reference multiple batches.
- `MarkBeginPrepare` is extended with a bool indicating whether it is an unprepared begin, and this is passed down to `InsertRecoveredTransaction` to indicate whether the current transaction is prepared or not.
- `WriteUnpreparedTxnDB::Initialize` is overridden so that it will rollback unprepared transactions from the recovered transactions. This can be done without updating the prepare heap/commit map, because this is before the DB has finished initializing, and after writing the rollback batch, those data structures should not contain information about the rolled back transaction anyway.
Commit/Rollback of live transactions is still unimplemented and will come later.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4078
Differential Revision: D8703382
Pulled By: lth
fbshipit-source-id: 7e0aada6c23bd39299f1f20d6c060492e0e6b60a
Summary:
Rollback was disabled in stress test since there was a concurrency issue in WritePrepared rollback algorithm. The issue is fixed by caching the column family handles in WritePrepared to skip getting them from the db when needed for rollback.
Tested by running transaction stress test under tsan.
Closes https://github.com/facebook/rocksdb/pull/3785
Differential Revision: D7793727
Pulled By: maysamyabandeh
fbshipit-source-id: d81ab6fda0e53186ca69944cfe0712ce4869451e
Summary:
The is an optimization to reduce lookup in the CommitCache when querying IsInSnapshot. The optimization takes the smallest uncommitted data at the time that the snapshot was taken and if the sequence number of the read data is lower than that number it assumes the data as committed.
To implement this optimization two changes are required: i) The AddPrepared function must be called sequentially to avoid out of order insertion in the PrepareHeap (otherwise the top of the heap does not indicate the smallest prepare in future too), ii) non-2PC transactions also call AddPrepared if they do not commit in one step.
Closes https://github.com/facebook/rocksdb/pull/3649
Differential Revision: D7388630
Pulled By: maysamyabandeh
fbshipit-source-id: b79506238c17467d590763582960d4d90181c600
Summary:
Fix the following bugs:
- During recovery a duplicate key was inserted twice into the write batch of the recovery transaction,
once when the memtable returns false (because it was duplicates) and once for the 2nd attempt. This would result into different SubBatch count measured when the recovered transactions is committing.
- If a cf is flushed during recovery the memtable is not available to assist in detecting the duplicate key. This could result into not advancing the sequence number when iterating over duplicate keys of a flushed cf and hence inserting the next key with the wrong sequence number.
- SubBacthCounter would reset the comparator to default comparator after the first duplicate key. The 2nd duplicate key hence would have gone through a wrong comparator and not being detected.
Closes https://github.com/facebook/rocksdb/pull/3562
Differential Revision: D7149440
Pulled By: maysamyabandeh
fbshipit-source-id: 91ec317b165f363f5d11ff8b8c47c81cebb8ed77
Summary:
Under a certain sequence of accessing PreparedHeap, there was a bug that would not successfully empty the heap. This would result in performance issues when the heap content is moved to old_prepared_ after max_evicted_seq_ advances the orphan prepared sequence numbers. The patch fixed the bug and add more unit tests. It also does more logging when the unlikely scenarios are faced
Closes https://github.com/facebook/rocksdb/pull/3526
Differential Revision: D7038486
Pulled By: maysamyabandeh
fbshipit-source-id: f1e40bea558f67b03d2a29131fcb8734c65fce97
Summary:
These are optimization that we applied to improve sysbech's update_noindex performance.
1. Make use of LIKELY compiler hint
2. Move std::atomic so the subclass
3. Make use of skip_prepared in non-2pc transactions.
Closes https://github.com/facebook/rocksdb/pull/3512
Differential Revision: D7000075
Pulled By: maysamyabandeh
fbshipit-source-id: 1ab8292584df1f6305a4992973fb1b7933632181
Summary:
Compared to DB::Write, TransactionDB::Write has the additional overhead of creating and initializing an internal transaction object, as well as the overhead of locking/unlocking the keys. This patch extends the TransactionDB::Write with an skip_cc option to allow the users to indicate that the write batch do not conflict with others and the concurrency control and its overhead can be skipped. TransactionDB::Write by default calls DB::Write when skip_cc is set, which works for WriteCommitted WritePolicy. Any other flavor of TransactionDB that is not compatible with this default behavior (such as WritePreparedTxnDB) can extend ::Write and implement their own approach for taking into account the skip_cc optimization.
