Summary:
... to improve data integrity validation during compaction.
A new option `compaction_verify_record_count` is introduced for this verification and is enabled by default. One exception when the verification is not done is when a compaction filter returns kRemoveAndSkipUntil which can cause CompactionIterator to seek until some key and hence not able to keep track of the number of keys processed.
For expected number of input keys, we sum over the number of total keys - number of range tombstones across compaction input files (`CompactionJob::UpdateCompactionStats()`). Table properties are consulted if `FileMetaData` is not initialized for some input file. Since table properties for all input files were also constructed during `DBImpl::NotifyOnCompactionBegin()`, `Compaction::GetTableProperties()` is introduced to reduce duplicated code.
For actual number of keys processed, each subcompaction will record its number of keys processed to `sub_compact->compaction_job_stats.num_input_records` and aggregated when all subcompactions finish (`CompactionJob::AggregateCompactionStats()`). In the case when some subcompaction encountered kRemoveAndSkipUntil from compaction filter and does not have accurate count, it propagates this information through `sub_compact->compaction_job_stats.has_num_input_records`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11571
Test Plan:
* Add a new unit test `DBCompactionTest.VerifyRecordCount` for the corruption case.
* All other unit tests for non-corrupted case.
* Ran crash test for a few hours: `python3 ./tools/db_crashtest.py whitebox --simple`
Reviewed By: ajkr
Differential Revision: D47131965
Pulled By: cbi42
fbshipit-source-id: cc8e94565dd526c4347e9d3843ecf32f6727af92
Summary:
A second attempt after https://github.com/facebook/rocksdb/issues/10802, with bug fixes and refactoring. This PR updates compaction logic to take range tombstones into account when determining whether to cut the current compaction output file (https://github.com/facebook/rocksdb/issues/4811). Before this change, only point keys were considered, and range tombstones could cause large compactions. For example, if the current compaction outputs is a range tombstone [a, b) and 2 point keys y, z, they would be added to the same file, and may overlap with too many files in the next level and cause a large compaction in the future. This PR also includes ajkr's effort to simplify the logic to add range tombstones to compaction output files in `AddRangeDels()` ([https://github.com/facebook/rocksdb/issues/11078](https://github.com/facebook/rocksdb/pull/11078#issuecomment-1386078861)).
The main change is for `CompactionIterator` to emit range tombstone start keys to be processed by `CompactionOutputs`. A new class `CompactionMergingIterator` is introduced to replace `MergingIterator` under `CompactionIterator` to enable emitting of range tombstone start keys. Further improvement after this PR include cutting compaction output at some grandparent boundary key (instead of the next output key) when cutting within a range tombstone to reduce overlap with grandparents.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11113
Test Plan:
* added unit test in db_range_del_test
* crash test with a small key range: `python3 tools/db_crashtest.py blackbox --simple --max_key=100 --interval=600 --write_buffer_size=262144 --target_file_size_base=256 --max_bytes_for_level_base=262144 --block_size=128 --value_size_mult=33 --subcompactions=10 --use_multiget=1 --delpercent=3 --delrangepercent=2 --verify_iterator_with_expected_state_one_in=2 --num_iterations=10`
Reviewed By: ajkr
Differential Revision: D42655709
Pulled By: cbi42
fbshipit-source-id: 8367e36ef5640e8f21c14a3855d4a8d6e360a34c
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run 36a5686ec0 (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
Summary:
Add option `preserve_internal_time_seconds` to preserve the internal
time information.
It's mostly for the migration of the existing data to tiered storage (
`preclude_last_level_data_seconds`). When the tiering feature is just
enabled, the existing data won't have the time information to decide if
it's hot or cold. Enabling this feature will start collect and preserve
the time information for the new data.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10747
Reviewed By: siying
Differential Revision: D39910141
Pulled By: siying
fbshipit-source-id: 25c21638e37b1a7c44006f636b7d714fe7242138
Summary:
Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows:
* Constraint 1: We can only pick consecutive files
- Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files
- Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys)
* Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes`
* Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)`
* Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3
More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`.
