Summary:
Follow-up to https://github.com/facebook/rocksdb/issues/9126
Added new unit tests to validate some of the claims of guaranteed uniqueness
within certain large bounds.
Also cleaned up the cache_bench -stress-cache-key tool with better comments
and description.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9329
Test Plan: no changes to production code
Reviewed By: mrambacher
Differential Revision: D33269328
Pulled By: pdillinger
fbshipit-source-id: 3a2b684a6b2b15f79dc872e563e3d16563be26de
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).
The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.
This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)
The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.
Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.
Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126
Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.
### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)
### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime
We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:
```
Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```
These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.
More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day
After enough data, we get a result at the end:
```
(keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```
If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:
```
(keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```
The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:
```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```
I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.
Reviewed By: zhichao-cao
Differential Revision: D33171746
Pulled By: pdillinger
fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
Summary:
This PR adds a ```-secondary_cache_uri``` option to the cache_bench and db_bench tools to allow the user to specify a custom secondary cache URI. The object registry is used to create an instance of the ```SecondaryCache``` object of the type specified in the URI.
The main cache_bench code is packaged into a separate library, similar to db_bench.
An example invocation of db_bench with a secondary cache URI -
```db_bench --env_uri=ws://ws.flash_sandbox.vll1_2/ -db=anand/nvm_cache_2 -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=67108864 -cache_index_and_filter_blocks=true -secondary_cache_uri='cachelibwrapper://filename=/home/anand76/nvm_cache/cache_file;size=2147483648;regionSize=16777216;admPolicy=random;admProbability=1.0;volatileSize=8388608;bktPower=20;lockPower=12' -partition_index_and_filters=true -duration=1800```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8312
Reviewed By: zhichao-cao
Differential Revision: D28544325
Pulled By: anand1976
fbshipit-source-id: 8f209b9af900c459dc42daa7a610d5f00176eeed
Summary:
Adds a new Cache::ApplyToAllEntries API that we expect to use
(in follow-up PRs) for efficiently gathering block cache statistics.
Notable features vs. old ApplyToAllCacheEntries:
* Includes key and deleter (in addition to value and charge). We could
have passed in a Handle but then more virtual function calls would be
needed to get the "fields" of each entry. We expect to use the 'deleter'
to identify the origin of entries, perhaps even more.
* Heavily tuned to minimize latency impact on operating cache. It
does this by iterating over small sections of each cache shard while
cycling through the shards.
* Supports tuning roughly how many entries to operate on for each
lock acquire and release, to control the impact on the latency of other
operations without excessive lock acquire & release. The right balance
can depend on the cost of the callback. Good default seems to be
around 256.
* There should be no need to disable thread safety. (I would expect
uncontended locks to be sufficiently fast.)
I have enhanced cache_bench to validate this approach:
* Reports a histogram of ns per operation, so we can look at the
ditribution of times, not just throughput (average).
* Can add a thread for simulated "gather stats" which calls
ApplyToAllEntries at a specified interval. We also generate a histogram
of time to run ApplyToAllEntries.
To make the iteration over some entries of each shard work as cleanly as
possible, even with resize between next set of entries, I have
re-arranged which hash bits are used for sharding and which for indexing
within a shard.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225
Test Plan:
A couple of unit tests are added, but primary validation is manual, as
the primary risk is to performance.
The primary validation is using cache_bench to ensure that neither
the minor hashing changes nor the simulated stats gathering
significantly impact QPS or latency distribution. Note that adding op
latency histogram seriously impacts the benchmark QPS, so for a
fair baseline, we need the cache_bench changes (except remove simulated
stat gathering to make it compile). In short, we don't see any
reproducible difference in ops/sec or op latency unless we are gathering
stats nearly continuously. Test uses 10GB block cache with
8KB values to be somewhat realistic in the number of items to iterate
over.
