Tag:
Branch:
Tree:
b44cbbf709
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
218 Commits (b44cbbf7094c6341eefc0f04782c877e93fd1902)
Author | SHA1 | Message | Date |
---|---|---|---|
Changyu Bi | 4d0f9a995c |
Consider TTL compaction file cutting earlier to prevent small output file (#11075)
Summary: in `CompactionOutputs::ShouldStopBefore()`, TTL-related states, `cur_files_to_cut_for_ttl_` and `next_files_to_cut_for_ttl_`, are not updated if the function returns early. This can cause unnecessary compaction output file cuttings and hence produce smaller output files, which may hurt write amp. See the example in the unit test for how this "unnecessary file cutting" can happen. This PR fixes this issue by moving the code for updating TTL states earlier in `CompactionOutputs::ShouldStopBefore()` so that the states are updated for each key. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11075 Test Plan: - Added new unit test. Reviewed By: hx235 Differential Revision: D42398739 Pulled By: cbi42 fbshipit-source-id: 09fab66679c1a734abcfc31bcea33dd9aeb9dbc7 |
2 years ago |
Hui Xiao | 9502856edd |
Add missing range conflict check between file ingestion and RefitLevel() (#10988)
Summary: **Context:** File ingestion never checks whether the key range it acts on overlaps with an ongoing RefitLevel() (used in `CompactRange()` with `change_level=true`). That's because RefitLevel() doesn't register and make its key range known to file ingestion. Though it checks overlapping with other compactions by https://github.com/facebook/rocksdb/blob/7.8.fb/db/external_sst_file_ingestion_job.cc#L998. RefitLevel() (used in `CompactRange()` with `change_level=true`) doesn't check whether the key range it acts on overlaps with an ongoing file ingestion. That's because file ingestion does not register and make its key range known to other compactions. - Note that non-refitlevel-compaction (e.g, manual compaction w/o RefitLevel() or general compaction) also does not check key range overlap with ongoing file ingestion for the same reason. - But it's fine. Credited to cbi42's discovery, `WaitForIngestFile` was called by background and foreground compactions. They were introduced in |
2 years ago |
Peter Dillinger | e6b6e74154 |
Make CompactRange() more aware of SstPartitionerFactory (#11032)
Summary: Some users are at least considering using SstPartitioner to support efficient physical migration of specific key ranges between RocksDB instances. One might expect manual `CompactRange()` over a narrow key range across some partition to enforce partitioning of any SST files crossing that partition boundary, but that currently only works if there are keys within that range. This change makes the overlap logic in CompactRange more aware of the partitioner to automatically select relevant files crossing a partition boundary, even when they otherwise would not be selected due to the compaction range falling in a gap between entries. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11032 Test Plan: unit test included Reviewed By: hx235 Differential Revision: D41981380 Pulled By: pdillinger fbshipit-source-id: 2fe445bdddc73c00276c20f295cc1fa33d15b05a |
2 years ago |
Hui Xiao | 98d5db5c2e |
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run
|
2 years ago |
Hui Xiao | f1574a20ff |
Revert PR 10777 "Fix FIFO causing overlapping seqnos in L0 files due to overla…" (#10999)
Summary:
**Context/Summary:**
This reverts commit
|
2 years ago |
Andrew Kryczka | 5cf6ab6f31 |
Ran clang-format on db/ directory (#10910)
Summary: Ran `find ./db/ -type f | xargs clang-format -i`. Excluded minor changes it tried to make on db/db_impl/. Everything else it changed was directly under db/ directory. Included minor manual touchups mentioned in PR commit history. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10910 Reviewed By: riversand963 Differential Revision: D40880683 Pulled By: ajkr fbshipit-source-id: cfe26cda05b3fb9a72e3cb82c286e21d8c5c4174 |
2 years ago |
Hui Xiao | fc74abb436 |
Fix FIFO causing overlapping seqnos in L0 files due to overlapped seqnos between ingested files and memtable's (#10777)
Summary: **Context:** Same as https://github.com/facebook/rocksdb/pull/5958#issue-511150930 but apply the fix to FIFO Compaction case Repro: ``` COERCE_CONTEXT_SWICH=1 make -j56 db_stress ./db_stress --acquire_snapshot_one_in=0 --adaptive_readahead=0 --allow_data_in_errors=True --async_io=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=0 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=18 --bottommost_compression_type=disable --bytes_per_sync=262144 --cache_index_and_filter_blocks=0 --cache_size=8388608 --cache_type=lru_cache --charge_compression_dictionary_building_buffer=0 --charge_file_metadata=1 --charge_filter_construction=1 --charge_table_reader=1 --checkpoint_one_in=0 --checksum_type=kCRC32c --clear_column_family_one_in=0 --column_families=1 --compact_files_one_in=0 --compact_range_one_in=1000 --compaction_pri=3 --open_files=-1 --compaction_style=2 --fifo_allow_compaction=1 --compaction_ttl=0 --compression_max_dict_buffer_bytes=8388607 --compression_max_dict_bytes=16384 --compression_parallel_threads=1 --compression_type=zlib --compression_use_zstd_dict_trainer=1 --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --data_block_index_type=0 --db=/dev/shm/rocksdb_test0/rocksdb_crashtest_whitebox --db_write_buffer_size=8388608 --delpercent=4 --delrangepercent=1 --destroy_db_initially=1 --detect_filter_construct_corruption=0 --disable_wal=0 --enable_compaction_filter=0 --enable_pipelined_write=1 --fail_if_options_file_error=1 --file_checksum_impl=none --flush_one_in=1000 --format_version=5 --get_current_wal_file_one_in=0 --get_live_files_one_in=0 --get_property_one_in=0 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=15 --index_type=3 --ingest_external_file_one_in=100 --initial_auto_readahead_size=0 --iterpercent=10 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=True --log2_keys_per_lock=10 --long_running_snapshots=0 --mark_for_compaction_one_file_in=10 --max_auto_readahead_size=16384 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=100000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=1048576 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=4194304 --memtable_prefix_bloom_size_ratio=0.5 --memtable_protection_bytes_per_key=1 --memtable_whole_key_filtering=1 --memtablerep=skip_list --mmap_read=1 --mock_direct_io=False --nooverwritepercent=1 --num_file_reads_for_auto_readahead=0 --num_levels=1 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=32 --open_write_fault_one_in=0 --ops_per_thread=200000 --optimize_filters_for_memory=0 --paranoid_file_checks=1 --partition_filters=0 --partition_pinning=1 --pause_background_one_in=0 --periodic_compaction_seconds=0 --prefix_size=8 --prefixpercent=5 --prepopulate_block_cache=0 --progress_reports=0 --read_fault_one_in=0 --readahead_size=16384 --readpercent=45 --recycle_log_file_num=1 --reopen=20 --ribbon_starting_level=999 --snapshot_hold_ops=1000 --sst_file_manager_bytes_per_sec=0 --sst_file_manager_bytes_per_truncate=0 --subcompactions=2 --sync=0 --sync_fault_injection=0 --target_file_size_base=524288 --target_file_size_multiplier=2 --test_batches_snapshots=0 --top_level_index_pinning=3 --unpartitioned_pinning=0 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --use_full_merge_v1=1 --use_merge=0 --use_multiget=1 --user_timestamp_size=0 --value_size_mult=32 --verify_checksum=1 --verify_checksum_one_in=0 --verify_db_one_in=1000 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=0 --wal_compression=zstd --write_buffer_size=524288 --write_dbid_to_manifest=0 --writepercent=35 put or merge error: Corruption: force_consistency_checks(DEBUG): VersionBuilder: L0 file https://github.com/facebook/rocksdb/issues/479 with seqno 23711 29070 vs. file https://github.com/facebook/rocksdb/issues/482 with seqno 27138 29049 ``` **Summary:** FIFO only does intra-L0 compaction in the following four cases. For other cases, FIFO drops data instead of compacting on data, which is irrelevant to the overlapping seqno issue we are solving. - [FIFOCompactionPicker::PickSizeCompaction](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L155) when `total size < compaction_options_fifo.max_table_files_size` and `compaction_options_fifo.allow_compaction == true` - For this path, we simply reuse the fix in `FindIntraL0Compaction` https://github.com/facebook/rocksdb/pull/5958/files#diff-c261f77d6dd2134333c4a955c311cf4a196a08d3c2bb6ce24fd6801407877c89R56 - This path was not stress-tested at all. Therefore we covered `fifo.allow_compaction` in stress test to surface the overlapping seqno issue we are fixing here. - [FIFOCompactionPicker::PickCompactionToWarm](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L313) when `compaction_options_fifo.age_for_warm > 0` - For this path, we simply replicate the idea in https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and skip files of largest seqno greater than `earliest_mem_seqno` - This path was not stress-tested at all. However covering `age_for_warm` option worths a separate PR to deal with db stress compatibility. Therefore we manually tested this path for this PR - [FIFOCompactionPicker::CompactRange](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L365) that ends up picking one of the above two compactions - [CompactionPicker::CompactFiles](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker.cc#L378) - Since `SanitizeCompactionInputFiles()` will be called [before](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker.h#L111-L113) `CompactionPicker::CompactFiles` , we simply replicate the idea in https://github.com/facebook/rocksdb/pull/5958#issue-511150930 in `SanitizeCompactionInputFiles()`. To simplify implementation, we return `Stats::Abort()` on encountering seqno-overlapped file when doing compaction to L0 instead of skipping the file and proceed with the compaction. Some additional clean-up included in this PR: - Renamed `earliest_memtable_seqno` to `earliest_mem_seqno` for consistent naming - Added comment about `earliest_memtable_seqno` in related APIs - Made parameter `earliest_memtable_seqno` constant and required Pull Request resolved: https://github.com/facebook/rocksdb/pull/10777 Test Plan: - make check - New unit test `TEST_P(DBCompactionTestFIFOCheckConsistencyWithParam, FlushAfterIntraL0CompactionWithIngestedFile)`corresponding to the above 4 cases, which will fail accordingly without the fix - Regular CI stress run on this PR + stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 and on FIFO compaction only Reviewed By: ajkr Differential Revision: D40090485 Pulled By: hx235 fbshipit-source-id: 52624186952ee7109117788741aeeac86b624a4f |
2 years ago |
Changyu Bi | eca47fb696 |
Ignore kBottommostFiles compaction logic when allow_ingest_behind (#10767)
Summary: fix for https://github.com/facebook/rocksdb/issues/10752 where RocksDB could be in an infinite compaction loop (with compaction reason kBottommostFiles) if allow_ingest_behind is enabled and the bottommost level is unfilled. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10767 Test Plan: Added a unit test to reproduce the compaction loop. Reviewed By: ajkr Differential Revision: D40031861 Pulled By: ajkr fbshipit-source-id: 71c4b02931fbe507a847632905404c9b8fa8c96b |
2 years ago |
Jay Zhuang | f007ad8b4f |
RoundRobin TTL compaction (#10725)
Summary: For RoundRobin compaction, the data should be mostly sorted per level and within level. Use normal compaction picker for RR until all expired data is compacted. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10725 Reviewed By: ajkr Differential Revision: D39771069 Pulled By: jay-zhuang fbshipit-source-id: 7ccf88d7c093fad5673bda73a7b08cc4757780cd |
2 years ago |
Andrew Kryczka | c7ccbb33a6 |
Allow manual compactions to run in parallel by default (#10317)