The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps:
* Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()`
* Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()`
* Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions)
More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341
Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc`
Reviewed By: ajkr, hx235
Differential Revision: D37792644
Pulled By: littlepig2013
fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
Summary:
Unit tests still haven't been fixed. Also need to add more tests. But I ran some simple fillrandom db_bench and the partitioning feels reasonable.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10393
Test Plan:
1. Make sure existing tests pass. This should cover some basic sub compaction logic to be correct and the partitioning result is reasonable;
2. Add a new unit test to ApproximateKeyAnchors()
3. Run some db_bench with max_subcompaction = 4 and watch the compaction is indeed partitioned evenly.
Reviewed By: jay-zhuang
Differential Revision: D38043783
fbshipit-source-id: 085008e0f85f9b7c5abff7800307618320efb19f
Summary:
Using the Sequence number to time mapping to decide if a key is hot or not in
compaction and place it in the corresponding level.
Note: the feature is not complete, level compaction will run indefinitely until
all penultimate level data is cold and small enough to not trigger compaction.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10370
Test Plan:
CI
* Run basic db_bench for universal compaction manually
Reviewed By: siying
Differential Revision: D37892338
Pulled By: jay-zhuang
fbshipit-source-id: 792bbd91b1ccc2f62b5d14c53118434bcaac4bbe
Summary:
Which will be used for tiered storage to preclude hot data from
compacting to the cold tier (the last level).
Internally, adding seqno to time mapping. A periodic_task is scheduled
to record the current_seqno -> current_time in certain cadence. When
memtable flush, the mapping informaiton is stored in sstable property.
During compaction, the mapping information are merged and get the
approximate time of sequence number, which is used to determine if a key
is recently inserted or not and preclude it from the last level if it's
recently inserted (within the `preclude_last_level_data_seconds`).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10338
Test Plan: CI
Reviewed By: siying
Differential Revision: D37810187
Pulled By: jay-zhuang
fbshipit-source-id: 6953be7a18a99de8b1cb3b162d712f79c2b4899f
Summary:
Support per_key_placement for last level compaction, which will
be used for tiered compaction.
* compaction iterator reports which level a key should output to;
* compaction get the output level information and check if it's safe to
output the data to penultimate level;
* all compaction output files will be installed.
* extra internal compaction stats added for penultimate level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9964
Test Plan:
* Unittest
* db_bench, no significate difference: https://gist.github.com/jay-zhuang/3645f8fb97ec0ab47c10704bb39fd6e4
* microbench manual compaction no significate difference: https://gist.github.com/jay-zhuang/ba679b3e89e24992615ee9eef310e6dd
* run the db_stress multiple times (not covering the new feature) looks good (internal: https://fburl.com/sandcastle/9w84pp2m)
Reviewed By: ajkr
Differential Revision: D36249494
Pulled By: jay-zhuang
fbshipit-source-id: a96da57c8031c1df83e4a7a8567b657a112b80a3
Summary:
As pointed out by [https://github.com/facebook/rocksdb/pull/8351#discussion_r645765422](https://github.com/facebook/rocksdb/pull/8351#discussion_r645765422), check `manual_compaction_paused` and `manual_compaction_canceled` can be reduced by setting `*canceled` to be true in `DisableManualCompaction()` and `*canceled` to be false in the last time calling `EnableManualCompaction()`.
Changed Tests: The origin `DBTest2.PausingManualCompaction1` uses a callback function to increase `manual_compaction_paused` and the origin CompactionJob/CompactionIterator with `manual_compaction_paused` can detect this. I changed the callback function so that it sets `*canceled` as true if `canceled` is not `nullptr` (to notify CompactionJob/CompactionIterator the compaction has been canceled).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10070
Test Plan: This change does not introduce new features, but some slight difference in compaction implementation. Run the same manual compaction unit tests as before (e.g., PausingManualCompaction[1-4], CancelManualCompaction[1-2], CancelManualCompactionWithListener in db_test2, and db_compaction_test).
Reviewed By: ajkr
Differential Revision: D36949133
Pulled By: littlepig2013
fbshipit-source-id: c5dc4c956fbf8f624003a0f5ad2690240063a821
Summary:
Start tracking SST unique id in MANIFEST, which is used to verify with
SST properties to make sure the SST file is not overwritten or
misplaced. A DB option `try_verify_sst_unique_id` is introduced to
enable/disable the verification, if enabled, it opens all SST files
during DB-open to read the unique_id from table properties (default is
false), so it's recommended to use it with `max_open_files = -1` to
pre-open the files.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9990
Test Plan: unittests, format-compatible test, mini-crash
Reviewed By: anand1976
Differential Revision: D36381863
Pulled By: jay-zhuang
fbshipit-source-id: 89ea2eb6b35ed3e80ead9c724eb096083eaba63f
Summary:
### Context:
Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users.
From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one.
- The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically.
- For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system.
### Solution
During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular.