Closes https://github.com/facebook/rocksdb/pull/3457
Differential Revision: D6877318
Pulled By: maysamyabandeh
fbshipit-source-id: 56f4e21db87ff71492db4e376fb7c2b03dfeab6b
Summary:
This patch takes advantage of memtable being able to detect duplicate <key,seq> and returning TryAgain to handle duplicate keys in WritePrepared Txns. Through WriteBatchWithIndex's index it detects existence of at least a duplicate key in the write batch. If duplicate key was reported, it then pays the cost of counting the number of sub-patches by iterating over the write batch and pass it to DBImpl::Write. DB will make use of the provided batch_count to assign proper sequence numbers before sending them to the WAL. When later inserting the batch to the memtable, it increases the seq each time memtbale reports a duplicate (a sub-patch in our counting) and tries again.
Closes https://github.com/facebook/rocksdb/pull/3455
Differential Revision: D6873699
Pulled By: maysamyabandeh
fbshipit-source-id: db8487526c3a5dc1ddda0ea49f0f979b26ae648d
Summary:
Move WritePreparedTxnDB from pessimistic_transaction_db.h to its own header, write_prepared_txn_db.h
Closes https://github.com/facebook/rocksdb/pull/3114
Differential Revision: D6220987
Pulled By: maysamyabandeh
fbshipit-source-id: 18893fb4fdc6b809fe117dabb544080f9b4a301b
Summary:
GetCommitTimeWriteBatch is currently used to store some state as part of commit in 2PC. In MyRocks it is specifically used to store some data that would be needed only during recovery. So it is not need to be stored in memtable right after each commit.
This patch enables an optimization to write the GetCommitTimeWriteBatch only to the WAL. The batch will be written to memtable during recovery when the WAL is replayed. To cover the case when WAL is deleted after memtable flush, the batch is also buffered and written to memtable right before each memtable flush.
Closes https://github.com/facebook/rocksdb/pull/3071
Differential Revision: D6148023
Pulled By: maysamyabandeh
fbshipit-source-id: 2d09bae5565abe2017c0327421010d5c0d55eaa7
Summary:
On iterator create, take a snapshot, create a ReadCallback and pass the ReadCallback to the underlying DBIter to check if key is committed.
Closes https://github.com/facebook/rocksdb/pull/2981
Differential Revision: D6001471
Pulled By: yiwu-arbug
fbshipit-source-id: 3565c4cdaf25370ba47008b0e0cb65b31dfe79fe
Summary:
On WritePreparedTxnDB destruct there could be running compaction/flush holding a SnapshotChecker, which holds a pointer back to WritePreparedTxnDB. Make sure those jobs finished before destructing WritePreparedTxnDB.
This is caught by TransactionTest::SeqAdvanceTest.
Closes https://github.com/facebook/rocksdb/pull/2982
Differential Revision: D6002957
Pulled By: yiwu-arbug
fbshipit-source-id: f1e70390c9798d1bd7959f5c8e2a1c14100773c3
Summary:
Update Compaction/Flush to support WritePreparedTxnDB: Add SnapshotChecker which is a proxy to query WritePreparedTxnDB::IsInSnapshot. Pass SnapshotChecker to DBImpl on WritePreparedTxnDB open. CompactionIterator use it to check if a key has been committed and if it is visible to a snapshot. In CompactionIterator:
* check if key has been committed. If not, output uncommitted keys AS-IS.
* use SnapshotChecker to check if key is visible to a snapshot when in need.
* do not output key with seq = 0 if the key is not committed.
Closes https://github.com/facebook/rocksdb/pull/2926
Differential Revision: D5902907
Pulled By: yiwu-arbug
fbshipit-source-id: 945e037fdf0aa652dc5ba0ad879461040baa0320
Summary:
Implement the rollback of WritePrepared txns. For each modified value, it reads the value before the txn and write it back. This would cancel out the effect of transaction. It also remove the rolled back txn from prepared heap.
Closes https://github.com/facebook/rocksdb/pull/2946
Differential Revision: D5937575
Pulled By: maysamyabandeh
fbshipit-source-id: a6d3c47f44db3729f44b287a80f97d08dc4e888d
Summary:
Recover txns from the WAL. Also added some unit tests.