Summary: This PR changes the default value of `CompactRangeOptions::exclusive_manual_compaction` from true to false so manual `CompactRange()`s can run in parallel with other compactions. I believe no artificial parallelism restriction is the intuitive behavior so feel the old default value is a trap, which I have fallen into several times, including yesterday. `CompactRangeOptions::exclusive_manual_compaction == false` has been used in both our correctness test and in production for years so should be reasonably safe. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10317 Reviewed By: jay-zhuang Differential Revision: D37659392 Pulled By: ajkr fbshipit-source-id: 504915e978bbe300b79483d064070c75e93d91e5 |
2 years ago |
Zichen Zhu | c945a9a664 |
Allow sufficient subcompactions under round-robin compaction priority (#10422)
Summary: Allow sufficient subcompactions can be used when the number of input files is less than `max_subcompactions` under round-robin compaction priority. Test Case: Add `RoundRobinWithoutAdditionalResources` into `db_compaction_test` Pull Request resolved: https://github.com/facebook/rocksdb/pull/10422 Reviewed By: ajkr Differential Revision: D38186545 Pulled By: littlepig2013 fbshipit-source-id: b8e5098306f1e5b9561dfafafc8300a38f7fe88e |
2 years ago |
Zichen Zhu | 8860fc902a |
Support subcmpct using reserved resources for round-robin priority (#10341)
Summary: Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows: * Constraint 1: We can only pick consecutive files - Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files - Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys) * Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes` * Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)` * Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3 More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`. The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps: * Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()` * Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()` * Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions) More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341 Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc` Reviewed By: ajkr, hx235 Differential Revision: D37792644 Pulled By: littlepig2013 fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657 |
2 years ago |
Wallace | 1e9bf25f61 |
Do not hold mutex when write keys if not necessary (#7516)
Summary: ## Problem Summary RocksDB will acquire the global mutex of db instance for every time when user calls `Write`. When RocksDB schedules a lot of compaction jobs, it will compete the mutex with write thread and it will hurt the write performance. ## Problem Solution: I want to use log_write_mutex to replace the global mutex in most case so that we do not acquire it in write-thread unless there is a write-stall event or a write-buffer-full event occur. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7516 Test Plan: 1. make check 2. CI 3. COMPILE_WITH_TSAN=1 make db_stress make crash_test make crash_test_with_multiops_wp_txn make crash_test_with_multiops_wc_txn make crash_test_with_atomic_flush Reviewed By: siying Differential Revision: D36908702 Pulled By: riversand963 fbshipit-source-id: 59b13881f4f5c0a58fd3ca79128a396d9cd98efe |
3 years ago |
Jay Zhuang | faa0f9723c |
Tiered compaction: integrate Seqno time mapping with per key placement (#10370)
Summary: Using the Sequence number to time mapping to decide if a key is hot or not in compaction and place it in the corresponding level. Note: the feature is not complete, level compaction will run indefinitely until all penultimate level data is cold and small enough to not trigger compaction. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10370 Test Plan: CI * Run basic db_bench for universal compaction manually Reviewed By: siying Differential Revision: D37892338 Pulled By: jay-zhuang fbshipit-source-id: 792bbd91b1ccc2f62b5d14c53118434bcaac4bbe |
3 years ago |
Jay Zhuang | 6ce0b2ca34 |
Tiered Compaction: per key placement support (#9964)
Summary: Support per_key_placement for last level compaction, which will be used for tiered compaction. * compaction iterator reports which level a key should output to; * compaction get the output level information and check if it's safe to output the data to penultimate level; * all compaction output files will be installed. * extra internal compaction stats added for penultimate level. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9964 Test Plan: * Unittest * db_bench, no significate difference: https://gist.github.com/jay-zhuang/3645f8fb97ec0ab47c10704bb39fd6e4 * microbench manual compaction no significate difference: https://gist.github.com/jay-zhuang/ba679b3e89e24992615ee9eef310e6dd * run the db_stress multiple times (not covering the new feature) looks good (internal: https://fburl.com/sandcastle/9w84pp2m) Reviewed By: ajkr Differential Revision: D36249494 Pulled By: jay-zhuang fbshipit-source-id: a96da57c8031c1df83e4a7a8567b657a112b80a3 |
3 years ago |
sdong | 4428c76181 |
Multi-File Trivial Move in L0->L1 (#10188)
Summary: In leveled compaction, L0->L1 trivial move will allow more than one file to be moved in one compaction. This would allow L0 files to be moved down faster when data is loaded in sequential order, making slowdown or stop condition harder to hit. Also seek L0->L1 trivial move when only some files qualify. 1. We always try to find L0->L1 trivial move from the oldest files. Keep including newer files, until adding a new file won't trigger a trivial move 2. Modify the trivial move condition so that this compaction would be tagged as trivial move. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10188 Test Plan: See throughput improvements with db_bench with fast fillseq benchmark and small L0 files: ./db_bench_l0_move --benchmarks=fillseq --compression_type=lz4 --write_buffer_size=5000000 --num=100000000 --value_size=1000 -level_compaction_dynamic_level_bytes The throughput improved by about 50%. Stalling still happens though. Reviewed By: jay-zhuang Differential Revision: D37224743 fbshipit-source-id: 8958d97f22e12bdfc14d2e85930f6fa0070e9659 |