**This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows:
| State | Normal | Delayed | Stalled |
| ----- | ------ | ------- | ------- |
| Flush | IO_HIGH | IO_USER | IO_USER |
| Compaction | IO_LOW | IO_USER | IO_USER |
Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988
Test Plan: Add unit tests.
Reviewed By: anand1976
Differential Revision: D36395159
Pulled By: gitbw95
fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
Summary:
**This PR does not affect the functionality of `DB` and write-committed transactions.**
`CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed.
As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if
it is committed. In fact, the implementation of `KeyCommitted()` is as follows:
```
inline bool KeyCommitted(SequenceNumber seq) {
// For non-txn-db and write-committed, snapshot_checker_ is always nullptr.
return snapshot_checker_ == nullptr ||
snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot;
}
```
With that being said, we focus on write-prepared/write-unprepared transactions.
A few notes:
- A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database.
- `CompactionIterator` outputs a key as long as the key is uncommitted.
Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without
doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes
committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`.
Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone.
To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that
for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting
processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot
to determine whether a key is committed or not with minor change to `KeyCommitted()`.
```
inline bool KeyCommitted(SequenceNumber sequence) {
// For non-txn-db and write-committed, snapshot_checker_ is always nullptr.
return snapshot_checker_ == nullptr ||
snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) ==
SnapshotCheckerResult::kInSnapshot;
}
```
As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble
for `CompactionIterator`s assertions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D35561162
Pulled By: riversand963
fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
Summary:
Add the ability to cancel remote compaction on the remote side by
setting `OpenAndCompactOptions.canceled` to true.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9725
Test Plan: added unittest
Reviewed By: ajkr
Differential Revision: D35018800
Pulled By: jay-zhuang
fbshipit-source-id: be3652f9645e0347df429e42a5614d5a9b3a1ec4
Summary:
Options `preserve_deletes` and `iter_start_seqnum` have been removed since 7.0.
This PR removes dead code related to these two removed options.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9825
Test Plan: make check
Reviewed By: akankshamahajan15
Differential Revision: D35517950
Pulled By: riversand963
fbshipit-source-id: 86282ce5ec4087acb94a06a42a1b6d55b1715482
Summary:
As disscussed in (https://github.com/facebook/rocksdb/issues/9223), Here added a new API named DB::OpenAndTrimHistory, this API will open DB and trim data to the timestamp specofied by **trim_ts** (The data with newer timestamp than specified trim bound will be removed). This API should only be used at a timestamp-enabled db instance recovery.
And this PR implemented a new iterator named HistoryTrimmingIterator to support trimming history with a new API named DB::OpenAndTrimHistory. HistoryTrimmingIterator wrapped around the underlying InternalITerator such that keys whose timestamps newer than **trim_ts** should not be returned to the compaction iterator while **trim_ts** is not null.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9410
Reviewed By: ltamasi
Differential Revision: D34410207
Pulled By: riversand963
fbshipit-source-id: e54049dc234eccd673244c566b15df58df5a6236
Summary:
This header file was including everything and the kitchen sink when it did not need to. This resulted in many places including this header when they needed other pieces instead.
Cleaned up this header to only include what was needed and fixed up the remaining code to include what was now missing.
Hopefully, this sort of code hygiene cleanup will speed up the builds...
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8930
Reviewed By: pdillinger
Differential Revision: D31142788
Pulled By: mrambacher
fbshipit-source-id: 6b45de3f300750c79f751f6227dece9cfd44085d
Summary:
Add support for fallback to local compaction, the user can
return `CompactionServiceJobStatus::kUseLocal` to instruct RocksDB to
run the compaction locally instead of waiting for the remote compaction
result.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8709
Test Plan: unittest
Reviewed By: ajkr
Differential Revision: D30560163
Pulled By: jay-zhuang
fbshipit-source-id: 65d8905a4a1bc185a68daa120997f21d3198dbe1
Summary:
Change the job_id for remote compaction interface, which will include
both internal compaction job_id, also a sub_compaction_job_id. It is not
a backward compatible change. The user needs to update interface during
upgrade. (We will avoid backward incompatible change after the feature is
not experimental.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8364
Reviewed By: ajkr
Differential Revision: D28917301
Pulled By: jay-zhuang
fbshipit-source-id: 6d72a21f652bb517ad6954d0387b496797fc4e11
Summary:
Added the ability to cancel an in-progress range compaction by storing to an atomic "canceled" variable pointed to within the CompactRangeOptions structure.