Baseline typical output:
```
Complete in 92.017 s; Rough parallel ops/sec = 869401
Thread ops/sec = 54662
Operation latency (ns):
Count: 80000000 Average: 11223.9494 StdDev: 29.61
Min: 0 Median: 7759.3973 Max: 9620500
Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58
------------------------------------------------------
[ 0, 1 ] 68 0.000% 0.000%
( 2900, 4400 ] 89 0.000% 0.000%
( 4400, 6600 ] 33630240 42.038% 42.038% ########
( 6600, 9900 ] 18129842 22.662% 64.700% #####
( 9900, 14000 ] 7877533 9.847% 74.547% ##
( 14000, 22000 ] 15193238 18.992% 93.539% ####
( 22000, 33000 ] 3037061 3.796% 97.335% #
( 33000, 50000 ] 1626316 2.033% 99.368%
( 50000, 75000 ] 421532 0.527% 99.895%
( 75000, 110000 ] 56910 0.071% 99.966%
( 110000, 170000 ] 16134 0.020% 99.986%
( 170000, 250000 ] 5166 0.006% 99.993%
( 250000, 380000 ] 3017 0.004% 99.996%
( 380000, 570000 ] 1337 0.002% 99.998%
( 570000, 860000 ] 805 0.001% 99.999%
( 860000, 1200000 ] 319 0.000% 100.000%
( 1200000, 1900000 ] 231 0.000% 100.000%
( 1900000, 2900000 ] 100 0.000% 100.000%
( 2900000, 4300000 ] 39 0.000% 100.000%
( 4300000, 6500000 ] 16 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
```
New, gather_stats=false. Median thread ops/sec of 5 runs:
```
Complete in 92.030 s; Rough parallel ops/sec = 869285
Thread ops/sec = 54458
Operation latency (ns):
Count: 80000000 Average: 11298.1027 StdDev: 42.18
Min: 0 Median: 7722.0822 Max: 6398720
Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78
------------------------------------------------------
[ 0, 1 ] 109 0.000% 0.000%
( 2900, 4400 ] 793 0.001% 0.001%
( 4400, 6600 ] 34054563 42.568% 42.569% #########
( 6600, 9900 ] 17482646 21.853% 64.423% ####
( 9900, 14000 ] 7908180 9.885% 74.308% ##
( 14000, 22000 ] 15032072 18.790% 93.098% ####
( 22000, 33000 ] 3237834 4.047% 97.145% #
( 33000, 50000 ] 1736882 2.171% 99.316%
( 50000, 75000 ] 446851 0.559% 99.875%
( 75000, 110000 ] 68251 0.085% 99.960%
( 110000, 170000 ] 18592 0.023% 99.983%
( 170000, 250000 ] 7200 0.009% 99.992%
( 250000, 380000 ] 3334 0.004% 99.997%
( 380000, 570000 ] 1393 0.002% 99.998%
( 570000, 860000 ] 700 0.001% 99.999%
( 860000, 1200000 ] 293 0.000% 100.000%
( 1200000, 1900000 ] 196 0.000% 100.000%
( 1900000, 2900000 ] 69 0.000% 100.000%
( 2900000, 4300000 ] 32 0.000% 100.000%
( 4300000, 6500000 ] 10 0.000% 100.000%
```
New, gather_stats=true, 1 second delay between scans. Scans take about
1 second here so it's spending about 50% time scanning. Still the effect on
ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs:
```
Complete in 91.890 s; Rough parallel ops/sec = 870608
Thread ops/sec = 54551
Operation latency (ns):
Count: 80000000 Average: 11311.2629 StdDev: 45.28
Min: 0 Median: 7686.5458 Max: 10018340
Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86
------------------------------------------------------
[ 0, 1 ] 71 0.000% 0.000%
( 2900, 4400 ] 291 0.000% 0.000%
( 4400, 6600 ] 34492060 43.115% 43.116% #########
( 6600, 9900 ] 16727328 20.909% 64.025% ####
( 9900, 14000 ] 7845828 9.807% 73.832% ##
( 14000, 22000 ] 15510654 19.388% 93.220% ####
( 22000, 33000 ] 3216533 4.021% 97.241% #
( 33000, 50000 ] 1680859 2.101% 99.342%
( 50000, 75000 ] 439059 0.549% 99.891%
( 75000, 110000 ] 60540 0.076% 99.967%
( 110000, 170000 ] 14649 0.018% 99.985%
( 170000, 250000 ] 5242 0.007% 99.991%
( 250000, 380000 ] 3260 0.004% 99.995%
( 380000, 570000 ] 1599 0.002% 99.997%
( 570000, 860000 ] 1043 0.001% 99.999%
( 860000, 1200000 ] 471 0.001% 99.999%
( 1200000, 1900000 ] 275 0.000% 100.000%
( 1900000, 2900000 ] 143 0.000% 100.000%
( 2900000, 4300000 ] 60 0.000% 100.000%
( 4300000, 6500000 ] 27 0.000% 100.000%
( 6500000, 9800000 ] 7 0.000% 100.000%
( 9800000, 14000000 ] 1 0.000% 100.000%
Gather stats latency (us):
Count: 46 Average: 980387.5870 StdDev: 60911.18
Min: 879155 Median: 1033777.7778 Max: 1261431
Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00
------------------------------------------------------
( 860000, 1200000 ] 45 97.826% 97.826% ####################
( 1200000, 1900000 ] 1 2.174% 100.000%
Most recent cache entry stats:
Number of entries: 1295133
Total charge: 9.88 GB
Average key size: 23.4982
Average charge: 8.00 KB
Unique deleters: 3
```
Reviewed By: mrambacher
Differential Revision: D28295742
Pulled By: pdillinger
fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
Summary:
Introduces and uses a SystemClock class to RocksDB. This class contains the time-related functions of an Env and these functions can be redirected from the Env to the SystemClock.