3 years ago |
zczhu | 410ca2efd2 |
Fix the flaky cursor persist test (#10250)
Summary: The 'PersistRoundRobinCompactCursor' unit test in `db_compaction_test` may occasionally fail due to the inconsistent LSM state. The issue is fixed by adding `Flush()` and `WaitForFlushMemTable()` to produce a more predictable and stable LSM state. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10250 Test Plan: 'PersistRoundRobinCompactCursor' unit test in `db_compaction_test` Reviewed By: jay-zhuang, riversand963 Differential Revision: D37426091 Pulled By: littlepig2013 fbshipit-source-id: 56fbaab0384c380c1f279a16dc8732b139c9f611 |
3 years ago |
zczhu | 17a1d65e3a |
Cut output files at compaction cursors (#10227)
Summary: The files behind the compaction cursor contain newer data than the files ahead of it. If a compaction writes a file that spans from before its output level’s cursor to after it, then data before the cursor will be contaminated with the old timestamp from the data after the cursor. To avoid this, we can split the output file into two – one entirely before the cursor and one entirely after the cursor. Note that, in rare cases, we **DO NOT** need to cut the file if it is a trivial move since the file will not be contaminated by older files. In such case, the compact cursor is not guaranteed to be the boundary of the file, but it does not hurt the round-robin selection process. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10227 Test Plan: Add 'RoundRobinCutOutputAtCompactCursor' unit test in `db_compaction_test` Task: [T122216351](https://www.internalfb.com/intern/tasks/?t=122216351) Reviewed By: jay-zhuang Differential Revision: D37388088 Pulled By: littlepig2013 fbshipit-source-id: 9246a6a084b6037b90d6ab3183ba4dfb75a3378d |
3 years ago |
zczhu | 30141461f9 |
Add basic kRoundRobin compaction policy (#10107)
Summary: Add `kRoundRobin` as a compaction priority. The implementation is as follows. - Define a cursor as the smallest Internal key in the successor of the selected file. Add `vector<InternalKey> compact_cursor_` into `VersionStorageInfo` where each element (`InternalKey`) in `compact_cursor_` represents a cursor. In round-robin compaction policy, we just need to select the first file (assuming files are sorted) and also has the smallest InternalKey larger than/equal to the cursor. After a file is chosen, we create a new `Fsize` vector which puts the selected file is placed at the first position in `temp`, the next cursor is then updated as the smallest InternalKey in successor of the selected file (the above logic is implemented in `SortFileByRoundRobin`). - After a compaction succeeds, typically `InstallCompactionResults()`, we choose the next cursor for the input level and save it to `edit`. When calling `LogAndApply`, we save the next cursor with its level into some local variable and finally apply the change to `vstorage` in `SaveTo` function. - Cursors are persist pair by pair (<level, InternalKey>) in `EncodeTo` so that they can be reconstructed when reopening. An empty cursor will not be encoded to MANIFEST Pull Request resolved: https://github.com/facebook/rocksdb/pull/10107 Test Plan: add unit test (`CompactionPriRoundRobin`) in `compaction_picker_test`, add `kRoundRobin` priority in `CompactionPriTest` from `db_compaction_test`, and add `PersistRoundRobinCompactCursor` in `db_compaction_test` Reviewed By: ajkr Differential Revision: D37316037 Pulled By: littlepig2013 fbshipit-source-id: 9f481748190ace416079139044e00df2968fb1ee |
3 years ago |
Gang Liao | 3dc6ebaf74 |
Support specifying blob garbage collection parameters when CompactRange() (#10073)
Summary: Garbage collection is generally controlled by the BlobDB configuration options `enable_blob_garbage_collection` and `blob_garbage_collection_age_cutoff`. However, there might be use cases where we would want to temporarily override these options while performing a manual compaction. (One use case would be doing a full key-space manual compaction with full=100% garbage collection age cutoff in order to minimize the space occupied by the database.) Our goal here is to make it possible to override the configured GC parameters when using the `CompactRange` API to perform manual compactions. This PR would involve: - Extending the `CompactRangeOptions` structure so clients can both force-enable and force-disable GC, as well as use a different cutoff than what's currently configured - Storing whether blob GC should actually be enabled during a certain manual compaction and the cutoff to use in the `Compaction` object (considering the above overrides) and passing it to `CompactionIterator` via `CompactionProxy` - Updating the BlobDB wiki to document the new options. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10073 Test Plan: Adding unit tests and adding the new options to the stress test tool. Reviewed By: ltamasi Differential Revision: D36848700 Pulled By: gangliao fbshipit-source-id: c878ef101d1c612429999f513453c319f75d78e9 |
3 years ago |
sdong | 736a7b5433 |
Remove own ToString() (#9955)
Summary: ToString() is created as some platform doesn't support std::to_string(). However, we've already used std::to_string() by mistake for 16 months (in db/db_info_dumper.cc). This commit just remove ToString(). Pull Request resolved: https://github.com/facebook/rocksdb/pull/9955 Test Plan: Watch CI tests Reviewed By: riversand963 Differential Revision: D36176799 fbshipit-source-id: bdb6dcd0e3a3ab96a1ac810f5d0188f684064471 |
3 years ago |
sdong | 49628c9a83 |
Use std::numeric_limits<> (#9954)