Tested via two tests added to db_tests2.cc.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8351
Reviewed By: ajkr
Differential Revision: D28808894
Pulled By: ddevec
fbshipit-source-id: cb321361c9e23b084b188bb203f11c375a22c2dd
Summary:
The functions will be used for remote compaction parameter
input and result.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8247
Test Plan: `make check`
Reviewed By: ajkr
Differential Revision: D28104680
Pulled By: jay-zhuang
fbshipit-source-id: c0a5178e6277125118384278efea2acbf90aa6cb
Summary:
Add compaction API for secondary instance, which compact the files to a secondary DB path without installing to the LSM tree.
The API will be used to remote compaction.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8171
Test Plan: `make check`
Reviewed By: ajkr
Differential Revision: D27694545
Pulled By: jay-zhuang
fbshipit-source-id: 8ff3ec1bffdb2e1becee994918850c8902caf731
Summary:
Extend support to track blob files in SST File manager.
This PR notifies SstFileManager whenever a new blob file is created,
via OnAddFile and an obsolete blob file deleted via OnDeleteFile
and delete file via ScheduleFileDeletion.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8037
Test Plan: Add new unit tests
Reviewed By: ltamasi
Differential Revision: D26891237
Pulled By: akankshamahajan15
fbshipit-source-id: 04c69ccfda2a73782fd5c51982dae58dd11979b6
Summary:
For performance purposes, the lower level routines were changed to use a SystemClock* instead of a std::shared_ptr<SystemClock>. The shared ptr has some performance degradation on certain hardware classes.
For most of the system, there is no risk of the pointer being deleted/invalid because the shared_ptr will be stored elsewhere. For example, the ImmutableDBOptions stores the Env which has a std::shared_ptr<SystemClock> in it. The SystemClock* within the ImmutableDBOptions is essentially a "short cut" to gain access to this constant resource.
There were a few classes (PeriodicWorkScheduler?) where the "short cut" property did not hold. In those cases, the shared pointer was preserved.
Using db_bench readrandom perf_level=3 on my EC2 box, this change performed as well or better than 6.17:
6.17: readrandom : 28.046 micros/op 854902 ops/sec; 61.3 MB/s (355999 of 355999 found)
6.18: readrandom : 32.615 micros/op 735306 ops/sec; 52.7 MB/s (290999 of 290999 found)
PR: readrandom : 27.500 micros/op 871909 ops/sec; 62.5 MB/s (367999 of 367999 found)
(Note that the times for 6.18 are prior to revert of the SystemClock).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8033
Reviewed By: pdillinger
Differential Revision: D27014563
Pulled By: mrambacher
fbshipit-source-id: ad0459eba03182e454391b5926bf5cdd45657b67
Summary:
Introduces and uses a SystemClock class to RocksDB. This class contains the time-related functions of an Env and these functions can be redirected from the Env to the SystemClock.
Many of the places that used an Env (Timer, PerfStepTimer, RepeatableThread, RateLimiter, WriteController) for time-related functions have been changed to use SystemClock instead. There are likely more places that can be changed, but this is a start to show what can/should be done. Over time it would be nice to migrate most (if not all) of the uses of the time functions from the Env to the SystemClock.
There are several Env classes that implement these functions. Most of these have not been converted yet to SystemClock implementations; that will come in a subsequent PR. It would be good to unify many of the Mock Timer implementations, so that they behave similarly and be tested similarly (some override Sleep, some use a MockSleep, etc).
Additionally, this change will allow new methods to be introduced to the SystemClock (like https://github.com/facebook/rocksdb/issues/7101 WaitFor) in a consistent manner across a smaller number of classes.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7858
Reviewed By: pdillinger
Differential Revision: D26006406
Pulled By: mrambacher
fbshipit-source-id: ed10a8abbdab7ff2e23d69d85bd25b3e7e899e90
Summary:
https://github.com/facebook/rocksdb/issues/7556 enables `CompactionIterator` to perform garbage collection during compaction according
to a lower bound (user-defined) timestamp `full_history_ts_low_`.
This PR adds a data member `full_history_ts_low_` of type `std::string` to `CompactionJob`, and
`full_history_ts_low_` does not change during compaction. `CompactionJob` will pass a pointer to this
data member to the `CompactionIterator` used during compaction.