Many of the places that used an Env (Timer, PerfStepTimer, RepeatableThread, RateLimiter, WriteController) for time-related functions have been changed to use SystemClock instead. There are likely more places that can be changed, but this is a start to show what can/should be done. Over time it would be nice to migrate most (if not all) of the uses of the time functions from the Env to the SystemClock.
There are several Env classes that implement these functions. Most of these have not been converted yet to SystemClock implementations; that will come in a subsequent PR. It would be good to unify many of the Mock Timer implementations, so that they behave similarly and be tested similarly (some override Sleep, some use a MockSleep, etc).
Additionally, this change will allow new methods to be introduced to the SystemClock (like https://github.com/facebook/rocksdb/issues/7101 WaitFor) in a consistent manner across a smaller number of classes.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7858
Reviewed By: pdillinger
Differential Revision: D26006406
Pulled By: mrambacher
fbshipit-source-id: ed10a8abbdab7ff2e23d69d85bd25b3e7e899e90
Summary:
A generic algorithm in progress depends on a templatized
version of fastrange, so this change generalizes it and renames
it to fit our style guidelines, FastRange32, FastRange64, and now
FastRangeGeneric.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7436
Test Plan: added a few more test cases
Reviewed By: jay-zhuang
Differential Revision: D23958153
Pulled By: pdillinger
fbshipit-source-id: 8c3b76101653417804997e5f076623a25586f3e8
Summary:
I suspect LRUCache could use some optimization, and to support
such an effort, a good benchmarking tool is needed. The existing
cache_bench was heavily skewed toward insertion and lookup misses, and
did not saturate memory with other work. This change should improve
those things to better resemble a real workload.
(All below using clang compiler, for some consistency, but not
necessarily same version and settings.)
The real workload is from production MySQL on RocksDB, filtering stacks
containing "LRU", "ShardedCache" or "CacheShard."
Lookup inclusive: 66%
Insert inclusive: 17%
Release inclusive: 15%
An alternate simulated workload is MySQL running a LinkBench read test:
Lookup inclusive: 54%
Insert inclusive: 24%
Release inclusive: 21%
cache_bench default settings, prior to this change:
Lookup inclusive: 35.8%
Insert inclusive: 63.6%
Release inclusive: 0%
cache_bench after this change (intended as somewhat "tighter" workload
than average production, more like LinkBench):
Lookup inclusive: 52%
Insert inclusive: 20%
Release inclusive: 26%
And top exclusive stacks (portion of stack samples as filtered above):
Production MySQL:
LRUHandleTable::FindPointer: 25.3%
rocksdb::operator==: 15.1% <-- Slice ==
LRUCacheShard::LRU_Remove: 13.8%
ShardedCache::Lookup: 8.9%
__pthread_mutex_lock: 7.1%
LRUCacheShard::LRU_Insert: 6.3%
MurmurHash64A: 4.8% <-- Since upgraded to XXH3p
...
Old cache_bench:
LRUHandleTable::FindPointer: 23.6%
__pthread_mutex_lock: 15.0%
__pthread_mutex_unlock_usercnt: 11.7%
__lll_lock_wait: 8.6%
__lll_unlock_wake: 6.8%
LRUCacheShard::LRU_Insert: 6.0%
ShardedCache::Lookup: 4.4%
LRUCacheShard::LRU_Remove: 2.8%
...
rocksdb::operator==: 0.2% <-- Slice ==
...