Closes https://github.com/facebook/rocksdb/pull/2901
Differential Revision: D5859596
Pulled By: maysamyabandeh
fbshipit-source-id: 6424967b231388093b4effffe0a3b1b7ec8caeb0
Summary:
Looks like the API is simply missing. Adding it.
Closes https://github.com/facebook/rocksdb/pull/2937
Differential Revision: D5919955
Pulled By: yiwu-arbug
fbshipit-source-id: 6e2e9c96c29882b0bb4113d1f8efb72bffc57878
Summary:
We had two proposals for lock-free commit maps. This patch implements the latter one that was simpler. We can later experiment with both proposals.
In this impl each entry is an std::atomic of uint64_t, which are accessed via memory_order_acquire/release. In x86_64 arch this is compiled to simple reads and writes from memory.
Closes https://github.com/facebook/rocksdb/pull/2861
Differential Revision: D5800724
Pulled By: maysamyabandeh
fbshipit-source-id: 41abae9a4a5df050a8eb696c43de11c2770afdda
Summary:
This patch instruments the read path to verify each read value against an optional ReadCallback class. If the value is rejected, the reader moves on to the next value. The WritePreparedTxn makes use of this feature to skip sequence numbers that are not in the read snapshot.
Closes https://github.com/facebook/rocksdb/pull/2850
Differential Revision: D5787375
Pulled By: maysamyabandeh
fbshipit-source-id: 49d808b3062ab35e7ae98ad388f659757794184c
Summary:
This patch advances the max_evicted_seq_ is larger granularities to reduce the overhead of updating the relevant data structures.
It also refactor the related code and adds testing to that. As part of this patch some of the TODOs for removing usage of non-static const members are also addressed.
Closes https://github.com/facebook/rocksdb/pull/2844
Differential Revision: D5772928
Pulled By: maysamyabandeh
fbshipit-source-id: f4fcc2948be69c034f10812cf922ce5ab82ef98c
Summary:
Divide the old snapshots to two lists: a few that fit into a cached array and the rest in a vector, which is expected to be empty in normal cases. The former is to optimize concurrent reads from snapshots without requiring locks. It is done by an array of std::atomic, from which std::memory_order_acquire reads are compiled to simple read instructions in most of the x86_64 architectures.
Closes https://github.com/facebook/rocksdb/pull/2758
Differential Revision: D5660504
Pulled By: maysamyabandeh
fbshipit-source-id: 524fcf9a8e7f90a92324536456912a99aaa6740c
Summary:
Changes:
* extended the wait_txn_map to track additional information
* designed circular buffer to store n latest deadlocks' information
* added test coverage to verify the additional information tracked is accurately stored in the buffer
Closes https://github.com/facebook/rocksdb/pull/2630
Differential Revision: D5478025
Pulled By: armishra
fbshipit-source-id: 2b138de7b5a73f5ca554fc3ff8220a3be49f39e7
Summary:
Implement the main body of WritePrepared pseudo code. This includes PrepareInternal and CommitInternal, as well as AddCommitted which updates the commit map. It also provides a IsInSnapshot method that could be later called form the read path to decide if a version is in the read snapshot or it should other be skipped.
This patch lacks unit tests and does not attempt to offer an efficient implementation. The idea is that to have the API specified so that we can work on related tasks in parallel.
Closes https://github.com/facebook/rocksdb/pull/2713
Differential Revision: D5640021
Pulled By: maysamyabandeh
fbshipit-source-id: bfa7a05e8d8498811fab714ce4b9c21530514e1c
Summary:
This patch splits Commit and Prepare into lock-related logic and db-write-related logic. It moves lock-related logic to PessimisticTransaction to be reused by all children classes and movies the existing impl of db-write-related to PrepareInternal, CommitSingleInternal, and CommitInternal in WriteCommittedTxnImpl.
Closes https://github.com/facebook/rocksdb/pull/2691
Differential Revision: D5569464
Pulled By: maysamyabandeh
fbshipit-source-id: d1b8698e69801a4126c7bc211745d05c636f5325
Summary:
This opens space for the new implementations of TransactionDBImpl such as WritePreparedTxnDBImpl that has a different policy of how to write to DB.
