Summary:
**Context:**
Previous PR https://github.com/facebook/rocksdb/pull/9748, https://github.com/facebook/rocksdb/pull/9073, https://github.com/facebook/rocksdb/pull/8428 added separate flag for each charged memory area. Such API design is not scalable as we charge more and more memory areas. Also, we foresee an opportunity to consolidate this feature with other cache usage related features such as `cache_index_and_filter_blocks` using `CacheEntryRole`.
Therefore we decided to consolidate all these flags with `CacheUsageOptions cache_usage_options` and this PR serves as the first step by consolidating memory-charging related flags.
**Summary:**
- Replaced old API reference with new ones, including making `kCompressionDictionaryBuildingBuffer` opt-out and added a unit test for that
- Added missing db bench/stress test for some memory charging features
- Renamed related test suite to indicate they are under the same theme of memory charging
- Refactored a commonly used mocked cache component in memory charging related tests to reduce code duplication
- Replaced the phrases "memory tracking" / "cache reservation" (other than CacheReservationManager-related ones) with "memory charging" for standard description of this feature.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9926
Test Plan:
- New unit test for opt-out `kCompressionDictionaryBuildingBuffer` `TEST_F(ChargeCompressionDictionaryBuildingBufferTest, Basic)`
- New unit test for option validation/sanitization `TEST_F(CacheUsageOptionsOverridesTest, SanitizeAndValidateOptions)`
- CI
- db bench (in case querying new options introduces regression) **+0.5% micros/op**: `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_compression_dictionary_building_buffer=1(remove this for comparison) -compression_max_dict_bytes=10000 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'`
#-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%)
-- | -- | -- | -- | -- | --
10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721
20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | **-0.3633711465**
40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | **0.5289363078**
- db_stress: `python3 tools/db_crashtest.py blackbox -charge_compression_dictionary_building_buffer=1 -charge_filter_construction=1 -charge_table_reader=1 -cache_size=1` killed as normal
Reviewed By: ajkr
Differential Revision: D36054712
Pulled By: hx235
fbshipit-source-id: d406e90f5e0c5ea4dbcb585a484ad9302d4302af
Summary:
EndWriteStall has a data race: `queue_.empty()` is checked outside of the
mutex, so once we enter the critical section another thread may already have
cleared the list, and accessing the `front()` is undefined behavior (and causes
interesting crashes under high concurrency).
This PR fixes the bug, and also rewrites the logic to make it easier to reason
about it. It also fixes another subtle bug: if some writers are stalled and
`SetBufferSize(0)` is called, which disables the WBM, the writer are not
unblocked because of an early `enabled()` check in `EndWriteStall()`.
It doesn't significantly change the locking behavior, as before writers won't
lock unless entering a stall condition, and `FreeMem` almost always locks if
stalling is allowed, but that is inevitable with the current design. Liveness is
guaranteed by the fact that if some writes are blocked, eventually all writes
will be blocked due to `stall_active_`, and eventually all memory is freed.
While at it, do a couple of optimizations:
- In `WBMStallInterface::Signal()` signal the CV only after releasing the
lock. Signaling under the lock is a common pitfall, as it causes the woken-up
thread to immediately go back to sleep because the mutex is still locked by
the awaker.
- Move all allocations and deallocations outside of the lock.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9009
Test Plan:
```
USE_CLANG=1 make -j64 all check
```
Reviewed By: akankshamahajan15
Differential Revision: D31550668
Pulled By: ot
fbshipit-source-id: 5125387c3dc7ecaaa2b8bbc736e58c4156698580
Summary:
Context:
To help cap various memory usage by a single limit of the block cache capacity, we charge the memory usage through inserting/releasing dummy entries in the block cache. CacheReservationManager is such a class (non thread-safe) responsible for inserting/removing dummy entries to reserve cache space for memory used by the class user.
- Refactored the inner private class CacheRep of WriteBufferManager into public CacheReservationManager class for reusability such as for https://github.com/facebook/rocksdb/pull/8428
- Encapsulated implementation details of cache key generation and dummy entries insertion/release in cache reservation as discussed in https://github.com/facebook/rocksdb/pull/8506#discussion_r666550838
- Consolidated increase/decrease cache reservation into one API - UpdateCacheReservation.
- Adjusted the previous dummy entry release algorithm in decreasing cache reservation to be loop-releasing dummy entries to stay symmetric to dummy entry insertion algorithm
- Made the previous dummy entry release algorithm in delayed decrease mode more aggressive for better decreasing cache reservation when memory used is less likely to increase back.
Previously, the algorithms only release 1 dummy entries when new_mem_used < 3/4 * cache_allocated_size_ and cache_allocated_size_ - kSizeDummyEntry > new_mem_used.
Now, the algorithms loop-releases as many dummy entries as possible when new_mem_used < 3/4 * cache_allocated_size_.