Also refactored compaction_job_test.cc to re-use some existing code, which is actually the majority of this PR.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7657
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D24913803
Pulled By: riversand963
fbshipit-source-id: 11ad5329ddac365667152e7b3b02f84182c0ca8e
Summary:
Similarly to how https://github.com/facebook/rocksdb/issues/7345
integrated blob file writing into the flush process,
the patch adds support for writing blob files to the compaction logic.
Namely, if `enable_blob_files` is set, large values encountered during
compaction are extracted to blob files and replaced with blob indexes.
The resulting blob files are then logged to the MANIFEST as part of the
compaction job's `VersionEdit` and added to the `Version` alongside any
table files written by the compaction. Any errors during blob file building fail
the compaction job.
There will be a separate follow-up patch to perform blob garbage collection
during compactions.
In addition, the patch continues to chip away at the mess around computing
various compaction related statistics by eliminating some code duplication
and by making the `num_output_files` and `bytes_written` stats more consistent
for flushes, compactions, and recovery.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7573
Test Plan: `make check`
Reviewed By: riversand963
Differential Revision: D24404696
Pulled By: ltamasi
fbshipit-source-id: 21216af3a172ad3ce8f85d11cd30923784ae426c
Summary:
Replace FSWritableFile pointer with FSWritableFilePtr
object in WritableFileWriter.
This new object wraps FSWritableFile pointer.
Objective: If tracing is enabled, FSWritableFile Ptr returns
FSWritableFileTracingWrapper pointer that includes all necessary
information in IORecord and calls underlying FileSystem and invokes
IOTracer to dump that record in a binary file. If tracing is disabled
then, underlying FileSystem pointer is returned directly.
FSWritableFilePtr wrapper class is added to bypass the
FSWritableFileWrapper when
tracing is disabled.
Test Plan: make check -j64
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7193
Reviewed By: anand1976
Differential Revision: D23355915
Pulled By: akankshamahajan15
fbshipit-source-id: e62a27a13c1fd77e36a6dbafc7006d969bed25cf
Summary:
Manual compaction with `CompactRangeOptions::change_levels` set could
refit to a level targeted by another manual compaction. If
force_consistency_checks were disabled, it could be possible for
overlapping files to be written at that target level.
This PR prevents the possibility by calling `DisableManualCompaction()`
prior to `ReFitLevel()`. It also improves the manual compaction disabling
mechanism to wait for pending manual compactions to complete before
returning, and support disabling from multiple threads.
Fixes https://github.com/facebook/rocksdb/issues/6432.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7250
Test Plan:
crash test command that repro'd the bug reliably:
```
$ TEST_TMPDIR=/dev/shm python tools/db_crashtest.py blackbox --simple -target_file_size_base=524288 -write_buffer_size=1048576 -clear_column_family_one_in=0 -reopen=0 -max_key=10000000 -column_families=1 -max_background_compactions=8 -compact_range_one_in=100000 -compression_type=none -compaction_style=1 -num_levels=5 -universal_min_merge_width=4 -universal_max_merge_width=8 -level0_file_num_compaction_trigger=12 -rate_limiter_bytes_per_sec=1048576000 -universal_max_size_amplification_percent=100 --duration=3600 --interval=60 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --enable_compaction_filter=0
```
Reviewed By: ltamasi
Differential Revision: D23090800
Pulled By: ajkr
fbshipit-source-id: afcbcd51b42ce76789fdb907d8b9ada790709c13
Summary:
As part of the IOTracing project, this PR
1. Caches "FileSystemPtr" object(wrapper class that returns file system pointer based on tracing enabled) instead of "FileSystem" pointer.
2. FileSystemPtr object is created using FileSystem pointer and IOTracer
pointer.
3. IOTracer shared_ptr is created in DBImpl and it is passed to different classes through constructor.
4. When tracing is enabled through DB::StartIOTrace, FileSystemPtr
returns FileSystemTracingWrapper pointer for tracing purpose and when
it is disabled underlying FileSystem pointer is returned.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7180
Test Plan:
make check -j64
COMPILE_WITH_TSAN=1 make check -j64
Reviewed By: anand1976
Differential Revision: D22987117
Pulled By: akankshamahajan15
fbshipit-source-id: 6073617e4c2d5bc363914f3a1f55ae3b0a58fbf1
Summary:
`db_id` and `db_session_id` are now part of the table properties for all formats and stored in SST files. This adds about 99 bytes to each new SST file.
The `TablePropertiesNames` for these two identifiers are `rocksdb.creating.db.identity` and `rocksdb.creating.session.identity`.
In addition, SST files generated from SstFileWriter and Repairer have DB identity “SST Writer” and “DB Repairer”, respectively. Their DB session IDs are generated in the same way as `DB::GetDbSessionId`.