Closes https://github.com/facebook/rocksdb/pull/2689
Differential Revision: D5568918
Pulled By: maysamyabandeh
fbshipit-source-id: f7eac866e175daf3793ae79da108f65cc7dc7b25
Summary:
This patch refactors TransactionImpl by separating the logic for pessimistic concurrency control from the implementation of how to write the data to rocksdb. The existing implementation is named WriteCommittedTxnImpl as it writes committed data to the db. A template named WritePreparedTxnImpl is also added which will be later completed to provide a an alternative implementation.
Closes https://github.com/facebook/rocksdb/pull/2676
Differential Revision: D5549998
Pulled By: maysamyabandeh
fbshipit-source-id: 16298e86b43ca4849324c1f35c731913c6d17bec
Summary:
This is an implementation of non-exclusive locks for pessimistic transactions. It is relatively simple and does not prevent starvation (ie. it's possible that request for exclusive access will never be granted if there are always threads holding shared access). It is done by changing `KeyLockInfo` to hold an set a transaction ids, instead of just one, and adding a flag specifying whether this lock is currently held with exclusive access or not.
Some implementation notes:
- Some lock diagnostic functions had to be updated to return a set of transaction ids for a given lock, eg. `GetWaitingTxn` and `GetLockStatusData`.
- Deadlock detection is a bit more complicated since a transaction can now wait on multiple other transactions. A BFS is done in this case, and deadlock detection depth is now just a limit on the number of transactions we visit.
- Expirable transactions do not work efficiently with shared locks at the moment, but that's okay for now.
Closes https://github.com/facebook/rocksdb/pull/1573
Differential Revision: D4239097
Pulled By: lth
fbshipit-source-id: da7c074
Summary:
This diff does 3 things:
Expose TransactionID so that we can identify transactions when we retrieve locking and lock wait information. This is exposed as `Transaction::GetID`.
Expose lock state information by locking all stripes in all column families and copying their contents to a data structure. This is exposed as `TransactionDB::GetLockStatusData`.
Adds support for tracking the transaction and the key being waited on, and exposes this as `Transaction::GetWaitingTxn`.
Test Plan: unit tests
Reviewers: horuff, sdong
Reviewed By: sdong
Subscribers: vasilep, hermanlee4, andrewkr, dhruba
Differential Revision: https://reviews.facebook.net/D64413
Summary: make transactionDB working with StackableDB
Test Plan: make all check -j64
Reviewers: andrewkr, yiwu, sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D60705
Summary: This tests that a prepared transaction is not lost after several crashes, restarts, and memtable flushes.
Test Plan: TwoPhaseLongPrepareTest
Reviewers: sdong
Subscribers: hermanlee4, andrewkr, dhruba
Differential Revision: https://reviews.facebook.net/D58185
Summary: Add function to reinitialize a transaction object so that it can be reused. This is an optimization so users can potentially avoid reallocating transaction objects.
Test Plan: added tests
Reviewers: yhchiang, kradhakrishnan, IslamAbdelRahman, sdong
Reviewed By: sdong
Subscribers: jkedgar, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D53835
Summary:
Doing inline checking of transaction expiration instead of
using a callback.
Test Plan: To be added
Reviewers: anthony
Reviewed By: anthony
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D53673
Summary: Transaction::RollbackToSavePoint() will now release any locks that were taken since the previous SavePoint. To do this cleanly, I moved tracked_keys_ management into TransactionBase.
Test Plan: New Transaction test.
Reviewers: igor, rven, sdong
Reviewed By: sdong
Subscribers: dhruba, spetrunia, leveldb
Differential Revision: https://reviews.facebook.net/D46761
Summary:
Initial implementation of Pessimistic Transactions. This diff contains the api changes discussed in D38913. This diff is pretty large, so let me know if people would prefer to meet up to discuss it.
MyRocks folks: please take a look at the API in include/rocksdb/utilities/transaction[_db].h and let me know if you have any issues.
Also, you'll notice a couple of TODOs in the implementation of RollbackToSavePoint(). After chatting with Siying, I'm going to send out a separate diff for an alternate implementation of this feature that implements the rollback inside of WriteBatch/WriteBatchWithIndex. We can then decide which route is preferable.
Next, I'm planning on doing some perf testing and then integrating this diff into MongoRocks for further testing.
Test Plan: Unit tests, db_bench parallel testing.
Reviewers: igor, rven, sdong, yhchiang, yoshinorim
Reviewed By: sdong
Subscribers: hermanlee4, maykov, spetrunia, leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D40869