- Updated WriteBufferManager's test cases to adapt to changes on the release algorithm mentioned above and left comment for some test cases for clarity
- Replaced the previous cache key prefix generation (utilizing object address related to the cache client) with one that utilizes Cache->NewID() to prevent cache-key collision among dummy entry clients sharing the same cache.
The specific collision we are preventing happens when the object address is reused for a new cache-key prefix while the old cache-key using that same object address in its prefix still exists in the cache. This could happen due to that, under LRU cache policy, there is a possible delay in releasing a cache entry after the cache client object owning that cache entry get deallocated. In this case, the object address related to the cache client object can get reused for other client object to generate a new cache-key prefix.
This prefix generation can be made obsolete after Peter's unification of all the code generating cache key, mentioned in https://github.com/facebook/rocksdb/pull/8506#discussion_r667265255
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8506
Test Plan:
- Passing the added unit tests cache_reservation_manager_test.cc
- Passing existing and adjusted write_buffer_manager_test.cc
Reviewed By: ajkr
Differential Revision: D29644135
Pulled By: hx235
fbshipit-source-id: 0fc93fbfe4a40bb41be85c314f8f2bafa8b741f7
Summary:
This change gathers and publishes statistics about the
kinds of items in block cache. This is especially important for
profiling relative usage of cache by index vs. filter vs. data blocks.
It works by iterating over the cache during periodic stats dump
(InternalStats, stats_dump_period_sec) or on demand when
DB::Get(Map)Property(kBlockCacheEntryStats), except that for
efficiency and sharing among column families, saved data from
the last scan is used when the data is not considered too old.
The new information can be seen in info LOG, for example:
Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0
Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%)
And also through DB::GetProperty and GetMapProperty (here using
ldb just for demonstration):
$ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats
rocksdb.block-cache-entry-stats.bytes.data-block: 0
rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0
rocksdb.block-cache-entry-stats.bytes.index-block: 178992
rocksdb.block-cache-entry-stats.bytes.misc: 0
rocksdb.block-cache-entry-stats.bytes.other-block: 0
rocksdb.block-cache-entry-stats.bytes.write-buffer: 0
rocksdb.block-cache-entry-stats.capacity: 8388608
rocksdb.block-cache-entry-stats.count.data-block: 0
rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-meta-block: 0
rocksdb.block-cache-entry-stats.count.index-block: 215
rocksdb.block-cache-entry-stats.count.misc: 1
rocksdb.block-cache-entry-stats.count.other-block: 0
rocksdb.block-cache-entry-stats.count.write-buffer: 0
rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290
rocksdb.block-cache-entry-stats.percent.data-block: 0.000000
rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000
rocksdb.block-cache-entry-stats.percent.index-block: 2.133751
rocksdb.block-cache-entry-stats.percent.misc: 0.000000
rocksdb.block-cache-entry-stats.percent.other-block: 0.000000
rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000
rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052
rocksdb.block-cache-entry-stats.secs_since_last_collection: 0
Solution detail - We need some way to flag what kind of blocks each
entry belongs to, preferably without changing the Cache API.
One of the complications is that Cache is a general interface that could
have other users that don't adhere to whichever convention we decide
on for keys and values. Or we would pay for an extra field in the Handle
that would only be used for this purpose.
This change uses a back-door approach, the deleter, to indicate the
"role" of a Cache entry (in addition to the value type, implicitly).
This has the added benefit of ensuring proper code origin whenever we
recognize a particular role for a cache entry; if the entry came from
some other part of the code, it will use an unrecognized deleter, which
we simply attribute to the "Misc" role.
An internal API makes for simple instantiation and automatic
registration of Cache deleters for a given value type and "role".
Another internal API, CacheEntryStatsCollector, solves the problem of
caching the results of a scan and sharing them, to ensure scans are
neither excessive nor redundant so as not to harm Cache performance.
Because code is added to BlocklikeTraits, it is pulled out of
block_based_table_reader.cc into its own file.
This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option
(could still be added), and with actual stat gathering.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297
Test Plan: manual testing with db_bench, and a couple of basic unit tests
Reviewed By: ltamasi
Differential Revision: D28488721
Pulled By: pdillinger
fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
Summary:
When WriteBufferManager is shared across DBs and column families
to maintain memory usage under a limit, OOMs have been observed when flush cannot
finish but writes continuously insert to memtables.
In order to avoid OOMs, when memory usage goes beyond buffer_limit_ and DBs tries to write,
this change will stall incoming writers until flush is completed and memory_usage
drops.
Design: Stall condition: When total memory usage exceeds WriteBufferManager::buffer_size_
(memory_usage() >= buffer_size_) WriterBufferManager::ShouldStall() returns true.
DBImpl first block incoming/future writers by calling write_thread_.BeginWriteStall()
(which adds dummy stall object to the writer's queue).