Summary: Right now we still don't fully use std::numeric_limits but use a macro, mainly for supporting VS 2013. Right now we only support VS 2017 and up so it is not a problem. The code comment claims that MinGW still needs it. We don't have a CI running MinGW so it's hard to validate. since we now require C++17, it's hard to imagine MinGW would still build RocksDB but doesn't support std::numeric_limits<>. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9954 Test Plan: See CI Runs. Reviewed By: riversand963 Differential Revision: D36173954 fbshipit-source-id: a35a73af17cdcae20e258cdef57fcf29a50b49e0 |
3 years ago |
Peter Dillinger | 1bac873fcf |
Mark GetLiveFilesStorageInfo ready for production use (#9868)
Summary: ... by filling out remaining testing hole: handling of db_pathsi+cf_paths. (Note that while GetLiveFilesStorageInfo works with db_paths / cf_paths, Checkpoint and BackupEngine do not and are marked appropriately.) Also improved comments for "live files" APIs, and grouped them together in db.h. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9868 Test Plan: Adding to existing unit tests Reviewed By: jay-zhuang Differential Revision: D35752254 Pulled By: pdillinger fbshipit-source-id: c70eb67748fad61826e2f554b674638700abefb2 |
3 years ago |
Levi Tamasi | db536ee045 |
Propagate errors from UpdateBoundaries (#9851)
Summary: In `FileMetaData`, we keep track of the lowest-numbered blob file referenced by the SST file in question for the purposes of BlobDB's garbage collection in the `oldest_blob_file_number` field, which is updated in `UpdateBoundaries`. However, with the current code, `BlobIndex` decoding errors (or invalid blob file numbers) are swallowed in this method. The patch changes this by propagating these errors and failing the corresponding flush/compaction. (Note that since blob references are generated by the BlobDB code and also parsed by `CompactionIterator`, in reality this can only happen in the case of memory corruption.) This change necessitated updating some unit tests that involved fake/corrupt `BlobIndex` objects. Some of these just used a dummy string like `"blob_index"` as a placeholder; these were replaced with real `BlobIndex`es. Some were relying on the earlier behavior to simulate corruption; these were replaced with `SyncPoint`-based test code that corrupts a valid blob reference at read time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9851 Test Plan: `make check` Reviewed By: riversand963 Differential Revision: D35683671 Pulled By: ltamasi fbshipit-source-id: f7387af9945c48e4d5c4cd864f1ba425c7ad51f6 |
3 years ago |
sdong | e03f8a0c12 |
L0 Subcompaction to trim input files (#9802)
Summary: When sub compaction is decided for L0->L1 compaction, most of the cases, all L0 files will be involved in all sub compactions. However, it is not always the case. When files are generally (but not strictly) inserted in sequential order, there can be a subset of L0 files invovled. Yet RocksDB always open all those L0 files, and build an iterator, read many of the files' first of last block with expensive readahead. We trim some input files to reduce overhead a little bit. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9802 Test Plan: Add a unit test to cover this case and manually validate the behavior while running the test. Reviewed By: ajkr Differential Revision: D35371031 fbshipit-source-id: 701ed7375b5cbe41672e93b38fe8a1503dad08b6 |
3 years ago |
Jay Zhuang | 2c8100e60e |
Fix a race condition when disable and enable manual compaction (#9694)
Summary: In https://github.com/facebook/rocksdb/issues/9659, when `DisableManualCompaction()` is issued, the foreground manual compaction thread does not have to wait background compaction thread to finish. Which could be a problem that the user re-enable manual compaction with `EnableManualCompaction()`, it may re-enable the BG compaction which supposed be cancelled. This patch makes the FG compaction wait on `manual_compaction_state.done`, which either be set by BG compaction or Unschedule callback. Then when FG manual compaction thread returns, it should not have BG compaction running. So shared_ptr is no longer needed for `manual_compaction_state`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9694 Test Plan: a StressTest and unittest Reviewed By: ajkr Differential Revision: D34885472 Pulled By: jay-zhuang fbshipit-source-id: e6476175b43e8c59cd49f5c09241036a0716c274 |
3 years ago |
Jay Zhuang | 4dff279b19 |
DisableManualCompaction may fail to cancel an unscheduled task (#9659)
Summary: https://github.com/facebook/rocksdb/issues/9625 didn't change the unschedule condition which was waiting for the background thread to clean-up the compaction. make sure we only unschedule the task when it's scheduled. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9659 Reviewed By: ajkr Differential Revision: D34651820 Pulled By: jay-zhuang fbshipit-source-id: 23f42081b15ec8886cd81cbf131b116e0c74dc2f |
3 years ago |
Jay Zhuang | db8647969d |
Unschedule manual compaction from thread-pool queue (#9625)
Summary: PR https://github.com/facebook/rocksdb/issues/9557 introduced a race condition between manual compaction foreground thread and background compaction thread. This PR adds the ability to really unschedule manual compaction from thread-pool queue by differentiate tag name for manual compaction and other tasks. Also fix an issue that db `close()` didn't cancel the manual compaction thread. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9625 Test Plan: unittest not hang Reviewed By: ajkr Differential Revision: D34410811 Pulled By: jay-zhuang fbshipit-source-id: cb14065eabb8cf1345fa042b5652d4f788c0c40c |
3 years ago |
Jay Zhuang | f092f0fa5d |
Add subcompaction event API (#9311)
Summary: Add event callback for subcompaction and adds a sub_job_id to identify it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9311 Reviewed By: ajkr Differential Revision: D33892707 Pulled By: jay-zhuang fbshipit-source-id: 57b5e5e594d61b2112d480c18a79a36751f65a4e |
3 years ago |
Jay Zhuang | a0c569ee1d |
Cancel manual compaction in thread-pool queue (#9557)