A table property test is added.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6983
Test Plan: make check and some manual tests.
Reviewed By: zhichao-cao
Differential Revision: D22048826
Pulled By: gg814
fbshipit-source-id: afdf8c11424a6f509b5c0b06dafad584a80103c9
Summary:
In the current code base, we use Status to get and store the returned status from the call. Specifically, for IO related functions, the current Status cannot reflect the IO Error details such as error scope, error retryable attribute, and others. With the implementation of https://github.com/facebook/rocksdb/issues/5761, we have the new Wrapper for IO, which returns IOStatus instead of Status. However, the IOStatus is purged at the lower level of write path and transferred to Status.
The first job of this PR is to pass the IOStatus to the write path (flush, WAL write, and Compaction). The second job is to identify the Retryable IO Error as HardError, and set the bg_error_ as HardError. In this case, the DB Instance becomes read only. User is informed of the Status and need to take actions to deal with it (e.g., call db->Resume()).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6487
Test Plan: Added the testing case to error_handler_fs_test. Pass make asan_check
Reviewed By: anand1976
Differential Revision: D20685017
Pulled By: zhichao-cao
fbshipit-source-id: ff85f042896243abcd6ef37877834e26f36b6eb0
Summary:
In the current code base, we can use Directory from Env to manage directory (e.g, Fsync()). The PR https://github.com/facebook/rocksdb/issues/5761 introduce the File System as a new Env API. So we further replace the Directory class in DB with FSDirectory such that we can have more IO information from IOStatus returned by FSDirectory.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6468
Test Plan: pass make asan_check
Differential Revision: D20195261
Pulled By: zhichao-cao
fbshipit-source-id: 93962cb9436852bfcfb76e086d9e7babd461cbe1
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
Summary:
Some recent commits might not have passed through the formatter. I formatted recent 45 commits. The script hangs for more commits so I stopped there.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5827
Test Plan: Run all existing tests.
Differential Revision: D17483727
fbshipit-source-id: af23113ee63015d8a43d89a3bc2c1056189afe8f
Summary:
Manual compaction may bring in very high load because sometime the amount of data involved in a compaction could be large, which may affect online service. So it would be good if the running compaction making the server busy can be stopped immediately. In this implementation, stopping manual compaction condition is only checked in slow process. We let deletion compaction and trivial move go through.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/3971
Test Plan: add tests at more spots.
Differential Revision: D17369043
fbshipit-source-id: 575a624fb992ce0bb07d9443eb209e547740043c
Summary:
Many logging related source files are under util/. It will be more structured if they are together.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5387
Differential Revision: D15579036
Pulled By: siying
fbshipit-source-id: 3850134ed50b8c0bb40a0c8ae1f184fa4081303f
Summary:
Part of compaction cpu goes to processing snapshot list, the larger the list the bigger the overhead. Although the lifetime of most of the snapshots is much shorter than the lifetime of compactions, the compaction conservatively operates on the list of snapshots that it initially obtained. This patch allows the snapshot list to be updated via a callback if the compaction is taking long. This should let the compaction to continue more efficiently with much smaller snapshot list.
For simplicity, to avoid the feature is disabled in two cases: i) When more than one sub-compaction are sharing the same snapshot list, ii) when Range Delete is used in which the range delete aggregator has its own copy of snapshot list.
This fixes the reverted https://github.com/facebook/rocksdb/pull/5099 issue with range deletes.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5278
Differential Revision: D15203291
Pulled By: maysamyabandeh
fbshipit-source-id: fa645611e606aa222c7ce53176dc5bb6f259c258
Summary:
Our daily stress tests are failing after this feature. Reverting temporarily until we figure the reason for test failures.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5269
Differential Revision: D15151285
Pulled By: maysamyabandeh
fbshipit-source-id: e4002b99690a97df30d4b4b58bf0f61e9591bc6e
Summary:
Part of compaction cpu goes to processing snapshot list, the larger the list the bigger the overhead. Although the lifetime of most of the snapshots is much shorter than the lifetime of compactions, the compaction conservatively operates on the list of snapshots that it initially obtained. This patch allows the snapshot list to be updated via a callback if the compaction is taking long. This should let the compaction to continue more efficiently with much smaller snapshot list.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5099
Differential Revision: D15086710
Pulled By: maysamyabandeh
fbshipit-source-id: 7649f56c3b6b2fb334962048150142a3bf9c1a12