Then DB is blocked on a state State::Blocked (current write doesn't go
through). WBStallInterface object maintained by every DB instance is added to the queue of
WriteBufferManager.
If multiple DBs tries to write during this stall, they will also be
blocked when check WriteBufferManager::ShouldStall() returns true.
End Stall condition: When flush is finished and memory usage goes down, stall will end only if memory
waiting to be flushed is less than buffer_size/2. This lower limit will give time for flush
to complete and avoid continous stalling if memory usage remains close to buffer_size.
WriterBufferManager::EndWriteStall() is called,
which removes all instances from its queue and signal them to continue.
Their state is changed to State::Running and they are unblocked. DBImpl
then signal all incoming writers of that DB to continue by calling
write_thread_.EndWriteStall() (which removes dummy stall object from the
queue).
DB instance creates WBMStallInterface which is an interface to block and
signal DBs during stall.
When DB needs to be blocked or signalled by WriteBufferManager,
state_for_wbm_ state is changed accordingly (RUNNING or BLOCKED).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7898
Test Plan: Added a new test db/db_write_buffer_manager_test.cc
Reviewed By: anand1976
Differential Revision: D26093227
Pulled By: akankshamahajan15
fbshipit-source-id: 2bbd982a3fb7033f6de6153aa92a221249861aae
Summary:
Add new API WriteBufferManager::dummy_entries_in_cache_usage() which reports the dummy entries size stored in cache to account for DataBlocks in WriteBufferManager.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7837
Test Plan: Updated test ./write_buffer_manager_test
Reviewed By: ajkr
Differential Revision: D25794312
Pulled By: akankshamahajan15
fbshipit-source-id: 197f5e8701e3dc57a7df72dab1735624f90daf4b
Summary:
Make LoadLatestOptions return PathNotFound if the options file does not exist. Added tests for the LoadOptions related methods.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7554
Reviewed By: akankshamahajan15
Differential Revision: D24298985
Pulled By: zhichao-cao
fbshipit-source-id: c9ae3cb12fc4a5bbef07743e1c1300f98a2441b3
Summary:
https://github.com/facebook/rocksdb/issues/6247 reports that when write buffer manager fails to insert the dummy entry to block cache, null pointer is still stored and used to release the handle and cause corruption. Fix the bug by not releasing it with null handle.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6619
Test Plan: Add a unit test that fails without the fix.
Reviewed By: ajkr
Differential Revision: D20776769
fbshipit-source-id: 4127fbd9f295a0a3e45774746ffcd91f939f6287
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
Dummy cache size of 1MB is too large for small block sizes. Our GetDefaultCacheShardBits() use min_shard_size = 512L * 1024L to determine number of shards, so 1MB will excceeds the size of the whole shard and make the cache excceeds the budget.
Change it to 256KB accordingly.
There shouldn't be obvious performance impact, since inserting a cache entry every 256KB of memtable inserts is still infrequently enough.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5175
Differential Revision: D14954289
Pulled By: siying
fbshipit-source-id: 2c275255c1ac3992174e06529e44c55538325c94
Summary:
Couple of very minor improvements (typos in comments, full qualification of class name, reordering members of a struct to make it smaller)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4564
Differential Revision: D10510183
Pulled By: maysamyabandeh
fbshipit-source-id: c7ddf9bfbf2db08cd31896c3fd93789d3fa68c8b
Summary:
This PR comments out the rest of the unused arguments which allow us to turn on the -Wunused-parameter flag. This is the second part of a codemod relating to https://github.com/facebook/rocksdb/pull/3557.
Closes https://github.com/facebook/rocksdb/pull/3662
Differential Revision: D7426121
Pulled By: Dayvedde
fbshipit-source-id: 223994923b42bd4953eb016a0129e47560f7e352
Summary:
Even if hard limit hits, flushing more memtable may not help cap the memory usage if already more than half data is scheduled for flush. Not triggering flush instead.
Closes https://github.com/facebook/rocksdb/pull/2469
Differential Revision: D5284249
Pulled By: siying
fbshipit-source-id: 8ab7ba1aba56a634dbe72b318fcab2093063972e
Summary:
Improve write buffer manager in several ways:
1. Size is tracked when arena block is allocated, rather than every allocation, so that it can better track actual memory usage and the tracking overhead is slightly lower.
2. We start to trigger memtable flush when 7/8 of the memory cap hits, instead of 100%, and make 100% much harder to hit.
3. Allow a cache object to be passed into buffer manager and the size allocated by memtable can be costed there. This can help users have one single memory cap across block cache and memtable.
Closes https://github.com/facebook/rocksdb/pull/2350
Differential Revision: D5110648
Pulled By: siying
fbshipit-source-id: b4238113094bf22574001e446b5d88523ba00017