Summary: Fix `DisableManualCompaction()` has to wait scheduled manual compaction to start the execution to cancel the job. When a manual compaction in thread-pool queue is cancel, set the job is_canceled to true and clean the resource. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9557 Test Plan: added unittest that will hang without the change Reviewed By: ajkr Differential Revision: D34214910 Pulled By: jay-zhuang fbshipit-source-id: 89dbaee78ddf26eb13ce862c2b15f4a098b36a78 |
3 years ago |
Levi Tamasi | 320d9a8e8a |
Use a sorted vector instead of a map to store blob file metadata (#9526)
Summary: The patch replaces `std::map` with a sorted `std::vector` for `VersionStorageInfo::blob_files_` and preallocates the space for the `vector` before saving the `BlobFileMetaData` into the new `VersionStorageInfo` in `VersionBuilder::Rep::SaveBlobFilesTo`. These changes reduce the time the DB mutex is held while saving new `Version`s, and using a sorted `vector` also makes lookups faster thanks to better memory locality. In addition, the patch introduces helper methods `VersionStorageInfo::GetBlobFileMetaData` and `VersionStorageInfo::GetBlobFileMetaDataLB` that can be used by clients to perform lookups in the `vector`, and does some general cleanup in the parts of code where blob file metadata are used. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9526 Test Plan: Ran `make check` and the crash test script for a while. Performance was tested using a load-optimized benchmark (`fillseq` with vector memtable, no WAL) and small file sizes so that a significant number of files are produced: ``` numactl --interleave=all ./db_bench --benchmarks=fillseq --allow_concurrent_memtable_write=false --level0_file_num_compaction_trigger=4 --level0_slowdown_writes_trigger=20 --level0_stop_writes_trigger=30 --max_background_jobs=8 --max_write_buffer_number=8 --db=/data/ltamasi-dbbench --wal_dir=/data/ltamasi-dbbench --num=800000000 --num_levels=8 --key_size=20 --value_size=400 --block_size=8192 --cache_size=51539607552 --cache_numshardbits=6 --compression_max_dict_bytes=0 --compression_ratio=0.5 --compression_type=lz4 --bytes_per_sync=8388608 --cache_index_and_filter_blocks=1 --cache_high_pri_pool_ratio=0.5 --benchmark_write_rate_limit=0 --write_buffer_size=16777216 --target_file_size_base=16777216 --max_bytes_for_level_base=67108864 --verify_checksum=1 --delete_obsolete_files_period_micros=62914560 --max_bytes_for_level_multiplier=8 --statistics=0 --stats_per_interval=1 --stats_interval_seconds=20 --histogram=1 --memtablerep=skip_list --bloom_bits=10 --open_files=-1 --subcompactions=1 --compaction_style=0 --min_level_to_compress=3 --level_compaction_dynamic_level_bytes=true --pin_l0_filter_and_index_blocks_in_cache=1 --soft_pending_compaction_bytes_limit=167503724544 --hard_pending_compaction_bytes_limit=335007449088 --min_level_to_compress=0 --use_existing_db=0 --sync=0 --threads=1 --memtablerep=vector --allow_concurrent_memtable_write=false --disable_wal=1 --enable_blob_files=1 --blob_file_size=16777216 --min_blob_size=0 --blob_compression_type=lz4 --enable_blob_garbage_collection=1 --seed=<some value> ``` Final statistics before the patch: ``` Cumulative writes: 0 writes, 700M keys, 0 commit groups, 0.0 writes per commit group, ingest: 284.62 GB, 121.27 MB/s Interval writes: 0 writes, 334K keys, 0 commit groups, 0.0 writes per commit group, ingest: 139.28 MB, 72.46 MB/s ``` With the patch: ``` Cumulative writes: 0 writes, 760M keys, 0 commit groups, 0.0 writes per commit group, ingest: 308.66 GB, 131.52 MB/s Interval writes: 0 writes, 445K keys, 0 commit groups, 0.0 writes per commit group, ingest: 185.35 MB, 93.15 MB/s ``` Total time to complete the benchmark is 2611 seconds with the patch, down from 2986 secs. Reviewed By: riversand963 Differential Revision: D34082728 Pulled By: ltamasi fbshipit-source-id: fc598abf676dce436734d06bb9d2d99a26a004fc |
3 years ago |
Akanksha Mahajan | 9745c68eb1 |
Remove deprecated option new_table_reader_for_compaction_inputs (#9443)
Summary: In RocksDB option new_table_reader_for_compaction_inputs has not effect on Compaction or on the behavior of RocksDB library. Therefore, we are removing it in the upcoming 7.0 release. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9443 Test Plan: CircleCI Reviewed By: ajkr Differential Revision: D33788508 Pulled By: akankshamahajan15 fbshipit-source-id: 324ca6f12bfd019e9bd5e1b0cdac39be5c3cec7d |
3 years ago |
Yanqin Jin | d10c5c08d3 |
Remove iter_start_seqnum and preserve_deletes (#9430)
Summary: According to https://github.com/facebook/rocksdb/blob/6.27.fb/db/db_impl/db_impl.cc#L2896:L2911 and https://github.com/facebook/rocksdb/blob/6.27.fb/db/db_impl/db_impl_open.cc#L203:L208, we are going to remove `iter_start_seqnum` and `preserve_deletes` starting from RocksDB 7.0 Pull Request resolved: https://github.com/facebook/rocksdb/pull/9430 Test Plan: make check and CI Reviewed By: ajkr Differential Revision: D33753639 Pulled By: riversand963 fbshipit-source-id: c80aab8e8d8fc33e52472fed524ed703d0ffc8b6 |
3 years ago |
Yanqin Jin | bd513fd075 |
Add commit marker with timestamp (#9266)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9266 This diff adds a new tag `CommitWithTimestamp`. Currently, there is no API to trigger writing this tag to WAL, thus it is unavailable to users. This is an ongoing effort to add user-defined timestamp support to write-committed transactions. This diff also indicates all column families that may potentially participate in the same transaction must either disable timestamp or have the same timestamp format, since `CommitWithTimestamp` tag is followed by a single byte-array denoting the commit timestamp of the transaction. We will enforce this checking in a future diff. We keep this diff small. Reviewed By: ltamasi Differential Revision: D31721350 fbshipit-source-id: e1450811443647feb6ca01adec4c8aaae270ffc6 |
3 years ago |
Andrew Kryczka | 8cf4294e25 |