New cache_bench:
LRUHandleTable::FindPointer: 22.8%
__pthread_mutex_unlock_usercnt: 14.3%
rocksdb::operator==: 10.5% <-- Slice ==
LRUCacheShard::LRU_Insert: 9.0%
__pthread_mutex_lock: 5.9%
LRUCacheShard::LRU_Remove: 5.0%
...
ShardedCache::Lookup: 2.9%
...
So there's a bit more lock contention in the benchmark than in
production, but otherwise looks similar enough to me. At least it's a
big improvement over the existing code.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6629
Test Plan: No production code changes, ran cache_bench with ASAN
Reviewed By: ltamasi
Differential Revision: D20824318
Pulled By: pdillinger
fbshipit-source-id: 6f8dc5891ead0f87edbed3a615ecd5289d9abe12
Summary:
As the first step of reintroducing eviction statistics for the block
cache, the patch switches from using simple function pointers as deleters
to function objects implementing an interface. This will enable using
deleters that have state, like a smart pointer to the statistics object
that is to be updated when an entry is removed from the cache. For now,
the patch adds a deleter template class `SimpleDeleter`, which simply
casts the `value` pointer to its original type and calls `delete` or
`delete[]` on it as appropriate. Note: to prevent object lifecycle
issues, deleters must outlive the cache entries referring to them;
`SimpleDeleter` ensures this by using the ("leaky") Meyers singleton
pattern.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6545
Test Plan: `make asan_check`
Reviewed By: siying
Differential Revision: D20475823
Pulled By: ltamasi
fbshipit-source-id: fe354c33dd96d9bafc094605462352305449a22a
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
Further apply formatter to more recent commits.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5830
Test Plan: Run all existing tests.
Differential Revision: D17488031
fbshipit-source-id: 137458fd94d56dd271b8b40c522b03036943a2ab
Summary:
When using `PRIu64` type of printf specifier, current code base does the following:
```
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
```
However, this can be simplified to
```
#include <cinttypes>
```
as long as flag `-std=c++11` is used.
This should solve issues like https://github.com/facebook/rocksdb/issues/5159
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5402
Differential Revision: D15701195
Pulled By: miasantreble
fbshipit-source-id: 6dac0a05f52aadb55e9728038599d3d2e4b59d03
Summary:
This PR comments out the rest of the unused arguments which allow us to turn on the -Wunused-parameter flag. This is the second part of a codemod relating to https://github.com/facebook/rocksdb/pull/3557.
Closes https://github.com/facebook/rocksdb/pull/3662
Differential Revision: D7426121
Pulled By: Dayvedde
fbshipit-source-id: 223994923b42bd4953eb016a0129e47560f7e352
Summary:
I started adding gflags support for cmake on linux and got frustrated that I'd need to duplicate the build_detect_platform logic, which determines namespace based on attempting compilation. We can do it differently -- use the GFLAGS_NAMESPACE macro if available, and if not, that indicates it's an old gflags version without configurable namespace so we can simply hardcode "google".
Closes https://github.com/facebook/rocksdb/pull/3212
Differential Revision: D6456973
Pulled By: ajkr
fbshipit-source-id: 3e6d5bde3ca00d4496a120a7caf4687399f5d656
Summary:
Move some files under util/ to new directories env/, monitoring/ options/ and cache/
Closes https://github.com/facebook/rocksdb/pull/2090
Differential Revision: D4833681
Pulled By: siying
fbshipit-source-id: 2fd8bef
Summary:
Clock-based cache implemenetation aim to have better concurreny than
default LRU cache. See inline comments for implementation details.
Test Plan:
Update cache_test to run on both LRUCache and ClockCache. Adding some
new tests to catch some of the bugs that I fixed while implementing the
cache.
Reviewers: kradhakrishnan, sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D61647
Summary:
Cache to have an option to fail Cache::Insert() when full. Update call sites to check status and handle error.
I totally have no idea what's correct behavior of all the call sites when they encounter error. Please let me know if you see something wrong or more unit test is needed.
Test Plan: make check -j32, see tests pass.
Reviewers: anthony, yhchiang, andrewkr, IslamAbdelRahman, kradhakrishnan, sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D54705
Summary: Previously I made `make check` work with -Wshadow, but there are some tools that are not compiled using `make check`.
Test Plan: make all
Reviewers: yhchiang, rven, ljin, sdong
Reviewed By: ljin, sdong
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D28497