Summary:
- Implement Prepare method
- Rewrite performance tests in cuckoo_table_reader_test to write new file only if one doesn't already exist.
- Add performance tests for batch lookup along with prefetching.
Test Plan:
./cuckoo_table_reader_test --enable_perf
Results (We get better results if we used int64 comparator instead of string comparator (TBD in future diffs)):
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.208us (4.8 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.182us (5.5 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.161us (6.2 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.161us (6.2 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.163us (6.1 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.252us (4.0 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.192us (5.2 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.195us (5.1 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.191us (5.2 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.194us (5.1 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.228us (4.4 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.185us (5.4 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.186us (5.4 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.188us (5.3 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.325us (3.1 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.196us (5.1 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.199us (5.0 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.196us (5.1 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.209us (4.8 Mqps) with batch size of 100
Reviewers: sdong, yhchiang, igor, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22167
Summary:
Add a DB Property "rocksdb.estimate-table-readers-mem" to return estimated memory usage by all loaded table readers, other than allocated from block cache.
Refactor the property codes to allow getting property from a version, with DB mutex not acquired.
Test Plan: Add several checks of this new property in existing codes for various cases.
Reviewers: yhchiang, ljin
Reviewed By: ljin
Subscribers: xjin, igor, leveldb
Differential Revision: https://reviews.facebook.net/D20733
Summary:
- Maintain a list of key-value pairs as vectors during Add operation.
- Start building hash table only when Finish() is called.
- This approach takes more time and space but avoids taking file_size, key and value lengths.
- Rewrote cuckoo_table_builder_test
I did not know about IterKey while writing this diff. I shall change places where IterKey could be used instead of std::string tomorrow. Please review rest of the logic.
Test Plan:
cuckoo_table_reader_test --enable_perf
cuckoo_table_builder_test
valgrind_check
asan_check
Reviewers: sdong, igor, yhchiang, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20907
Summary:
- Reads key-value pairs from file and builds an in-memory index of key-to-bucket id map in sorted order of key.
- Assumes bytewise comparator for sorting keys.
- Test changes
Test Plan:
cuckoo_table_reader_test --enable_perf
valgrind_check
asan_check
Reviewers: yhchiang, sdong, ljin
Reviewed By: ljin
Subscribers: leveldb, igor
Differential Revision: https://reviews.facebook.net/D20721
Summary: Made some small changes to fix the broken mac build
Test Plan: make check all in both linux and mac. All tests pass.
Reviewers: sdong, igor, ljin, yhchiang
Reviewed By: ljin, yhchiang
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20895
Summary:
Contains:
- Implementation of TableReader based on Cuckoo Hashing
- Unittests for CuckooTableReader
- Performance test for TableReader
Test Plan:
make cuckoo_table_reader_test
./cuckoo_table_reader_test
make valgrind_check
make asan_check
Reviewers: yhchiang, sdong, igor, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20511