Adhere to per-DB concurrency limit when bottom-pri compactions exist (#9179)
Summary: - Fixed bug where bottom-pri manual compactions were counting towards `bg_compaction_scheduled_` instead of `bg_bottom_compaction_scheduled_`. It seems to have no negative effect. - Fixed bug where automatic compaction scheduling did not consider `bg_bottom_compaction_scheduled_`. Now automatic compactions cannot be scheduled that exceed the per-DB compaction concurrency limit (`max_compactions`) when some existing compactions are bottommost. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9179 Test Plan: new unit test for manual/automatic. Also verified the existing automatic/automatic test ("ConcurrentBottomPriLowPriCompactions") hanged until changing it to explicitly enable concurrency. Reviewed By: riversand963 Differential Revision: D32488048 Pulled By: ajkr fbshipit-source-id: 20c4c0693678e81e43f85ed3cc3402fcf26e3310 |
3 years ago |
sdong | a2b9be42b6 |
Try to start TTL earlier with kMinOverlappingRatio is used (#8749)
Summary: Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles. When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed. In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749 Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end. Reviewed By: jay-zhuang Differential Revision: D30735261 fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e |
3 years ago |
Andrew Kryczka | f24c39ab3d |
Prevent corruption with parallel manual compactions and `change_level == true` (#9077)
Summary: The bug can impact the following scenario. There must be two `CompactRange()`s, call them A and B. Compaction A must have `change_level=true`. Compactions A and B must run in parallel, and new data must be added while they run as well. Now, on to the details of the race condition. Compaction A must reach the refitting phase while B's next step is to trivial move new data (i.e., data that has been inserted behind A) down to the same level that A's refit targets (`CompactRangeOptions::target_level`). B must be unregistered (i.e., has not yet called `AddManualCompaction()` for the current `RunManualCompaction()`) while A invokes `DisableManualCompaction()`s to prepare for refitting. In the old code, B could still proceed to register a manual compaction, while A had disabled manual compaction. The next part of the race condition is B picks and schedules a trivial move while A has released the lock in refitting phase in order to persist the LSM state change (i.e., the log phase of `LogAndApply()`). That way, B does not see the refitted data when picking a trivial-move compaction. So it is susceptible to picking one that overlaps. Finally, B executes the picked trivial-move compaction. Trivial-move compactions are special in that they never check whether manual compaction is disabled. So the picked compaction causing overlap ends up being applied, leading to LSM corruption if `force_consistency_checks=false`, or entering read-only mode with `Status::Corruption` if `force_consistency_checks=true` (the default). The fix is just to prevent B from registering itself in `RunManualCompaction()` while manual compactions are disabled, consequently preventing any trivial move or other compaction from being picked/scheduled. Thanks to siying for finding the bug. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9077 Test Plan: The test does not go all the way in exposing the bug because it requires a compaction to be picked/scheduled while logging LSM state change for RefitLevel(). But the fix is to make such a compaction not picked/scheduled in the first place, so any repro of that scenario would end up hanging RefitLevel() logging. So instead I just verified no such compaction is registered in the scenario where `RefitLevel()` disables manual compactions. Reviewed By: siying Differential Revision: D31921908 Pulled By: ajkr fbshipit-source-id: 9bb5d0e847ad428211227f40830c685c209fbecb |
3 years ago |
sdong | c66b4429ff |
Incremental Space Amp Compactions in Universal Style (#8655)
Summary: This commit introduces incremental compaction in univeral style for space amplification. This follows the first improvement mentioned in https://rocksdb.org/blog/2021/04/12/universal-improvements.html . The implemention simply picks up files about size of max_compaction_bytes to compact and execute if the penalty is not too big. More optimizations can be done in the future, e.g. prioritizing between this compaction and other types. But for now, the feature is supposed to be functional and can often reduce frequency of full compactions, although it can introduce penalty. In order to add cut files more efficiently so that more files from upper levels can be included, SST file cutting threshold (for current file + overlapping parent level files) is set to 1.5X of target file size. A 2MB target file size will generate files like this: https://gist.github.com/siying/29d2676fba417404f3c95e6c013c7de8 Number of files indeed increases but it is not out of control. Two set of write benchmarks are run: 1. For ingestion rate limited scenario, we can see full compaction is mostly eliminated: https://gist.github.com/siying/959bc1186066906831cf4c808d6e0a19 . The write amp increased from 7.7 to 9.4, as expected. After applying file cutting, the number is improved to 8.9. In another benchmark, the write amp is even better with the incremental approach: https://gist.github.com/siying/d1c16c286d7c59c4d7bba718ca198163 2. For ingestion rate unlimited scenario, incremental compaction turns out to be too expensive most of the time and is not executed, as expected. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8655 Test Plan: Add unit tests to the functionality. Reviewed By: ajkr Differential Revision: D31787034 fbshipit-source-id: ce813e63b15a61d5a56e97bf8902a1b28e011beb |
3 years ago |
Andrew Kryczka | fcaa7ff638 |
Cancel manual compactions waiting on automatic compactions to drain (#8991)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/8991 Test Plan: the new test hangs forever without this fix and passes with this fix. Reviewed By: hx235 Differential Revision: D31456419 Pulled By: ajkr fbshipit-source-id: a82c0e5560b6e6153089dccd8e46163c61b07bff |
3 years ago |
mrambacher | 6924869867 |
Make SystemClock into a Customizable Class (#8636)
Summary: Made SystemClock into a Customizable class, complete with CreateFromString. Cleaned up some of the existing SystemClock implementations that were redundant (NoSleep was the same as the internal one for MockEnv). Changed MockEnv construction to allow Clock to be passed to the Memory/MockFileSystem. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8636 Reviewed By: zhichao-cao Differential Revision: D30483360 Pulled By: mrambacher fbshipit-source-id: cd0e3a876c39f8c98fe13374c06e8edbd5b9f2a1 |
3 years ago |
mrambacher | beed86473a |
Make MemTableRepFactory into a Customizable class (#8419)
Summary: This PR does the following: -> Makes the MemTableRepFactory into a Customizable class and creatable/configurable via CreateFromString -> Makes the existing implementations compatible with configurations -> Moves the "SpecialRepFactory" test class into testutil, accessible via the ObjectRegistry or a NewSpecial API New tests were added to validate the functionality and all existing tests pass. db_bench and memtablerep_bench were hand-tested to verify the functionality in those tools. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8419 Reviewed By: zhichao-cao Differential Revision: D29558961 Pulled By: mrambacher fbshipit-source-id: 81b7229636e4e649a0c914e73ac7b0f8454c931c |
3 years ago |
sdong | e7c24168d8 |
Move old files to warm tier in FIFO compactions (#8310)
Summary: Some FIFO users want to keep the data for longer, but the old data is rarely accessed. This feature allows users to configure FIFO compaction so that data older than a threshold is moved to a warm storage tier. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8310 Test Plan: Add several unit tests. Reviewed By: ajkr Differential Revision: D28493792 fbshipit-source-id: c14824ea634814dee5278b449ab5c98b6e0b5501 |
3 years ago |
Zaorang Yang | e95c570047 |
Fix the wrong comment of level compaction cf paths test (#8533)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/8533 Reviewed By: ajkr Differential Revision: D29718067 fbshipit-source-id: b4b91c9271362e7a7d47ddbaf28f56fb537cc668 |
3 years ago |
Drewryz | 3b27725245 |
Fix a minor issue with initializing the test path (#8555)
Summary: The PerThreadDBPath has already specified a slash. It does not need to be specified when initializing the test path. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8555 Reviewed By: ajkr Differential Revision: D29758399 Pulled By: jay-zhuang fbshipit-source-id: 6d2b878523e3e8580536e2829cb25489844d9011 |
4 years ago |
Andrew Kryczka | ed8eb436db |
Move slow valgrind tests behind -DROCKSDB_FULL_VALGRIND_RUN (#8475)
Summary: Various tests had disabled valgrind due to it slowing down and timing out (as is the case right now) the CI runs. Where a test was disabled with no comment, I assumed slowness was the cause. For these tests that were slow under valgrind, as well as the ones identified in https://github.com/facebook/rocksdb/issues/8352, this PR moves them behind the compiler flag `-DROCKSDB_FULL_VALGRIND_RUN`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8475 Test Plan: running `make full_valgrind_test`, `make valgrind_test`, `make check`; will verify they appear working correctly Reviewed By: jay-zhuang Differential Revision: D29504843 Pulled By: ajkr fbshipit-source-id: 2aac90749cfbd30d5ce11cb29a07a1b9314eeea7 |
4 years ago |
Jay Zhuang | 54d73d6429 |
Fix DeleteFilesInRange may cause inconsistent compaction error (#8434)
Summary: `DeleteFilesInRange()` marks deleting files to `being_compacted` before deleting, which may cause ongoing compactions report corruption exception or ASSERT for debug build. Adding the missing `ComputeCompactionScore()` when `being_compacted` is set. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8434 Test Plan: Unittest Reviewed By: ajkr Differential Revision: D29276127 Pulled By: jay-zhuang fbshipit-source-id: f5b223e3c1fc6d821e100e3f3442bc70c1d50cf7 |
4 years ago |
Jay Zhuang | d60ae5b1c7 |
Fix flaky ManualCompactionMax test (#8396)
Summary: Recalculate the total size after generate new sst files. New generated files might have different size as the previous time which could cause the test failed. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8396 Test Plan: ``` gtest-parallel ./db_compaction_test --gtest_filter=DBCompactionTest.ManualCompactionMax -r 1000 -w 100 ``` Reviewed By: akankshamahajan15 Differential Revision: D29083299 Pulled By: jay-zhuang fbshipit-source-id: 49d4bd619cefc0f9a1f452f8759ff4c2ba1b6fdb |
4 years ago |
Jay Zhuang | 55853de661 |
Fix clang-analyze: use uninitiated variable (#8325)
Summary: Error: ``` db/db_compaction_test.cc:5211:47: warning: The left operand of '*' is a garbage value uint64_t total = (l1_avg_size + l2_avg_size * 10) * 10; ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8325 Test Plan: `$ make analyze` Reviewed By: pdillinger Differential Revision: D28620916 Pulled By: jay-zhuang fbshipit-source-id: f6d58ab84eefbcc905cda45afb9522b0c6d230f8 |
4 years ago |
Jay Zhuang | 6c86543590 |
Fix manual compaction `max_compaction_bytes` under-calculated issue (#8269)
Summary: Fix a bug that for manual compaction, `max_compaction_bytes` is only limit the SST files from input level, but not overlapped files on output level. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8269 Test Plan: `make check` Reviewed By: ajkr Differential Revision: D28231044 Pulled By: jay-zhuang fbshipit-source-id: 9d7d03004f30cc4b1b9819830141436907554b7c |
4 years ago |
Peter Dillinger | 78a309bf86 |
New Cache API for gathering statistics (#8225)
Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95 |
4 years ago |